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Abstract A novel nonlinear structure with adjustable
stiffness, damping and inertia is proposed and studied
for vibration energy harvesting. The system consists of
an adjustable-inertia system and X-shaped supporting
structures. The novelty of the adjustable-inertia design
is to enhance the mode coupling property between
two orthogonal motion directions, i.e., the translational
and rotational directions, which is very helpful for
the improvement of the vibration energy harvesting
performance. Weakly nonlinear stiffness and damp-
ing characteristics can be introduced by the X-shaped
supporting structures. Combining the mode coupling
effect above and the nonlinear stiffness and damping
characteristics of the X-shaped structures, the vibra-
tion energy harvesting performance can be significantly
enhanced, in both the low frequency range and broad-
band spectrum. The proposed 2-DOF nonlinear vibra-
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tion energy harvesting structure can outperform the
corresponding 2-DOF linear system and the existing
nonlinear harvesting systems. The results in this study
provide a novel and effective method for passive struc-
ture design of vibration energy harvesting systems to
improve efficiency in the low frequency range.

Keywords Vibration energy harvesting · Nonlinear
structures · Nonlinear stiffness and damping · Mode
coupling effect

1 Introduction

Vibration issues extensively exist in various engineer-
ing practices and in most cases are not preferable.
Vibration energy can be employed, stored and thus
suppressed. Vibration energy harvesting systems have
caught increasing attention formanyyears [1–3],which
can convert the vibration energy into electrical energy.
The main energy conversion mechanisms are based
on the electromagnetic and piezoelectric transduction
[1,3]. Initially, linear vibration energy devices are
designed for harvesting vibration energy nearby the
resonant frequency. But, the energy harvesting perfor-
mance will be dramatically reduced as the base exci-
tation frequency shifts. Due to sensitive vibration in
human life or engineering systems often located in a
low frequency range [4,5], it is very important and
challenging to design vibration energy harvesting sys-
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tem with good performance in the low frequency range
and/or covering a wider bandwidth.

The nonlinear characteristics have been explored to
improve the energy harvesting performance in the low
frequency range [6–17]. The snap-through energy har-
vesting system composed of two incline linear springs
is designed to achieve good harvesting performance
of low frequency. However, the power output in the
low frequency range is still very limited [6]. In order
to achieve better harvesting performance in the low
frequency range with a wider bandwidth, a vibration
energy harvesting system with bi-stable oscillator is
analyzed and designed in [9–13]. Due to the nonlinear
stiffness and damping characteristics of the bi-stable
oscillator, the power output peak value and bandwidth
can be much improved. However, jumping phenom-
ena at the equilibrium points appear in this bi-stable
oscillation system, and thus, the good energy harvest-
ing performance of the bi-stable harvesting system is
not always stable.

The nonlinearity of coupled beam structures sub-
ject to impacts is studied in [18–20] to design vibra-
tion energy harvesting systems. The high-order modes
of the coupled beams can be excited under the vibro-
impacting, which could result in higher power genera-
tion [21]. Due to the fact that more resonant modes can
be excited, this energy harvesting system employing
nonlinear vibro-impacting can achieve good harvest-
ing performance in a wider frequency range. It is also
noticed that the asymmetry of the vibro-impacting sys-
tem can increase the system response, which is helpful
for improvement of the energy harvesting performance
[18,19]. Thus, two asymmetrical coupled beam struc-
tures with the nonlinear vibro-impacting is designed
for good harvesting performance in the low and wider
frequency ranges in [20].However, the nonlinear vibro-
impactingwith coupled impacting beams requires extra
energy and the effective nonlinear impact is difficult to
achieve in practice.

The multi-generator methods for energy harvesting
systems can effectively enlarge the harvesting band-
width [22,23]. The generator arrays with different res-
onant frequencies are used such that thewide frequency
responses of themulti-generator system can be excited.
However, the responses of amulti-generator system are
the superposition of the response for every generator
due to no nonlinear coupling among the generators. A
two-degree-of-freedom (2-DOF) linear energy harvest-
ing system is designed in [24,25]. Because of the cou-

pling effect between the two vibration motions, wider
bandwidth harvesting performance can be achieved
with this 2-DOF linear energy harvesting system.How-
ever, the coupling effect between the two vibration
motion within the 2-DOF system is still very weak,
and the low-frequency harvesting performance is not
very good.

In the study, the geometrical nonlinearity of the X-
shape supporting structure combined with a 2-DOF
adjustable-inertia system is studied to improve the
vibration energy harvesting performance, especially in
the low frequency rangewith awider bandwidth. The 2-
DOF vibration energy harvesting system is composed
by X-shaped structures and an adjustable-inertia sys-
tem. The adjustable-inertia property of the proposed
system can be achieved by designing the asymmet-
ric mass distribution and connection rod length. Ben-
eficial nonlinear stiffness and damping characteristics
can be introduced with the X-shaped supporting struc-
tures. Consequently, the mode coupling characteristics
between the translational and rotational directions can
be achieved and enhanced by the asymmetric mass dis-
tribution combining with the introduced nonlinearity
of the X-shaped structure. It can be seen that the vibra-
tion energy harvesting performance in the low and/or a
broadband frequency range can be obviously improved
through the mode coupling characteristics mentioned
above. Moreover, the power output performance of the
proposed adjustable-inertia system outperforms those
of the conventional uniformly distributed mass system
and other nonlinear energy harvesting systems such
as nonlinear damping and bi-stable harvesting systems
discussed before.

