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Abstract The nonlinear dynamics of a hybrid
Rayleigh–Van der Pol–Duffing oscillator includes pure
and impure quadratic damping are investigated. The
multiple timescales method is used to study exhaus-
tively various resonances states. It is noticed that
the system presents nine resonances states. The fre-
quency response curves of quintic, third and second
superharmonic, and subharmonic resonances states are
obtained.Bistability, hysteresis, and jumpphenomenon
are also obtained. It is pointed out that these reso-
nance phenomena are strongly related to the nonlinear
cubic and quadratic damping and to the external force.
The numerical simulations are used to make bifurca-
tion sequences displayed by the model for each type of
oscillatory. It is noticed that the pure quadratic, impure
cubic damping, and external excitation affect regular
and chaotic states.

Keywords Modified Duffing oscillator · Hysteresis
and bistability phenomena · Resonant oscillations ·
Periodic and multiperiodic orbits · Chaos
1 Introduction

The theory of oscillators has shown that many dynam-
ics phenomena can be modeled by oscillators in engi-
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neering, biochemistry, biophysics, and communica-
tions. Nonlinear oscillations and its applications in
physics, chemistry, and engineering are studied with
some analytical, numerical, and experimental meth-
ods [1–5]. The most interesting nonlinear oscillators
are self-excited, and the study of their dynamics is
often difficult. Duffing–Van der Pol–Rayleigh oscilla-
tors have been studied bymany researchers. Nowadays,
much research has accomplished the composition of
these oscillators. Multiresonance, chaotic behavior and
its control, bifurcations, limit cycle stability, hystere-
sis and jump phenomena, analytic solutions, plasma
oscillations, and noise effect…are seriously analyzed
[6–14]. Among the many fields of application of the
system,we have the nonlinear dynamics of ship rolling.
Roll motion has been attracting considerable attention
over the years because of it being the most critical
motion leading to a capsize, out of the six motions of
a ship. Since so many casualties have continued to be
reported due to severe rolling, it seems that it will retain
its popularity for many years to come. Linear and non-
linear formulation of the motion can be found in the
literature [15,16]. Linearity of the motion is often vio-
lated by the nonlinear features of damping and restor-
ing. Thus, most of the time nonlinearity is introduced
into the equation through these two parameters. Vari-
ous models of roll motion containing nonlinear terms
in damping and restoring have been studied by many
researchers [17–21]. Several techniques are used by
many researchers to identify different behaviors of a
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ship (see [13–26]). Themost important are the phenom-
ena of resonance and jump amplitude, regular, chaotic,
hyperchaotic behaviors, etc. For example, ultraharmon-
ics, subharmonics, and superharmonics oscillations in
ship rolling motion are studied with different models
by many researchers [27–30]. Holappa and Falzarano
[26] have established the ship motions general equa-
tion, and Contento et al. [31] obtained the effectiveness
of constant coefficients roll motion equation.

The nonlinear oscillator considered in this paper
is an hybrid Rayleigh–Van der Pol–Duffing oscillator.
The equation of motion of the system is written as

ẍ + 2μ̃ẋ + δ̃2 ẋ
3 + β̃1x ẋ + β̃2 ẋ

2 + δ̃1x
2 ẋ + ω2

0x

+λ̃x3 + γ̃ x5 = F cosωt, (1)

where μ̃, β̃1, β̃2, δ̃1, δ̃2 are linear, impure quadratic,
pure quadratic, impure cubic, and pure cubic nonlin-
ear damping coefficients respectively; which represent
Rayleigh and Van der Pol terms. λ̃ and γ̃ are cubic and
quintic nonlinear Duffing coefficients, respectively;
ω0 and ω are natural and external forcing frequen-
cies respectively and F represents the external forc-
ing amplitude. Our goal is to find the different behav-
iors of physical systems simultaneously taking into
account the Rayleigh–Van der Pol–Duffing terms and
also quadratic (pure and hybrid) damping parameters.
We also seek the mutual influence of these parameters
on the behaviors obtained. Since this kind of equation
can model ship rolling motions, knowledge of these
phenomena will enable the practical naval architect
to know when they occur and understand their con-
sequences so that it will be able to avoid design that
promotes capsizing, to evaluate the sea worthiness of a
craft and recommend appropriate measures to control
or minimize large amplitudes motions.

