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Abstract In this paper a mechanical system consist-
ing of a chain of masses connected by nonlinear springs
and a pantographic microstructure is studied. A homog-
enized form of the energy is justified through a standard
passage from finite differences involving the charac-
teristic length to partial derivatives. The correspond-
ing continuous motion equation, which is a nonlinear
fourth-order PDE, is investigated. Traveling wave solu-
tions are imposed and quasi-soliton solutions are found
and numerically compared with the motion of the sys-
tem resulting from a generic perturbation.
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1 Introduction

The present paper investigates the dynamics of a 1D
continuum which is intended as the homogenized
limit of a discrete mechanical system consisting of
masses connected by nonlinear springs and a panto-
graphic microstructure. The study of different kinds
of microstructures, which are today much easier to
obtain thanks to the possibility of driving the manufac-
turing process by means of computers [1], has led to
the development of new models in continuum mechan-
ics (apart from classical works such as [2,3], the reader
can find interesting results in [4—11]). The pantographic
microstructure (for a detailed description see [12,13])
is particularly interesting because it is at the same time
very simple in principle but still leads to homogenized
continua that are beyond the scope of classical con-
tinuum models (see [14, 15] for convergence theorems
involving structures of this type). Moreover, it dis-
plays behaviors that are very promising from a purely
mechanical point of view, among which a high tough-
ness, an advantageous strength-to-weight ratio and a
very good predictability of the fracture zones (see [16—
20]).

The material nonlinearity of the springs obviously
entails that the motion of the system is described by
nonlinear equations. The universe on nonlinear PDEs
escapes from almost any possible generalization. Very
seldom one can provide closed-form solutions, and in
general even qualitative analysis of the behavior of the
solutions and of the structure of their set is far from triv-
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ial. An exception, however, has to be made for those
PDEs having soliton solutions: this is indeed one of the
cases in which a very regular (and thus very peculiar)
behavior can be shown for PDEs otherwise showing
a much more complex time evolution. Recent litera-
ture also investigates, in suitable cases, solutions rep-
resenting (in various senses) an approximation of a gen-
uine soliton (see for instance [21]). This is indeed the
approach we chose for the present work. Of note, soli-
ton solutions have a significant application potential
in mechanics (for a general perspective including con-
nections with mechanical and biological phenomena,
see [22]), in particular in damage detecting techniques
[23].

The paper is organized as follows: in Sect. 2
a one-dimensional continuum is conjectured as the
homogenized limit starting from a nonlinear discrete
microstructure. In Sect. 3 a solution in form of a trav-
eling wave is obtained; manipulating this solution we
explore the possibility to have a quasi-soliton solution
after having shown that exact soliton solutions are not
possible. Finally, in Sect. 4 we numerically compare
the quasi-soliton solution with a generic perturbation
and observe markedly lesser dispersion effects in the
former case.

2 Non-local 1D discrete systems

Let us consider a system consisting of an infinite
number of material points P; having equal mass m,
arranged in a straight chain and connected by springs.
The kinematic descriptor of each P; is the displace-
ment u;, which is assumed to be directed along the
reference direction of the chain. We add to this sys-
tem a set of flexible and inextensible beams connected
by ideal hinges to form a pantographic microstructure
[24,25]. We thus consider two elastic interaction poten-
tials between the masses:

1. An interaction due to the pantographic microstruc-
ture (see [12,13]D)!;

1 2
Ppan,i = EK [i1 () = 2ui () +uiO]” (1)

2. A nonlinear interaction between each pair of adja-
cent masses due to the introduced nonlinear springs

! Tt is straightforward to see that the quantity (41 —u;) — (u; —
uj—1) = uj+1 — 2u; +u;— is always zero if the beams undergo
no deformation.
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This kind of interaction potentials (together with a
standard form for the kinetic energy) leads to an infinite
set of equations by means of a standard application of
the Hamilton principle:

mii; (1) + i lui (8) —ui—1 ()] — k1 luip1 (®) —u; ()]
+icalui (1) — ui— (O = k3lujpr (1) — ui (O
—2K[ui—1(t) — 2u; () + uit1(1)]

+ Kluj—o(t) — 2ui—1 (t) + u; (1)]
+ Klui (1) — 2ui41(1) + uip2()] = 0 3)

In this paper we only consider the longitudinal
motion of the system. For what concerns the motion
in the orthogonal direction, we just want to add a few
very simple considerations. Within linear regime, the
axial elongation of the homogenized system due to
transverse displacement can of course be neglected;
therefore, the material nonlinearity due to the springs
plays no role. As for the pantographic microstructure,
in the linear regime the energies associated to trans-
verse and longitudinal displacements are uncoupled
and have the same form (see [12,13]). Of course, if
one wants to extend the study to finite deformations,
the equation for transverse and longitudinal displace-
ment would become coupled and the whole problem
harder to address (Fig. 1).