It should be noted that, in [26], the beneficial non-
linearities introduced by an X-shaped structure are pre-
liminarily explored for advantageous vibration energy
harvesting performance. The one-degree-of-freedom
(1-DOF) and 2-DOF systems composed by X-shaped
supporting structures and a rigid body are thus stud-
ied there to this aim. However, the fixed inertia of the
designed 2-DOF harvesting system in [26] will limit
the mode coupling characteristics between the transla-
tional and rotational directions, which is very impor-
tant to enhance the energy harvesting performance as
revealed in [26]. In order to obtain much better perfor-
mance by employing themode coupling effect between
the translational and rotational directions, a 2-DOF sys-
tem with adjustable inertia combining with adjustable
stiffness and damping characteristics introduced by the
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Nonlinear vibration energy harvesting with adjustable stiffness 81

X-shaped structure is thus investigated in this study.
Due to the adjustable inertia and designable mass cen-
ter, the modeling and analysis of the proposed system
of this study cannot be simply generalized from [26] in
a straightforward way, but much better energy harvest-
ing performance can be achieved consequently, which
will be shown through the theoretical results and com-
parisons.

The rest of this paper is organized as follows. The
design of two-degree-of-freedom (2-DOF) X-shaped
structured energy harvesting system with adjustable
inertia is introduced in Sect. 2. The dynamics mod-
eling and nonlinear dynamic analysis of the proposed
2-DOF adjustable-inertia system are given in Sect. 3.
The output power performance is then computed and
discussed in Sects. 4 and 5. Finally, a conclusion is
drawn thereafter.

2 The 2-DOF adjustable-inertia nonlinear energy
harvesting structure

The 2-DOF adjustable-inertia nonlinear vibration
energy harvesting structure is shown in Fig. 1, where
the two connected mass bodies m1 and m2 are sup-
ported by two X-shaped structures. The mass m1, m2

and the connected horizontal rod form an adjustable-
inertia system, where the mass m1, m2 and horizontal
rod length d can be changed to obtain desired sys-
tem inertia. The point O is the shape center of the
adjustable-inertia system and the point C is the sys-
tem mass center, where the distance between the shape
center and mass center is d0. The length d1 represents

the distance from the left end of mass m1 to the mass
center C , and the length d2 represents the distance
from the right end of mass m2 to the mass center C .
The connected horizontal rod can be made from light-
weight materials, and thus, the mass of the rod can be
neglected. The symbolM and J represent the totalmass
(m1 + m2) and rotational inertia with respect to mass
center of the system.

Two X-shaped structures are used to support the
adjustable-inertia system, where each X-shaped struc-
ture has (n+1/2) layers. The horizontal linear springs
k1, k2 and dampers c1, c2 are installed in the X-shaped
structures. The connection element between the top of
the X-shaped structure and the mass system is taken as
flexible pivots. The X-shaped structure is restricted to
only vertical motion. When the motion of the two hor-
izontal springs is not equal to each other, the rotation
motion� can be induced, which can further induce the
horizontal displacement between the two top joints of
the X-shaped structures as (d1 +d2)(1− cos �). When
the rotation displacement� is small, the horizontal dis-
placement for the top joints (d1+d2)(1− cos�) will be
very small aswell. Thesemotions can be producedwith
the flexible pivots installed. Therefore, the translational
and rotational motions of the proposed energy harvest-
ing system in Fig. 1 can be achieved when flexible piv-
ots are used to connect the mass system and the top
of the X-shaped structures. When a multi-directional
vibration excitation is applied on the base, the transla-
tional and rotational inputs can be seen simultaneously,
and the translational and rotational motions of the pro-
posed 2-DOF system would be produced.

Fig. 1 The 2-DOF
inertia-tuning nonlinear
vibration energy harvesting
structure
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As studied in Refs. [27,28], theweak nonlinear stiff-
ness and damping characteristics can be induced by
the geometrical nonlinearity of an X-shaped structure.
The electromagnetic transduction is used to perform
the vibration energy harvesting, which can be repre-
sented by the electrical damping ce [1,29]. Conse-
quently, the damper contains the electrical damping
ce and the mechanical damping cm , where the vibra-
tion energy harvesting is determined by the electrical
damping ce. Combining the nonlinear characteristics of
the X-shaped structure and the mode coupling charac-
teristic due to the asymmetric mass distribution, there
will be very beneficial improvement on the harvest-
ing performance, which will be shown in the following
sections.

3 Modeling and response analysis

The kinetic energy T of the proposed energy harvesting
system can be written as

T = 1

2
M(ẏ)2 + 1

2
J (ψ̇)2, (1)

where y andψ represent the translational and rotational
motions of the supported mass and M = m1 + m2 is
the total mass. The potential energy V can be written
as

V = 1

2
k1(x1)

2 + 1

2
k2(x2)

2, (2)

where x1 and x2 are displacements of the springs k1
and k2 in the horizontal direction. They can be deter-
mined from the geometrical relations of the X-shaped
supporting structures as,

x1 = 2l1 cos θ1 − 2

√
√
√
√l21 −

(

l1 sin θ1 + ỹ − ψ̃d1
2n1 + 1

)2

,

(3)

x2 = 2l2 cos θ2 − 2

√
√
√
√l22 −

(

l2 sin θ2 + ỹ + ψ̃d2
2n2 + 1

)2

,

(4)

where ỹ = y − zb is the relative translational motion,
ψ̃ = ψ − ψb is the relative rotational motion and zb
and ψb are the base excitations in the translational and
rotational directions. Combining the virtual work of

the damping forces and the kinetic energy and poten-
tial energy expressed in Eqs. (1) and (2), the Hamilton
equation of the proposed 2-DOF energy harvesting sys-
tem can be obtained, which can be used to determine
the dynamic equations of the proposed 2-DOF energy
harvesting system as follows,

Mÿ + k1x1
∂x1
∂ ỹ

+ k2x2
∂x2
∂ ỹ

+
[

c1

(
∂x1
∂ ỹ

)2

+ c2

(
∂x2
∂ ỹ

)2
]

˙̃y +
(

c1
∂x1
∂ ỹ

∂x1

∂ψ̃

+ c2
∂x2
∂ ỹ

∂x2

∂ψ̃

)