The paper is organized as follows: Sect. 2 addresses
the different resonances states, analyzes the effect of
different parameters of the system. Section 3 deals with
the analyses of the bifurcations sequences and transi-
tion to chaos using the numerical simulations. The con-
clusion is presented in the last section.

2 Resonant oscillatory states

In this section, we investigate theoretically and numer-
ically analysis of the nonlinear responses of our model
equation to primary resonance, superharmonic res-
onances, and subharmonic resonances of the vibra-

tion mode. Since these oscillations rise up at differ-
ent timescales, the best tool to be used for their inves-
tigation is the multiple timescale method [6,32]. We
set μ̃ = εμ, β̃1 = εβ1, β̃2 = εβ2, δ̃1 = εδ1, δ̃2 =
εδ2, λ̃ = ελ and γ̃ = εγ . In such a situation, an approx-
imate solution is generally sought as follows:

x(ε, t) = x0(T0, T1) + εx0(T0, T1) + . . . . (2)

The first and second times derivatives are defined as
follow:
d

dt
= D0 + εD1 + . . . . (3)

d2

dt2
= D2

0 + 2εD1D0 + . . . , (4)

where Dm
n = ∂m

∂Tm
n

and Tn = εnt .

2.1 Primary resonance

In the case of primary resonant state, the amplitude F
of the external excitation is small, that is F = εF0. The
closeness between both internal and external frequen-
cies is given by ω = ω0 + εσ , where σ is the detuning
parameter. With Eqs. (2), (3), and (4 ), Eq. (1) gives

Order ε0:

D2
0x0 + ω2

0x0 = 0, (5)

Order ε1:

D2
0x1 + ω2

0x1 = F0 cosωt − 2D1D0x0 − 2μD0x0

− δ2(D0x0)
3 − β1x0D0x0

−β2(D0x0)
2 − δ1x

2
0D0x0

− λx30 − γ x50 . (6)

We set ω0 = 1. The general solution of Eq. (5) is

x0 = A(T1)e
( jT0) + cc, (7)

where ′′cc′′ is the complex conjugate of the previous
terms. Inserting this solution into Eq. (6), eliminat-
ing the secular terms, we found after somme algebraic
manipulations the primary resonant amplitude equation
as follows:(
σ 2 + μ2

)
+

[
μ

(
3δ2
4

+ δ1

2

)
− σ

4

(
3λ − δ1

2

)]
a40

+
[(

3δ2
8

+ δ1

4

)2

− 5γ σ

8
+ 1

64

(
3λ − δ1

2

)2
]
a60

+5γ

64

(
3λ − δ1

2

)
a80 + 25γ 2

256
a100 − F0

4
= 0. (8)
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We plotted in Fig. 1 the primary amplitude response
curves obtained from Eq. (8). One can observe that the
resonance amplitude and frequency are affected only by
cubic damping coefficients and amplitude of external
force. Thereby, it is observed that the model goes from
resonance to a hysteresis statewhen the cubics damping
descrease and the amplitude of external force increases.

2.2 Superharmonic and subharmonic resonances

When the amplitude of the sinusoidal external force
is large (F = ε0F0), other type of oscillations can be
displayed by themodel, namely the superharmonic and
the subharmonic oscillatory states. Using the multiple
timescale method, we obtain:

Order ε0:

D2
0x0 + ω2

0x0 = F cosωt, (9)

Order ε1:

D2
0x1 + ω2

0x1 = −2D1D0x0 − 2μD0x0 − δ2(D0x0)
3 −

β1x0D0x0 − β2(D0x0)
2 − δ1x

2
0D0x0 − λx30 − γ x50 .

(10)

The general solution of Eq. (9) is

x0 = A(T1)e
( jT0) + Λe jωT0 + cc, (11)

where Λ = F
2(1−ω2)

, and ω0 = 1.