If the distance ¢ between two adjacent masses tends
to zero, itis possible to identify the differences involved
in the above potentials as finite difference approxima-
tions of suitable derivatives. Therefore, we can con-
jecture that the homogenized version of the consid-
ered discrete system is the one given by the continuous
potentials specified below:

1. By considering the energies of pantographic sub-
structures we obtain:

> Lies [uH(r) —2u;(1) + ui+1(I)T

2 02

/ L 2ux,n7 X @
% — —
0 ) 27| ax2

where X is the referential abscissa, ky ~ K¢3;
therefore, the homogenized continuous elastic
potential in the range of small deformation can be
defined as
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Fig. 1 Scheme of the discrete microstructure, made by a chain
of masses connected by nonlinear springs and a set of beams con-
strained by ideal hinges. The hinges at the nodes (i, i + 1, etc.)

1 |:82u(X, z)}2 )

¢pan = Ekz 5x2

2. By considering the energies of the nonlinear springs
we obtain:

1 1
Z [EKI [wiv1(t) — Mi(t)]2 + % [uip1() — Mi(t)]4]

1 TouX,n7> 1. [oux,nl*
L u(X, 1) e u(X, r) ax
1—0 2 X 4 0X

(6)

in which k; ~ k¢ and k3 ~ «3£3; hence, the
homogenized continuous elastic nonlinear poten-
tial can be assumed as:

1 [ouX,n7*> 1. [oux,n]*
=k | —— —k3 | ——— 7
ONL 21[ 8X}+43 e @)
By using these elastic potentials and the kinetic
energy:

1 [ouX,n7?
Ex=—-o|——— 8
k=30 |: o1 } (®)
again employing the Hamilton principle, the homoge-
nized version of Eq. (3) becomes?:
Qi — kit [ 143, + ko =0] 9)

2 It is easy to provide an (informal) justification for the passage
from the discrete to the continuous case. Indeed, setting A;[u] =
ui41(t) — u;(t), one has:

—i3(Ai[ul® — A1 [ul) = —k3(Aiu] — Ai—1[u])
X (Ai[ul? + A1 [ul® + Ai[u)Ai—1[u])

i+1 i+2

do not interrupt the continuity of the beams, but just prescribe
equal displacements for two material points belonging to them

with 8 := k3/kj. As far as the authors know the non-
linear fourth-order PDE Eq. (9) is not found in the liter-
ature. For the sake of generality, we will also consider
the same equation with the second term of the nonlinear
potential (7) written in the abstract form @ (u,):

2

d(uy)?

QU — Uyy |:k1 + ] +ku, =0 (10)

The system here studied can be considered a gen-
eralized model for the beam in which non-locality and
material nonlinearities have been taken into account.
This line of investigation can be framed in the rich lit-
erature existing on generalized beam theories [26-30],
which includes also numerical tools that can be useful
for the investigation of our system [31]. Isogeometric
analysis is particularly suitable for the numerical study
of this kind of systems and for its higher dimension gen-
eralizations, for its capability to comfortably include
non-local effects ([32—40]). We finally remark that only
small deformations of the pantographic microstruc-
ture have been considered to get Egs. (9) and (10).
The investigation of large deformations of the same
microstructure would be of course of interest for real-
world applications, but it is clearly harder due to the

Footnote 2 continued
and then rearranging the terms, in the limit for ¢ going to zero
one gets

33 (Ai[u] B Ai—l[“])

22 (2
Ailul? A [ul? AiulAi—[u)
x ( 02 + 02 + 02 )

€ —— —3kzuuyy (uy)?dX
{—0
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possible onset of instabilities of different kinds. In order
to pursue this research direction, the tools developed in
[41-47] for studying static instabilities and in [48,49]
for dynamic ones can be usefully employed.

2.1 The linear case

Similarly, we can proceed for the discrete system,
imposing to the displacements the following time
dependence: u;1ny = Ae—JkEN=0) "N 7 \where
N{ is the oriented distance between the N-th and the
i-th masses. This leads to the dispersion relation:

2(k1 + K) — maw? — 2k1 cos(kl) — 2K cos(2kf) =0

In Eq. (9) if B = 0, we have a linear medium whose (15)
governing equation is:
which gives
OUy — kiuyy +k2uXXXX =0 (11)
/-M%+mqQAM+AKV—4KWM—4K)+HQW2
kf = | arctan + 27 (16)
—,/Kl2 + 4Kmw? + k1 + 4K
and the wave speed:
. —mf+2m(Jw1+4Ky—4me2—4K)+4me2
c= T = w! | arctan (17)