˙̃
ψ = 0, (5)

J ψ̈ + k1x1
∂x1

∂ψ̃
+ k2x2

∂x2

∂ψ̃
+

[

c1

(
∂x1

∂ψ̃

)2

+ c2

(
∂x2

∂ψ̃

)2
]

˙̃
ψ +

(

c1
∂x1
∂ ỹ

∂x1

∂ψ̃

+ c2
∂x2
∂ ỹ

∂x2

∂ψ̃

)

˙̃y = 0, (6)

Substituting Eqs. (3) and (4) into the dynamic Eqs. (5)
and (6), it can be obtained that,

Mÿ + 4k1 f11(ỹ, ψ̃) + 4k2 f12(ỹ, ψ̃)

+ 4[c1g11(ỹ, ψ̃) + c2g12(ỹ, ψ̃)] ˙̃y
+ 4[c1g01(ỹ, ψ̃) + c2g02(ỹ, ψ̃)] ˙̃

ψ = 0, (7)

J ψ̈ + 4k1 f21(ỹ, ψ̃) + 4k2 f22(ỹ, ψ̃)

+ 4[c1g21(ỹ, ψ̃) + c2g22(ỹ, ψ̃)] ˙̃
ψ

+ 4[c1g01(ỹ, ψ̃) + c2g02(ỹ, ψ̃)] ˙̃y = 0, (8)

where f11(ỹ, ψ̃), f12(ỹ, ψ̃), f21(ỹ, ψ̃), f22(ỹ, ψ̃),
g11(ỹ, ψ̃), g12(ỹ, ψ̃), g21(ỹ, ψ̃), g22(ỹ, ψ̃), g01(ỹ, ψ̃)

and g02(ỹ, ψ̃) are listed in the “Appendix.” Using the
Taylor series expansion, the functions f11, f12, f21,
f22, g11, g12, g21, g22, g01 and g02 can be expanded at
the zero equilibrium as,

f̂11(ỹ, ψ̃) = tan2 θ1

(2n1 + 1)2
(ỹ − d1ψ̃)

+ 3 tan θ1

2(2n1 + 1)3l11 cos
3 θ1

(ỹ2 − 2d1 ỹψ̃ + d21 ψ̃
2)

+ (3 − 2 cos 2θ1)

2(2n1 + 1)4l21 cos
6 θ1

(ỹ3 − 3d1 ỹ
2ψ̃ + 3d21 ỹψ̃

2

− d31 ψ̃
3), (9)

f̂12(ỹ, ψ̃) = tan2 θ2

(2n2 + 1)2
(ỹ + d2ψ̃)
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+ 3 tan θ2

2(2n2 + 1)3l2 cos3 θ2
(ỹ2 + 2d2 ỹψ̃ + d22 ψ̃

2)

+ (3 − 2 cos 2θ2)

2(2n2 + 1)4l22 cos θ62
(ỹ3 + 3d2 ỹ

2ψ̃ + 3d22 ỹψ̃
2

+ d32 ψ̃
3), (10)

f̂21(ỹ, ψ̃) = d1 tan2 θ1

(2n1 + 1)2
(−ỹ + dψ̃)

+ 3d1 tan θ1

2(2n1 + 1)3l11 cos
3 θ1

(−ỹ2 + 2d1 ỹψ̃ − d21 ψ̃
2)

+ d1 (3 − 2 cos 2θ1)

2(2n1 + 1)4l21 cos
6 θ1

(−ỹ3 + 3d1 ỹ
2ψ̃

− 3d21 ỹψ̃
2 + d31 ψ̃

3), (11)

f̂22(ỹ, ψ̃) = d2 tan θ22

(2n2 + 1)2
(ỹ + d2ψ̃)

+ 3d2 tan θ2

2(2n2 + 1)3l2 cos θ32
(ỹ2 + 2d2 ỹψ̃ + d22 ψ̃

2)

+ d2 (3 − 2 cos 2θ2)

2(2n2 + 1)4l22 cos θ62
(ỹ3 + 3d2 ỹ

2ψ̃

+ 3d22 ỹψ̃
2 + d32 ψ̃

3), (12)

ĝ11(ỹ, ψ̃) = tan2 θ1

(2n1 + 1)2

+ 2 tan θ1

(2n1 + 1)3l1 cos3 θ1
(ỹ − d1ψ̃)

+ (1 + 3 sin2 θ1)

(2n1 + 1)4l21 cos
6 θ1

(ỹ2 − 2d1 ỹψ̃ + d21 ψ̃
2),

(13)

ĝ12(ỹ, ψ̃) = tan2 θ2

(2n2 + 1)2

+ 2 tan θ2

(2n2 + 1)3l2 cos3 θ2
(ỹ + d2ψ̃)

+ (1 + 3 sin2 θ2)

(2n2 + 1)4l22 cos
6 θ2

(ỹ2 + 2d2 ỹψ̃ + d22 ψ̃
2),

(14)

ĝ21(ỹ, ψ̃) = d21 tan
2 θ1

(2n1 + 1)2

+ 2d21 tan θ1

(2n1 + 1)3l1 cos3 θ1
(ỹ − d1ψ̃)

+ d21
(

1 + 3 sin2 θ1
)

(2n1 + 1)4l21 cos
6 θ1

(ỹ2 − 2d1 ỹψ̃ + d21 ψ̃
2),

(15)

ĝ22(ỹ, ψ̃) = d22 tan
2 θ2

(2n2 + 1)2

+ 2d22 tan θ2

(2n2 + 1)3l2 cos3 θ2
(ỹ + d2ψ̃)

+ d22 (1 + 3 sin2 θ2)

(2n2 + 1)4l22 cos
6 θ2

(ỹ2 + 2d2 ỹψ̃ + d22 ψ̃
2),

(16)

ĝ01(ỹ, ψ̃) = − d1 tan2 θ1

(2n1 + 1)2

− 2d1 tan θ1

(2n1 + 1)3l1 cos3 θ1
(ỹ + d1ψ̃)

− d1(1 + 3 sin2 θ1)

(2n1 + 1)4l21 cos
6 θ1

(ỹ2 − 2d1 ỹψ̃ + d21 ψ̃
2),

(17)

ĝ02(ỹ, ψ̃) = d2 tan2 θ2

(2n2 + 1)2

+ 2d2 tan θ2

(2n2 + 1)3l2 cos3 θ2
(ỹ + d2ψ̃)

+ d2(1 + 3 sin2 θ2)

(2n2 + 1)4l22 cos
6 θ2

(ỹ2 + 2d2 ỹψ̃ + d22 ψ̃
2).