Inserting this solution into Eq. (10), we obtain after
some algebraic manipulations the following equation:

D2
0 x1 + x1 =

[
−2 j A′ − 3 jδ2|A|2A − 6 jδ2ω

2Λ2A

−3λ|A|2A − 6λAΛ2
]
e jT0

+
[
−10γ |A|4A − 60γΛ2|A|2A − 30γ AΛ4

]
e jT0

+
[
− jδ1|A|2A − 2 jδ1AΛ2 − 2 jμA

]
e jT0

+
(
β2A

2 − jβ1A
2
)
e2 jT0

×
[
jδ2A

3 − λA3 − 5γ |A|2A3

−20γΛ2A3 − jδ1A
3
]
e3 jT0 − γ A5e5 jT0

+
[
−6 jδ2ωΛ|A|2 − 3 jδ2ω

3Λ3 − 6λΛ|A|2

−3λΛ3 − 30γΛ|A|4
]
e jωT0

+
[
−60γΛ3|A|2 − 10γΛ5 − 2 jωδ1Λ|A|2 − jωδ1Λ

3

−2 jωμΛ] e jωT0
(
β2ω

2Λ2 − jβ1ωΛ2
)
e2 jωT0

×
[
jδ2Λ

3ω3 − λΛ3 − 20γΛ3|A|2 − 5γΛ5 − jωδ1Λ
3
]
e3 jωT0

−γΛ5e5 jωT0 + [−2β2ωΛA − jβ1ΛA + jωβ1ΛA]

×e j (1−ω)T0 + [−2β2ωΛ Ā + jβ1Λ Ā − jωβ1Λ Ā
]
e j (−1+ω)T0

+
[
−3 jδ2ωΛA2 − 3λΛA2 − 20γΛ|A|2A2

]
e j (2−ω)T0

+
[
−30γΛ3A2 − 2 jδ1ΛA2 + jωδ1ΛA2

]
e j (2−ω)T0

×
[
3 jδ2ωΛ Ā2 − 3λΛ Ā2 − 20γΛ|A|2 Ā2

]
e j (2−ω)T0

+
[
−30γΛ3 Ā2 + 2 jδ1Λ Ā2 − jωδ1Λ Ā2

]
e j (−2+ω)T0

+
[
3 jδ2ω

2AΛ2 − 3λAΛ2 − 30γ |A|2AΛ2
]
e j (1−2ω)T0

+
[
−20γ AΛ4 − jδ1AΛ2 + 2 jωδ1Λ

2A
]
e j (1−2ω)T0

+
[
−3 jδ2ω

2 ĀΛ2 − 3λ ĀΛ2 − 30γ |A|2 ĀΛ2
]
e j (1−2ω)T0

+
[
−20γ ĀΛ4 + jδ1 ĀΛ2 − 2 jωδ1Λ

2 Ā
]
e j (−1+2ω)T0

−10γ A3Λ2e j (3−2ω)T0 − 10γ Ā3Λ2e j (−3+2ω)T0

−10γ A2Λ3e j (2−3ω)T0 + −10γ Ā2Λ3e j (−2+3ω)T0

−5γ A4Λe j (4−ω)T0 − 5γ Ā4Λe j (−4+ω)T0

−5γ AΛ4e j (1−4ω)T0 − 5γ ĀΛ4e j (−1+4ω)T0

−2|A|2β2 − 2ωβ2Λ
2 + NST + cc, (12)

where “NST” is non secular terms and “cc” is the com-
plex conjugate of the previous terms.

We noticed that the system can presented four super-
harmonic resonant states and four subharmonic reso-
nant states, when the following conditions are satisfied:

– Subharmonic
ω = 2 + εσ ; ω = 3 + εσ ; ω = 4 + εσ and
ω = 5 + εσ

– Superharmonic:
2ω = 1 + εσ ; 3ω = 1 + εσ ; 4ω = 1 + εσ and
5ω = 1 + εσ

2.2.1 Superharmonic resonant states

Considering 5ω = 1+ εσ , and injecting this condition
into Eq. (12) and setting secular terms to 0, we obtained

−2 j A′ − 3 jδ2|A|2A − 6 jδ2ω
2Λ2A − 3λ|A|2A − 6λAΛ2

−10γ |A|4A − 60γΛ2|A|2A − 30γ AΛ4

− jδ1|A|2A − 2 jδ1AΛ2 − 2 jμA − γΛ5eσT1 = 0.