—/k? + 4Kma? + k1 + 4K

which corresponds to the discrete set of Eq. (3) with
k3 = 0. In the discrete model we have two sources
of dispersive effects, i.e., the term due to the non-
local potential (1) and the discretization itself. Since
Eq. (11) is linear we can seek solution in the form
u(X, 1) = Ae /*kX=@D being j the imaginary unit,
k the wave number and w the angular frequency; thus,
the dispersion relation is:

k*ky + k*ki — ow® = 0 (12)
that explicitly becomes:

kv k2ky + ky

= — 13
w 7 13)

and therefore the velocity of propagation as function of
o can be expressed in the following way:

V2K
c:%: 2@ (14)

\/,/klz+4k2,0a)2 —kq

@ Springer

With the micro—macro identification ky ~ K¢3, k; ~
k1¢ and m ~ of, we can compare the two systems as
shown in Fig. 2. We note that as ¢ decreases, the inter-
val of w in which the continuous system well approx-
imates the discrete one becomes larger. By Eq. (17),
the continuous system is a good approximation of the
discrete one as long as the wave length is larger than
4¢. Finally, we remark that the linear case is significant
not only when the stiffness k3 vanishes, but also when
|y | is small.

3 Wave propagation

We search for solutions of Eq. (9) in the form of trav-
eling waves: u(X,t) = f(X —ct) = f(n), with prop-
agation speed c. By substituting in Eq. (10) we obtain
the fourth-order ODE:

v % e
o+ | A 1352};35 =0 (18)
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Fig. 2 Frequency-velocity «10%
plot for the linear version of 6 w w
the discrete system with — — discrete system, 1=1.0e-03
different values of the scale — — discrete system, 1=0.75¢-03
length (dashed lines) and — — discrete s stem’ 1=0.5e-03
for the homogenized linear 5t . y e 7
continuum (continuous line) - dlscr‘ete system, 1=0.1e-03
continuum
3 i
e
5]
|
2 2.5
w x 108
A=k 1 : _ .
and integrating we get
dg
{(g) = (22)

. 0P
g )+ Ag(n) — B = Ci 19)
8

whence multiplying by g’(n) and integrating again

¢/ = £ 2BP[2()] — Alg()P +2C1g(n) +2C
20)

which in case @ is the second term of the nonlinear
potential (7) becomes

B
g = i\/E[IQ g1t — Alg(m1? +2C1g(n) +2C,
21

Equation (18) is therefore solved (up to a constant)
by the primitive of an elliptic function:

<
\/§k3 gt — Ag?+2Ci1g +2C

We remark that the signs here are not intended as mutu-
ally exclusive over the whole domain, because a solu-
tion can of course assume different signs on different
intervals provided its global regularity. We will use a
solution of this form in the following section.

When dealing with nonlinear PDEs such as (9) an
interesting (and by now standard) question is whether
it can admit soliton solutions [50]. In the literature the
definition itself of soliton is not completely consistent
among different fields of investigation. In the present
work, we choose to search for solutions with the follow-
ing (minimal) properties: (i) they preserve their shape;
(i) they vanish together with all their derivatives as 7,
goes to infinity; (iii) they emerge unchanged after an
interaction between themselves.

Point (i) is automatically satisfied by a solution ver-
ifying Eq. (18); as for point (ii), we start remarking that
a very natural assumption on @ is that it goes to zero
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Fig. 3 Numerical solutions 0.04
of the ODE (18) showing

unbounded growth of f. In

the zoom the rapidly

oscillating behavior of the 0.02
derivatives is visible

-0.02

Solution f

-0.04

-0.06

-0.08 ' .

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

when so does u , . We have therefore that ¢ — 0 implies
g’ — Oifandonly if C; = 0, which is thus a necessary
condition for the existence of soliton solutions. From
Eq. (19) we obtain that g” — 0 if

0D Cy
Toem) — -5 23)

Clearly, the case @ = %k3 [%]4 considered
above excludes (23) if g (and therefore u, ) goes to
zero. This means that in our case there cannot be the
typical compensation between dispersive and nonlinear
effects producing soliton solutions. This result is con-
sistent with the numerical simulations shown in Fig. 3,
where some numerical solutions of the ODE (18) (with
different values of initial conditions) are plotted and a
zoom is shown on bottom left. The value of the func-
tion f appears to be unbounded for  — oo, while the
derivatives are oscillating. One can notice that, for some
initial data, the growth is very slow. This, combined
with the fact that the derivatives are not unbounded
(even if they do not converge asymptotically to zero)
makes ineteresting the search for solutions that almost
preserve shape, i.e., quasi-solitons (see the following
section).