(18)

According to the practical structural installment, the
two static stiffness and damping are chosen as the same
k1 = k2 = k, and c1 = c2 = c. Actually, the dynamic
stiffness and damping of the vibration system will be
different from each other by designing the X-shaped
structural parameters (i.e., n, l, θ ). Equations (7) and
(8) of the proposed 2-DOF system can then be written
as,

ỹ′′ + (�11 ỹ + �12ψ̃ + �20 ỹ
2 + �21ψ̃

2 + �22 ỹψ̃

+�30 ỹ
3 + 3�31 ỹψ̃

2 + 3�32 ỹ
2ψ̃ + �33ψ̃

3)

+ 2ξ [ỹ′(�01 + �11 ỹ + �12ψ̃ + �20 ỹ
2 + �21ψ̃

2

+ 2�22 ỹψ̃) + ˙̃
ψ(�02 + �12 ỹ +

�′
11ψ̃ + �22 ỹ

2 + �′
22ψ̃

2 + 2�21 ỹψ̃)] = −z′′b,
(19)

ψ̃ ′′+α(
10 ỹ + 
11ψ̃ + 
20 ỹ
2 + 
21ψ̃

2 + 2
22 ỹψ̃

+
30 ỹ
3 + 3
31 ỹψ̃

2 + 3
32 ỹ
2ψ̃ + 
33ψ̃

3)

+ 2αξψ̃ ′(�′
01 + �′

11 ỹ + �′
12ψ̃ + �21 ỹ

2 + �′
21ψ̃

2

+ 2�′
22 ỹψ̃) + 2αξ ỹ′(�02 + �12 ỹ + �′

11ψ̃

+�22 ỹ
2 + �′

22ψ̃
2 + 2�21 ỹψ̃) = −ψ ′′

b , (20)

where the parameters β, ξ and τ are given by,

ξ = ξm + ξe = cm

2
√
Mk

+ ce

2
√
Mk

, α = M

J
,

τ =
√

k

M
t.
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the coefficients �11, �12, �20, �21, �22, �30, �31, �32,
�33, 
10, 
11, 
20, 
21, 
22, 
30, 
31, 
32, 
33,
�01,�02,�11,�12,�20,�21,�22,�′

01,�
′
11,�

′
12,�

′
21

and �′
22 are listed in “Appendix.” The damping coeffi-

cient ξ contains the mechanical and electrical damping
[10], and it can be expressed as,

ξ = ξm + ξe = cm

2
√
Mk

+ ce

2
√
Mk

, (21)

where ξm and ξe are the non-dimensional mechanical
and electrical damping coefficients and cm and ce are
the corresponding mechanical and electrical damping.

The stiffness terms. �12, �22, �32, �33, 
10, 
20,

21,
30,
31 and damping terms.�02,�12,�22,�′

12,
�′

22 are coupled with each other between the transla-
tional and rotational motions due to the nonlinearity of
the two X-shaped structures. As listed in the formula-
tions in “Appendix”, the coupling stiffness terms. �12,
�22,�32.
10,
20,
21,
30,
31 and coupling damp-
ing terms. �02, �12, �22, �′

12, �
′
22are determined by

the structure parameters of the twoX-shaped structures
and the mass asymmetric distribution. These coupling
nonlinear stiffness and damping effectswill give signif-
icant influences on the energy harvesting performance
of the 2-DOF system. These will be investigated in the
following section, leading to novel nonlinear energy
harvesting properties,which could not be achievedwith
the corresponding linear systems or other existing non-
linear ones.

4 Harvesting power analysis

Considering the base harmonic excitations as vibration
sources, it can be assumed as,

zb = Z0 cos(τ), ψb = �0 cos(τ), (22)

where Z0 and �0 are base excitation amplitudes,  =
ω0

√
M/kis the dimensionless excitation frequency and

ω0 is the harmonic excitation frequency. Using the har-
monic balance method, the relative translational and
rotational displacements can be assumed as,

ỹ = Y0 + Y1 cos(τ + ϕ1), (23)

ψ̃ = �0 + �1 cos(τ + ϕ2). (24)

Substituting Eqs. (23)–(25) into Eqs. (20) and (21), the
amplitude of Y0, �0, Y1 and �1, and the phase angle

ϕ1 and ϕ2 can be determined. It can be verified that the
system harmonic output response can be well approx-
imated by the first-order harmonic solution above due
to the weak nonlinearity of the system. To simplify
the discussion, only the first-order harmonic response
obtained with the harmonic balance method is adopted
in the following discussions of this study.