(13)

The polar form of A is

A = 1

2
a(T1)e

jΦ(T1). (14)
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Fig. 1 Primary resonant
state curves a effect of δ1, b
effect of δ2 and c effect of
F0 with λ = −0.6, γ =
0.05, F0 = 0.5, ω0 = 1
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Inserting Eq. (14) into Eq. (13), after puting θ =
σT1 −Φ, we neglect the reals and imaginary parts and
we obtained

a′ = −3

8
δ2a

3 − 3δ2ω
2Λ2a − 1

8
δ1a

3

−δ1aΛ2 − μa − γΛ5 sin θ, (15)

aθ ′ = aσ − 3

8
λa3 − 3λΛ2a − 5

16
γ a5

−15

2
γΛ2a3 − 15γΛ4a − γΛ5a cos θ. (16)

In the steady-state case a′ = 0 and aθ ′ = 0, we
obtained the following nonlinear equation:

(
3

8
δ2a

3 + 3δ2ω
2Λ2a + 1

8
δ1a

3 + δ1aΛ2 + μa

)2

+
(
aσ − 3

8
λa3 − 3λΛ2a − 5

16
γ a5

−15

2
γΛ2a3 − 15γΛ4a

)2

= γ 2Λ10. (17)

Using the appropriate algorithm, the amplitude a
is plotted as a function of the detuning parameter σ

for different values of the nonlinear parameters. With
the appropriate set of parameters, the response curves
are obtained and presented in Fig. 2. As the primary
resonance state, the quadratic damping coefficients
have no effect on the superharmonic resonance state.
Figure 2c shows that the external force is the origin
of the phenomenon called bistability or jump phenom-
enon. The same effects are obtainedwhen the nonlinear
cubic damping coefficients descrease (see Fig. 2a, b).
The parameters δ1 and δ2 can be used to eliminate or
control the bistability or jump phenomenon.

To analyze the 1 : 3 superharmonic resonance, we
set 3ω = 1 + εσ .

Substituting the superharmonic resonance relation
in Eq. (12), the condition for eliminating secular terms
in the problem is given by

−2 j A′ − 3 jδ2|A|2A
−6 jδ2ω

2Λ2A − 3λ|A|2A − 6λAΛ2

−10γ |A|4A − 60γΛ2|A|2A − 30γ AΛ4

− jδ1|A|2A − 2 jδ1AΛ2 − 2 jμA

+
[
jδ2Λ

3ω3 − λΛ3 − 20γΛ3|A|2

−5γΛ5 − jωδ1Λ
3
]
eσT1 = 0. (18)

The 1 : 3 superharmonic resonance equation is:
(
3

8
δ2a

3 + 3δ2ω
2Λ2a + 1

8
δ1a

3 + δ1aΛ2 + μa

)2

+
(
aσ − 3

8
λa3 − 3λΛ2a − 5

16
γ a5

− 15

2
γΛ2a3 − 15γΛ4a

)

=
(
δ2Λ

3ω3 − ωδ1Λ
3
)2

+
(
λΛ3 + 5γΛ3a2 + 5γΛ5

)2
. (19)

Figure 3 presents the frequency response curves of
the third order superharmonic resonance. The same
observations are obtained as in the previous case, but
the amplitude and the frequency are lower and also vary
less than in the previous case.