@ Springer
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Soliton solutions are found in nonlinear PDEs for-
mally quite similar to Eq. (9) as for instance the well-
known Boussinesq equation

e =ty (14 Bu) + 1% — ey (24)

describing surface water waves in the hypotheses of
weak nonlinearity and weak dispersion. The Boussi-
nesq equation, however, displays the compensation
above mentioned, which is formally described by the
fact that there exist two differential operators L and M
depending on a function u (X, t) such that L=[M,1L)
(where [M, L] is the commutator: M o L — L o M)
holds if and only if « is a solution of Eq. (24)3 [51]. It
is interesting to observe that Eq. (10) cannot be reduced
to the Boussinesq equation for any behavior of nonlin-
ear spring described by the potential @. Indeed, to get
Eq. (24) from Eq. (10) it should be -4 — X 4 Bu,
(uy) Uxx
which is not possible in the hypothesis that @ is only
depending on u,,.

3 A pair LM with such a property is called the Lax pair for a
given PDE.
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Fig. 4 Evolution of a ! ! ! ! ! ! ! ! !
perturbation o (1) (applied 20
in X = 0) obtained gluing
smoothly the function f (1) 18
given in formula (22) on an
interval Z and the null 16 -
function outside Z. The
shape is almost preserved 14+
12+
=10
8 -
6 -
4+
2L
0 S
1 1 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000
arc length
Fig. 5 Evolution of a T T T T T T T T T
perturbation « sech(6¢) 20 1
applied in X = 0, with
a = 20 selected to have the 18
same amplitude of the
previous case. It is clearly 16 + _
visible that the shape is not
preserved 14+ i
12 - R
=10 .
8 - -
6 - i
41 i
2L i
0
| | | | | | | | |
0 100 200 300 400 500 600 700 800 900 1000

arc length
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Fig. 6 Time history of the
peak amplitude of the
evolution originated by the
perturbations o and
sech(61)

Fig. 7 Time-space 3D
plotting of the collision
between two identical initial
perturbations o traveling in
opposite direction. The
corresponding traveling
wave solutions emerge
practically unchanged after
the interaction, almost
maintaining shape and
velocity
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Fig. 8 Same simulation
shown in the previous figure
but with a generic initial
perturbation (sech(at) with
a = 6). The corresponding
solutions lose amplitude and
show dispersion

4 Quasi-soliton solutions

While we have already seen that exact soliton solutions
of Eq. (9) are not possible, we want to numerically
investigate whether the equation, similarly to what has
been observed in other cases can have quasi-soliton
solutions (see [21]), i.e., localized traveling wave solu-
tions which approximately preserve their shape and
emerge unchanged after interaction among themselves.

We constructed a candidate quasi-soliton solution
o (n) by gluing smoothly the function f(n) given in
formula (22) over an interval Z := (19, n1), at the
extrema of which it vanishes with its first derivative,
and the null function fyp =0over R\ Z.

Imposing u(0, 1) = o(n) as a boundary condition
for Eq. (9), we obtain the result shown in Fig. 4. To
allow a direct comparison, we also imposed as a bound-
ary condition a generic function of the form sech(«?)
with « = 6; the result is shown in Fig. 5. It is directly
observable that the traveling solution originated by o
preserves much better its shape than the generic solu-
tion originated by the hyperbolic secant. To quantita-
tively assess this, we plotted the time history of the
peak amplitude in the two cases in Fig. 6. In is clear
that the traveling solution originated by o preserves
almost perfectly its amplitude, while the generic solu-
tion with similar initial amplitude and speed does not.

00

———

-
: AN..WA'O'O.MW" "0"0"0“"0‘:::m0

) )
1
0,‘,‘,‘.000":' 0 i
‘o0.0!.‘»‘:.m‘:.‘m'&%.ﬁ'%ig&&“

Y

This justifies calling the former a quasi-soliton solution
[21] (Figs. 7, 8).

5 Conclusions

In the present paper the dynamics of a 1D system
with a pantographic microstructure and a nonlinear set
of springs has been studied. A novel nonlinear PDE
describing the motion of the system in small defor-
mation regime has been investigated. Traveling wave
solutions has been searched and a general form for the
nonlinear potential of the spring has been considered to
show that the equation cannot reduce to a Boussinesq-
type, a well-known equation having soliton solutions.
Gluing smoothly a suitable restriction of the travel-
ing wave solution with a null function, quasi-soliton
solutions have been numerically identified and com-
pared with generic solutions. Further development of
the mathematical study of Eq. (9) will be interesting
and, as for most of nonlinear problems, far from triv-
ial. From a mechanical point of view, future studies of
this type of systems should try to weaken the simpli-
fying assumption here introduced, for instance consid-
ering, as already mentioned, large deformations of the
microstructure, and also studying its possible damage
and fracture concerning both the nodes and the beams
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themselves. In this connection the tools developed in
[52—58] can be useful.
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