The power output of the vibration energy harvesting
system can be determined by the system damping force
and the corresponding relative velocity [13,29]. In one
time period, the average power of the proposed 2-DOF
system is expressed as,

Pave = ξe
2Y 2

1 [�01 + α�02 + (�20 + α�22)
Y 2
1

4
+ (�21 + α�′

22)�
2
1 sin

2(ϕ1 − ϕ2)

+ 1

2
Y1�1(�22 + α�21) cos(ϕ1 − ϕ2)]

+ ξe
2�2

1{�02 + α�′
01 + (�′

22 + α�′
21)

�2
1

4
(�22 + α�21)Y

2
1 sin2(ϕ1 − ϕ2)

+ 1

2
(�21 + α�′

22)Y1�1 cos(ϕ1 − ϕ2)}. (25)

In Eq. (25), the average power output contains the
coupling damping terms, structural parameters, vibra-
tion displacement, etc. which have significant and com-
plicated influence on the energy harvesting perfor-
mance. These terms can never be zeros by designing the
mass asymmetric distribution or choosing the different
structure parameters of the two X-shaped structures.

5 Parametric analysis and discussions

In this section, the harvesting power performance of
the 2-DOF adjustable-inertia system is computed and
discussedwith respect to different structure parameters.
The fixed systemparameters are: ξ = 0.06, (d1+d2) =
1.0. The excitation amplitudes of the translational and
rotational are taken as Z0 = 0.006 and �0 = 0.003. If
no special notation, the assembly angle is taken as θ1 =
θ2 = 45◦, and the mechanical-electrical conversion
coefficient is taken as 0.5 [29].

5.1 Mass distribution m1 and m2

In Figs. 2 and 3, the harvesting power of the proposed 2-
DOF nonlinear adjustable-inertia systemwith different
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Nonlinear vibration energy harvesting with adjustable stiffness 85

Fig. 2 Harvesting power
with connection rod length
d = 0 for layer number
n1 = n2 = 1

mass distribution for the layer numbern1 = n2 = 1 and
rod length l1 = l2 = 0.7 is shown, compared with that
of the uniformlymass distribution system. As shown in
Fig. 2, the two peak values of the proposed 2-DOF sys-
tem with asymmetric mass distribution m1 = 0.6 and
m2 = 0.4 are about 84.0 and 83.3dB, which are much
better than those of the uniformlymass distribution sys-
tem (about 78.3 and 77.6 dB). The reference value of
dB in the following graphs is taken as 10−12 W. The
area contained by the harvesting curve for the different
mass distribution is also much bigger than that of the
corresponding linear system in the frequency range [0,√
2]. In Fig. 3, the similar results as those in Fig. 2 can

be demonstrated, and the differences of the two natural
frequencies with the connection rod length d = 0.4 are
much smaller than those of the corresponding systems
with the connection rod length d = 0.0 in Fig. 2.

When the mass distribution m1 and m2 is changed,
the inertia of the proposed harvesting system can be
increased, and the rotational inertia will become much
bigger due to the horizontal connection rod. Moreover,
the asymmetric mass distribution can change the stiff-
ness and damping coupling terms in the equations as
listed in “Appendix”, which are also very important in
the energy harvesting performance. In conclusion, the
asymmetric mass distribution can obviously improve
the energy harvesting performance of the system in the
low frequency range.

In Figs. 4 and 5, the output power of the proposed 2-
DOF system of the connection rod length d = 0.0 and
d = 0.4 for the layer number n1 = n2 = 2 is computed
with different mass distribution. As shown in Figs. 4
and 5, the increase in themass distribution ratiom1:m2

can decrease the natural frequencies but increase both
the output peak values except for the first peak value
at the mass distribution m1 = 0.65 and m2 = 0.35.
Below the mass ratio m1: m2 = 0.65 : 0.35, the band-
width between two peak frequencies will be decreased
as increasing the mass ratio m1: m2. It can be found
that the bandwidth between two peak frequencies will
become smaller for the bigger connection rod length
when the same mass distribution ratio m1: m2 is taken.
It also indicates that the energy harvesting perfor-
mance in certain frequency ranges can be improved
much by designing the length of horizontal connection
rod.

The power output curve for the mass distribution
m1 = 0.65 and m2 = 0.35 contains the biggest area
with respect to the -axis comparing with those of
other mass distribution parameters in Figs. 4 and 5.
As listed in the equations in “Appendix”, the cou-
pling terms in stiffness and damping caused by the
nonlinear characteristics of the X-shaped structures
can be enhanced as increasing the difference of mass
distribution m1 and m2. These coupling terms have
much effects on the energy harvesting performance
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Fig. 3 Harvesting power
with connection rod length
d = 0.4 for layer number
n1 = n2 = 1

Fig. 4 Harvesting power
with connection rod length
d = 0.0 for layer number
n1 = n2 = 2

shown in Eq. (25). Therefore, without tuning struc-
ture parameters of the X-shaped structures (e.g., using
the same layer number n1 and n2), the power out-
put can be increased by increasing the difference
of the mass asymmetric distribution, but the output
peak values will be increased as the mass distrib-
ution difference increasing to certain value then be
decreased.

5.2 Connection rod length d

In Figs. 6 and 7, the output power of the proposed sys-
tem is calculated with different horizontal connection
rod length. As shown in Figs. 6 and 7, the increase
in the horizontal rod length can decrease the two nat-
ural frequencies and the first output peak value, but
the second peak value almost keeps the same. It can
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Fig. 5 Harvesting power
with connection rod length
d = 0.4 for layer number
n1 = n2 = 2

Fig. 6 Harvesting power
with mass distribution
m1 = 0.6 and m2 = 0.4 for
layer number n1 = n2 = 1

be demonstrated that the second natural frequency
decreases more than that of the first resonant frequency
as increasing the connection rod length. Therefore, the
energy harvesting performance of the proposed system
around and above the first natural frequency can be
much improved by increasing the length of horizontal
connection rod.