Now, we consider 1 : 2 superharmonic resonance
state 2ω = 1+εσ . Inserting 2ω = 1+εσ into Eq. (12)
and eliminating the secular terms, we obtained

−2 j A′ − 3 jδ2|A|2A − 6 jδ2ω
2Λ2A

−3λ|A|2A − 6λAΛ2

−10γ |A|4A − 60γΛ2|A|2A − 30γ AΛ4 − jδ1|A|2A
−2 jδ1AΛ2 − 2 jμA

+ (
β2ω

2Λ2 − jβ1ωΛ2) eσT1 = 0. (20)

In this case, the resonance equation is governed by
(
3

8
δ2a

3 + 3δ2ω
2Λ2a + 1

8
δ1a

3 + δ1aΛ2 + μa

)2

+
(
aσ − 3

8
λa3 − 3λΛ2a − 5

16
γ a5

−15

2
γΛ2a3 − 15γΛ4a

)2

=
(
β2
1 + β2

2ω
2
)

ω2Λ4. (21)

The frequency response curves of second-order
superharmonic oscillations are plotted in Fig. 4. In this
case, the influences of the impure and pure quadratic
parameters on the oscillations have been checked (see
Fig. 4a, b respectively). From these figures, we con-
clude that the range of frequency where a response can
be obtained is more important in the case of β1 than in
the case of β2. It is also noticed that the bistability or
jumpphenomenonoccurswhen the nonlinear quadratic
parameters increase.
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Fig. 2 Order 5
superharmonic resonant
state curves a effect of δ1, b
effect of δ2 and c effect of F
with λ = −0.6, γ =
0.05, ω0 = 1
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Fig. 3 Order 3
superharmonic resonant
state curves a effect of δ1, b
effect of δ2 and c effect of F
with λ = −0.6, γ =
0.05, ω0 = 1
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Fig. 4 Effects of quadratic
damping on 1 : 2
superharmonic resonant
state curves a effect of δ1, b
effect of δ2 and c effect of F
with λ = −0.6, γ =
0.05, F = 2, ω0 = 1
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2.2.2 Subharmonic resonant states

In this part, we treat three cases: ω = 5 + εσ, ω =
3+εσ and ω = 2+εσ . In the first case ( ω = 5+εσ ),
the secular terms are eliminated when

−2 j A′ − 3 jδ2|A|2A − 6 jδ2ω
2Λ2A − 3λ|A|2A

− 6λAΛ2 − 10γ |A|4A − 60γΛ2|A|2A − 30γ AΛ4

− jδ1|A|2A − 2 jδ1AΛ2 − 2 j

× μA − 5γΛ Ā4eσT1 = 0. (22)

Inserting the polar form of A and putting θ = σT1−
5Φ, we obtained

a′ = 3

8
δ2a

3 + 3δ2ω
2Λ2a + 1

8
δ1a

3

+δ1aΛ2 + μa + 5Λ

16
a4 sin θ, (23)

aθ ′ = aσ − 15λΛ2a − 25

16
γ a5 − 75

2
γΛ2a3

−75γΛ4 − 15

8
λa3 − 5

16
Λa5 cos θ. (24)

We set a′ = 0, θ ′ = 0 and we eliminate the phase
θ , and then we obtained after some algebraic manipu-
lations
(
3

8
δ2a

3 + 3δ2ω
2Λ2a + 1

8
δ1a

3 + δ1aΛ2 + μa

)2

+
(
a

σ

5
− 3

8
λa3 − 3λΛ2a − 5

16
γ a5

−15

2
γΛ2a3 − 15γΛ4

)2

= 25

256
Λ2a8. (25)

Figure 5 shows frequency response curves for dif-
ferent values of the nonlinear parameters. We noticed
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Fig. 5 Order 5
subharmonic resonant state
curves a effect of δ1, b
effect of δ2 and c effect of F
with λ = −0.6, γ =
0.05, F = 1, ω0 = 1
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Fig. 6 Order 3
subharmonic resonant state
curves a effect of δ1, b
effect of δ2 and c effect of F
with λ = −0.6, γ =
0.05, ω0 = 1
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Fig. 7 Effects of quadratic
damping on 2 : 1
subharmonic resonant state
curves a effect of δ1, b
effect of δ2 and c effect of F
with λ = −0.6, γ =
0.05, F = 2, ω0 = 1
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that the quadratic damping parameters effects are not
significant as those of cubic damping parameters and
external force. The cubic damping parameters have the
same effectswhich are the contrary to the external force
effects.

We consider the 3 : 1 subharmonic resonant state
ω = 3 + εσ . The resonance equation is governed by

(
3

8
δ2a

3 + 3δ2ω
2Λ2a + 1

8
δ1a

3 + δ1aΛ2 + μa

)2

+
(
a

σ

5
− 3

8
λa3 − 3λΛ2a − 5

16
γ a5

−45

2
γΛ2a3 − 45γΛ4a3

)2

=
(
3

4
δ2ω + 1

2
δ1 − 1

4
δ1ω

)2

Λ2a4

+
(
3

4
λ + 5

4
γ a2 + 15

2
γΛ2

)2

Λ2a4. (26)

Figure 6 displays the amplitude response curves
obtained from Eq. (26) for different values of the non-
linear parameters. As the third superharmonic reso-
nance state, the damping coefficients have the same
effects in the 3 : 1 subharmonic resonance state (see
Fig. 6a, b). In Fig. 6c, as the amplitude of the exter-
nal force increases as far as F = 3, bistability and
jump phenomenon are observed. For other values of
F , these phenomena disappear. We conclude that the
parameters F, δ1 and δ2 can be used to eliminate or
control the bistability and jump phenomena.

The system enter the second-order subharmonic res-
onant statewhenω = 2+εσ . In this case, the resonance
equation is given by
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Fig. 8 Bifurcation diagram
and corresponding
Lyapunov exponents of a
modified Duffing oscillator
with δ1 = 1.05, δ2 = 0.85,
β1 = 3.5, β2 = 0.125, μ =
0.0005, λ = −0.6, γ =
0.05, ω0 = 1, ω = 1
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Fig. 9 Phase portraits of
the modified Duffing
oscillator with parameters
of Fig. 8. a F = 0.25, b F =
0.75, c F = 0.965, d F = 1.5

-3,6 -3,4 -3,2 -3 -2,8 -2,6 -2,4
-2

-1,5

-1

-0,5

0

0,5

1

-4 -3 -2 -1 0 1
-2

-1

0

1

2

-4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

-4 -3 -2 -1 0 1
-3

-2

-1

0

1

2

(a) (b)

(c) (d)

x

y
y

y
y

x x

x

123



Nonlinear dynamics of a φ6–modified Duffing oscillator 109

Fig. 10 Times histories
corresponding to phase
portraits of the modified
Duffing oscillator with
parameters of Fig. 8. a F =
0.25, b F = 0.75, c F =
0.965, d F = 1.5

Fig. 11 Bifurcation
diagram and corresponding
Lyapunov exponents of a
modified Duffing oscillator
with δ1 = 1.05, δ2 = 0.85,
β1 = 3.5, β2 = 0.125, μ =
0.0005, λ = −0.6, γ =
0.05, ω0 = 1, F = 0.965

(
3

8
δ2a

3 + 3δ2ω
2Λ2a + 1

8
δ1a

3 + δ1aΛ2 + μa

)2

+
(
a

σ

5
− 3

8
λa3 − 3λΛ2a − 5

16
γ a5 − 15γΛ2a3 − 15γΛ4a3

)2

= 1

4
(1 − ω)2 β2

1Λ2a2 + β2
2ω2Λ2a2. (27)

The frequency response curves of second-order sub-
harmonic oscillations are plotted in Fig. 7, and the
regionswhere suchbehaviors occur are obtained. In this
case, the influences of the impure and pure quadratic
parameters on such oscillations have been checked
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Fig. 12 Phase portraits
showing periodic orbits of
the modified Duffing
oscillator with parameters
of Fig. 11. a ω = 1/3, b
ω = 0.5, c ω = 2, d ω = 3
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Fig. 13 Phase portraits
showing chaotic motions of
the modified Duffing
oscillator with parameters
of Fig. 11. a ω = 0.2, b
ω = 0.66, c ω = 1, d
ω = 1.88
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Fig. 14 Effect of damping
parameters on bifurcation
diagram of a modified
Duffing oscillator with
parameters of Fig. 8. a
β2 = 0.75, b δ2 = 0.05, c
δ1 = 0.05, d β1 = 0, β2 =
0, δ1 = 0, δ2 = 0
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(see Fig. 7a, b respectively). From these figures, we
conclude that the range of frequency where a response
can be obtained is more important in the case of β2 than
in the case of β1.