5.3 Layer number n1 and n2

In Figs. 8 and 9, the power output of the proposed sys-
tem with different layer number ratios of the X-shaped
supporting structures is shown, where the mass distrib-
ution is chosen asm1 = 0.55,m2 = 0.45. The equilib-
rium of the system should be at a horizontal position,
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Fig. 7 Harvesting power
with mass distribution
m1 = 0.6 and m2 = 0.4 for
layer number n1 = n2 = 2

Fig. 8 Harvesting power
with connection rod length
d = 0.4 for different layer
number ratios 1

and therefore, the two X-shaped structures with differ-
ent layer number should have the same static height,
i.e., (2n1 +1)l1sin(θ1) = (2n2 +1)l2sin(θ2). The main
features shown in Figs. 8 and 9 are listed in Table 1.
The two resonant frequencies are decreased as increas-
ing the corresponding layer numbers n1 and n2. The
increase in the layer number ration1 : n2 can lead to the
increase in the bandwidth between two natural frequen-
cies. However, the bandwidth will be smaller for bigger

layer numberswith ratio equal 1. It is also demonstrated
that the energy harvesting performance with unequal
layer numbers outperforms thosewith equal layer num-
bers (Figs. 8, 9).

As discussed before, low-frequency narrowband
harvesting performance between two natural frequen-
cies can be improved through designing the mass
asymmetric distribution and horizontal connection rod
length. In Eq. (25) of the power harvesting formula-
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Fig. 9 Harvesting power
with connection rod length
d = 0.4 for different layer
number ratios 2

Table 1 The main features shown in the Figs. 8 and 9

n1 : n2 1:1 2:1 2:2 3:1 3:2 3:3

Resonance 1 0.94 0.51 0.555 0.265 0.385 0.395

Resonance 2 1.2 1.14 0.715 1.13 0.675 0.505

Peak 1 80.9 dB 79.5 dB 76.5 dB 73.3 dB 75.8 dB 73.4 dB

Peak 2 80.4 dB 83.5 dB 75.7 dB 83.6 dB 78.9 dB 72.6 dB

Bandwidth 0.26 0.63 0.16 0.865 0.29 0.11

tion, the damping coupling terms can greatly improve
the power output performance. These terms are affected
much by the layer number ratio and the mass asymmet-
ric distribution. This explains why the layer number
ratio n1/ n2 can improve the energy harvesting perfor-
mance. Thus, it would be useful to manufacture the
2-DOF system supported by two X-shaped structures
with different layer numbers n1 and n2. However, the
mass asymmetric distributionm1 andm2 could be eas-
ier to design in practice to improve the energy harvest-
ing performance.

5.4 Assembly angle θ1 and θ2

In Figs. 10 and 11, the harvesting power of the pro-
posed system with different assembly angles of the X-
shaped supporting structures is calculated, where the
mass distribution m1 = 0.55, m2 = 0.45 and layer
number ratio n1:n2 = 3:2. Figures 10 and 11 show that

the increase in the assembly angles in the X-shaped
structure can increase the output peak values and the
natural frequencies. Consequently, the energy harvest-
ing performance can be improved in the high frequency
rangebut reduced in the low frequency range as increas-
ing the assembly angles of the X-shaped structure. The
dynamic stiffness and damping terms and the coupling
stiffness anddamping termswill becomemuch stronger
for the bigger assembly angle as shown in the equa-
tions listed in “Appendix.” Consequently, the change
of the assembly angles will monotonously change the
power level over a broad frequency band from low fre-
quencies to high frequencies such that the power output
peak values and natural frequencies can all be simul-
taneously increased with the increase in the assembly
angles. Therefore, suitable assembly angles of the X-
shaped structures should be designed to achieve the
high peak value and good power output performance
in sensitive frequency range.
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Fig. 10 Harvesting power
with connection rod length
d = 0 for different
assembly angles 1

Fig. 11 Harvesting power
with connection rod length
d = 0.4 for different
assembly angles 2

5.5 Comparisons and discussions

5.5.1 Compared with conventional uniformly
distributed mass system

As the results in Figs. 2, 3 and 4 and discussed in
Sect. 5.1, the energy harvesting performance of the
proposed system with asymmetric mass distribution

is much better than that of the system with uniformly
distributed mass. The main novelty of the design of
the mass asymmetric distribution is to enhance the
mode coupling characteristics between the transla-
tional and rotational motions, which is very helpful
for the improvement of the vibration energy harvest-
ing performance.
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Fig. 12 Harvesting power
of the proposed system
comparison with
corresponding linear system

5.5.2 Compared with linear harvesting systems

In Fig. 12, the mass distribution and horizontal con-
nection rod are taken as m1 = 0.55, m2 = 0.45, and
d = 0.4 and the base excitation amplitudes are taken
as Z0 = 0.006 and �0 = 0.003. The damping ratio is
taken as ξ = 0.04, and the mechanical-electrical con-
version coefficient is taken as 0.5. In the 2-DOF lin-
ear system, vertical linear springs (k1, k2) and dampers
(c1, c2) are used to replace the two X-shaped support-
ing structures in the calculation in Fig. 12. The out-
put peak values of the proposed nonlinear system are
much bigger than those of the corresponding linear sys-
tems. The enveloping area of the harvesting curve of
the proposed nonlinear system with n1 = n2 = 1
and θ1 = θ2 = 50◦ is much larger than that of the
linear systems in the frequency range [0,

√
2]. More-

over, the energy harvesting performance in the low fre-
quency region of the proposed system with layer num-
ber n1 = 2 and n2 = 1 obviously outperforms that of
the system with layer number n1 = 1 and n2 = 1 due
to the lower nonlinear dynamic stiffness with the layer
number n1 = 2. Consequently, the structural design
of the X-shaped structures can greatly improve the
energy harvesting performance in the low frequency
range, (e.g., using the different layer numbers n1 and
n2).