3 Bifurcation and transition to chaos

The aim of this section is to investigate the way
under which chaotic motions arise in the model
described by Eq. (1) since they are of interest in
many physics phenomena. We use the bifurcation
diagram and its corresponding Lyapunov exponent
(defined in Ref. [32]), the phase portraits, and times
histories. From the bifurcation diagram and its cor-
responding Lyapunov exponents, various types of
motions are displayed. For instance, in Fig. 8, quasi-
periodic motions are obtained for F ∈ [0, 0.709] ∪
[1.08, 1.103] ∪ [1.126, 1.145]. A period-1 orbit exists
for F > 1.347, while a period-3 orbit exists for
[0.719, 0.807] ∪ [0.987, 1.02]. A period-4 orbit exists
for [0.807, 0.827] ∪ [0.8619, 0.906] ∪ [1.02, 1.037].
On the other hand, chaotic motions exist for F ∈
[0.709, 0.719] ∪ [0.827, 0.8619] ∪ [0.906, 0.987] ∪
[1.037, 1.08] ∪ [1.103, 1.126] ∪ [1.145, 1.347]. For
several different values of F chosen in the above-
mentioned regions, various phase portraits and its cor-
responding times histories are plotted respectively in
Figs. 9 and 10. Figure 11 presents the bifurcation dia-
gram and its corresponding Lyapunov exponent for
δ1 = 1.05, δ2 = 0.85, β1 = 3.5, β2 = 0.125, μ =
0.0005, λ = −0.6, γ = 0.05, ω0 = 1, F = 0.965 and
ω varying from 0 to 5. For these parameters values, it
can be noticed that the chaotic behavior occurs when
the external frequency is near to primary and 1 : 2
superharmonic resonance frequencies, while the peri-
odic or quasiperiodic behaviors occur when the exter-
nal frequency is near to 1 : 3, 1 : 5 superharmonic
resonance frequencies and 2 : 1, 3 : 1, 5 : 1 subhar-
monic resonance frequencies. For instance, periodic
orbits and chaotic motions obtained for appropriate
choice of ω from Fig. 11 are reported in Figs. 12 and
13, respectively. The influences of both the nonlinear
quadratic and cubic dissipative parameters on the bifur-
cation sequences are also investigated, and the results
are reported in Fig. 14. From Figs. 8 and 14, it can
be pointed out that the nonlinear damping parameters
can be used to control the presence of chaotic oscilla-
tions. From these results, we can conclude that the dis-
sipation parameters have a real impact on the dynam-

ics of the model. Therefore, it is useful to forecast
domains in which such effects could be of interest or
not.

4 Conclusion

In this work, we have investigated the dynamics behav-
iors of a modified Duffing oscillator. The originality of
the work is related to the presence of pure and impure
nonlinear damping terms and the φ6-potential and then
to their effects on the system behaviors. By the mul-
tiple timescale method, an exhaustive study of vari-
ous resonance states is done, and nine resonance states
were obtained of which seven were studied. We have
obtained resonance, hysteresis, and jump phenomena.
The appearance of each of these phenomena depends
on the nonlinear damping and stiffness parameters. The
studyof the effects of different nonlinear dampingpara-
meters showed that these resonances phenomena can
be controlled or even eliminated. These parameters
can also generate the bistability phenomenon in the
evolution of the amplitude of the system oscillations.
Some bifurcation structures and transition to chaos
of the model have been investigated. The model pre-
sented several dynamics motions which are influenced
by nonlinear damping parameters and external excita-
tion. For example, multiperiodic orbits, quasiperiodic
and chaotic motions are obtained. It can be concluded
that the dissipation parameters have a real impact on
the dynamics of the model. In the ship motion case, the
detection of each phenomenon due to the nonlinearities
is very capital. Practical naval architect must be able
to recognize these phenomena when they occur and
should understand their consequences so that it will be
able to avoid design that promotes capsizing, to evalu-
ate the sea worthiness of a craft and recommend appro-
priatemeasures to control orminimize large amplitudes
motions.
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