5.5.3 Compared with existing nonlinear harvesting
systems

In Fig. 13, the harvesting power of the proposed sys-
tem is compared with a recently reported nonlinear
damping system in Ref. [16]. The parameters of the
nonlinear damping system in Ref. [16] are taken as
linear damping ratio ζ1 = 0.04, nonlinear damping
ratio ζ3 = 0.02 and the base excitation Y = 0.006,
where the damping ratio of proposed harvesting sys-
tem is taken of ξ = 0.04. The mechanical-electrical
conversion coefficient is taken as 0.5 for both the har-
vesting systems in the calculation of Fig. 13. As shown
in Fig. 13, the peak value of the nonlinear damping har-
vesting system is about 1.12 × 10−4, which is smaller
than the peak value of the proposed inertia-adjusting
system with n1 : n2 = 1 : 1 (about 1.35 × 10−4), and
the power output bandwidth of the proposed system is
much wider than that of the nonlinear damping system.

For the proposed harvesting systemwith n1 = 2 and
n2 = 1, the peak value and bandwidth of the output
power are both much larger than those of the nonlin-
ear damping harvesting system in Ref. [16]. The first
peak of the proposed system with n1 : n2 = 1 : 1 and
n1 : n2 = 2 : 1 appears at the frequencies  = 0.77
and  = 0.5, which can greatly improve the energy
harvestingperformance in the low frequency range.Not
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Fig. 13 Harvesting power
of the proposed system
comparison with nonlinear
damping system

Fig. 14 Power output of the
proposed system
comparison with bi-stable
harvesting system

only the nonlinear stiffness and damping characteris-
tics are explored in the proposed harvesting system,
but also the mode coupling characteristic is employed
to enhance the harvesting performance. Therefore, the
energy harvesting performance of the proposed system
greatly outperforms the nonlinear damping harvesting
system in Ref. [16], especially in the low frequency
range with a much wider bandwidth.

In Fig. 14, the output power of the proposed sys-
tem is compared with the bi-stable harvesting sys-

tem in reference [10]. The calculation parameters of
the nonlinear bi-stable harvesting system are taken as
linear damping part μa = 0.02, nonlinear damping
μb = 0.01, electrical-mechanical coefficient μc =
0.02 anddimensionless excitation amplitude f = 0.03.
The fixed parameters of the proposed harvesting sys-
tem are taken as m1 = 0.55, m2 = 0.45, d = 0.4,
damping ratio ξ = 0.04, the mechanical-electrical
conversion coefficient 0.5, and base excitation ampli-
tudes Z0 = 0.01 and �0 = 0.005. As shown in
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Fig. 14, the effective energy harvesting bandwidth of
the proposed harvesting system with assembly angle
θ1 = θ2 = 54.5◦ is much better than that of the non-
linear bi-stable system, while the maximum output of
the nonlinear bi-stable system (about 4.9 × 10−3 at
the frequency 0.73) is bigger than that of the proposed
system with assembly angle θ1 = θ2 = 54.5◦ (about
3.64. × 10−3).

However, the output power curve of the bi-stable
systemhas three different curves in the frequency range
[0.73, 1.59], which demonstrate that the power output
performance is unstable in the frequency range [0.73,
1.59]. Moreover, the peak value and effective energy
harvesting bandwidth of the proposed harvesting sys-
tem with assembly angle θ1 = θ2 = 60◦ are much
better than those of the nonlinear bi-stable harvesting
system in reference [10]. Because of the weak nonlin-
earity introduced by the X-shaped structure which can
be used to achieve a low-dynamic-high-static stiffness
system, strong nonlinear behaviors including bifurca-
tion, chaos or multi-stable states can be avoided in the
proposed system. Through adjusting the asymmetrical
inertia and the assembly angle of the X-shaped struc-
tures, higher power output peak value and larger har-
vesting bandwidth can be achieved with the proposed
system, which are much better and more convenient
than those of corresponding nonlinear bi-stable sys-
tems in the literature.

6 Conclusions and discussions

A novel nonlinear vibration energy harvesting struc-
ture with adjustable-inertia adjustable-stiffness and
adjustable-damping properties are investigated. Ben-
eficial nonlinear stiffness and damping characteristics
can be provided by the X-shape supporting structures.
Advantageous mode coupling characteristic between
the translational and rotational motions can be induced
by the adjustable inertia and enhanced by the intro-
duced nonlinearities, which is very helpful for improv-
ing energy harvesting performance, especially in the
low frequency range with a wider bandwidth. In order
to achieve good vibration energy harvesting perfor-
mance, the weak nonlinearity of the X-shape structures
and the mode coupling effect induced by the adjustable
inertia should be fully explored and employed.Theoret-
ical analysis and comparisons demonstrate the advan-

tages of the proposed harvesting system comparedwith
literature results.

Further studies will focus on testing of a practical
prototype for these theoretical results, which is under
construction. Although the results of this study focus
on harmonic excitations, the conclusionswould be sim-
ilar for random excitation since the proposed system is
only weakly nonlinear in stiffness, and it should also be
noted that harmonic excitations can be seen inmany sit-
uations such as the main vibration incurred by running
trains, ocean waves, running engines, etc. Moreover,
the proposed system is of adjustability in a manual way
at present by easily tuning several critical parameters
such as the rod length or assembly angle, and it can
achieve the good vibration energy harvesting perfor-
mance in the desired frequency range through the para-
meter tuning. Potentially, it can also be designed for
automatic parameter tuning but would involve motors
and energy cost.
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Appendix

�11 = 4 tan2 θ1

(2n1 + 1)2
+ 4 tan2 θ2

(2n2 + 1)2
, (26)

�12 = 4d2 tan2 θ2

(2n2 + 1)2
− 4d1 tan2 θ1

(2n1 + 1)2
, (27)

�20 = 6 tan θ1

(2n1 + 1)3l1 cos3 θ1
+ 6 tan θ2

(2n2 + 1)2l2 cos3 θ2
,

(28)

�21 = 6d21 tan θ1

(2n1 + 1)3l1 cos3 θ1
+ 6d22 tan θ2

(2n2 + 1)2l2 cos3 θ2
,

(29)

�22 = 6d2 tan θ2

(2n2 + 1)3l2 cos3 θ2
− 6d1 tan θ1

(2n1 + 1)3l1 cos3 θ1
,

(30)

�30 = 2 (3 − 2 cos 2θ1)

(2n1 + 1)4l21 cos
6 θ1

+ 2 (3 − 2 cos 2θ2)

(2n2 + 1)4l22 cos θ62
,

(31)
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�31 = 2d21 (3 − 2 cos 2θ1)

(2n1 + 1)4l21 cos
6 θ1

+ 2d22 (3 − 2 cos 2θ2)

(2n2 + 1)4l22 cos θ62
,

(32)

�32 = 2d2 (3 − 2 cos 2θ2)

(2n1 + 1)4l22 cos
6 θ2

− 2d1 (3 − 2 cos 2θ1)

(2n1 + 1)4l21 cos
6 θ1

,

(33)

�33 = 2d32 (3 − 2 cos 2θ2)

(2n1 + 1)4l22 cos
6 θ2

− 2d31 (3 − 2 cos 2θ1)

(2n1 + 1)4l21 cos
6 θ1

,

(34)


10 = 4d2 tan2 θ2

(2n2 + 1)2
− 4d1 tan2 θ1

(2n1 + 1)2
, (35)


11 = 4d21 tan
2 θ1

(2n1 + 1)2
+ 4d22 tan

2 θ2

(2n2 + 1)2
, (36)


20 = 6d2 tan θ2

(2n2 + 1)3l2 cos3 θ2
− 6d1 tan θ1

(2n1 + 1)3l11 cos
3 θ1

,

(37)


21 = 6 tan θ2d32
(2n2 + 1)3l2 cos3 θ2

− 6 tan θ1d31
(2n1 + 1)3l11 cos

3 θ1
,

(38)


22 = 6d21 tan θ1

(2n1 + 1)3l11 cos
3 θ1

+ 6d22 tan θ2

(2n2 + 1)2l2 cos3 θ2
,

(39)


30 = 2 (3 − 2 cos 2θ2) d2
(2n1 + 1)4l22 cos

6 θ2
− 2 (3 − 2 cos 2θ1) d1

(2n1 + 1)4l21 cos
6 θ1

,

(40)


31 = 2 (3 − 2 cos 2θ2) d32
(2n1 + 1)4l22 cos

6 θ2
− 2 (3 − 2 cos 2θ1) d31

(2n1 + 1)4l21 cos
6 θ1

,

(41)


32 = 2 (3 − 2 cos 2θ1) d21
(2n1 + 1)4l21 cos

6 θ1
+ 2 (3 − 2 cos 2θ2) d22

(2n2 + 1)4l22 cos θ62
,

(42)


33 = 2 (3 − 2 cos 2θ1) d41
(2n1 + 1)4l21 cos

6 θ1
+ 2 (3 − 2 cos 2θ2) d42

(2n2 + 1)4l22 cos θ62
,

(43)

�01 = 4 tan2 θ1

(2n1 + 1)2
+ 4 tan2 θ2

(2n2 + 1)2
, (44)

�02 = 4d2 tan2 θ2

(2n2 + 1)2
− 4d1 tan2 θ1

(2n1 + 1)2
, (45)

�11 = 8 tan θ1

(2n1 + 1)3l1 cos3 θ1
+ 8 tan θ2

(2n2 + 1)3l2 cos3 θ2
,

(46)

�12 = 8d2 tan θ2

(2n2 + 1)3l2 cos3 θ2
− 8d1 tan θ1

(2n1 + 1)3l1 cos3 θ1
,

(47)

�20 = 4(1 + 3 sin2 θ1)

(2n1 + 1)4l21 cos
6 θ1

+ 4(1 + 3 sin2 θ2)

(2n1 + 1)4l22 cos
6 θ2

,

(48)

�21 = 4(1 + 3 sin2 θ1)d21
(2n1 + 1)4l21 cos

6 θ1
+ 4(1 + 3 sin2 θ2)d22

(2n1 + 1)4l22 cos
6 θ2

,

(49)

�22 = 4(1 + 3 sin2 θ2)d2
(2n2 + 1)4l22 cos

6 θ2
− 4(1 + 3 sin2 θ1)d1

(2n1 + 1)4l21 cos
6 θ1

.

(50)

�′
01 = 4d21 tan

2 θ1

(2n1 + 1)2
+ 4d22 tan

2 θ2

(2n2 + 1)2
, (51)

�′
11 = 8d21 tan θ1

(2n1 + 1)3l1 cos3 θ1
+ 8d22 tan θ2

(2n2 + 1)3l2 cos3 θ2
,

(52)

�′
12 = 8d32 tan θ2

(2n2 + 1)3l2 cos3 θ2
− 8d31 tan θ1

(2n1 + 1)3l1 cos3 θ1
,

(53)

�′
21 = 4(1 + 3 sin2 θ1)d41

(2n1 + 1)4l21 cos
6 θ1

+ 4(1 + 3 sin2 θ2)d42
(2n1 + 1)4l22 cos

6 θ2
,

(54)

�′
22 = 4(1 + 3 sin2 θ2)d32

(2n2 + 1)4l22 cos
6 θ2

− 4(1 + 3 sin2 θ1)d31
(2n1 + 1)4l21 cos

6 θ1
,

(55)

where the coefficients�11,�12,�20,�21,�22,�30,�31,
�32, �33, 
10, 
11, 
20, 
21, 
22, 
30, 
31, 
32,

33, �01, �02, �11, �12, �20, �21, �22, �′

01, �′
11,

�′
12,�

′
21 and�′

22 listed inAppendixA are the constant
coefficients composed by the structure parameters n1,
n2, d1, d2, θ1 and θ2.
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