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Abstract This paper presents a robust controlmethod
for synchronization of the uncertain fractional-order
hyperchaotic systemsbyusing anewself-evolvingnon-
singleton type-2 fuzzy neural network (SE-NT2FNN).
The proposed SE-NT2FNNs are used for estimating
the unknown functions in the dynamic of system. The
effects of approximation error and external distur-
bance are eliminated by linearmatrix inequality control
scheme. The proposed SE-NT2FNN has one rule ini-
tially, the new rules and membership functions (MFs)
are added based on the proposed simple algorithm and
unnecessary rules and MFs are deleted. The proposed
synchronization scheme is applied in a secure commu-
nication scheme. To show the effectiveness of the pro-
posed method, three simulation examples are given.
The results are compared with other methods, and it
showed that the proposed control scheme results in the
better performance than other methods.
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1 Introduction

Hyperchaotic systems are high-dimensional chaotic
systems with complex behavior, which have more than
one positive Lyaponuv exponent. Since, these systems
exhibit a behavior as noise-like, unpredictability and
highly sensitive to the initial conditions, are more use-
ful in some applications such as secure communica-
tions and encryption. Also, the fractional systems con-
tain fractional orders, and this feature leads to more
complicated chaotic behaviors which can be used in
applications such as secure communications. By utiliz-
ing the fractional calculus techniques, some fractional-
order chaotic/hyperchaotic systems have been identi-
fied such as fractional-order chaotic/hyperchaoticChen
system [1,2], fractional-order hyperchaotic Novel sys-
tem [3] and fractional-order hyperchaos Lorenz sys-
tem [4]. In [5], many systemswhich behave in a chaotic
manner are reviewed.Also in [6–8], the some fractional
discrete systems which can exhibit chaos behavior are
introduced. In the chaos-based secure communication
schemes, to recover the message from the transmit-
ter, master-slave synchronization must be completely
achieved. In recent years,many types of chaos synchro-
nization approaches have been proposed, such as pro-
jective synchronization, adaptive control, robust syn-
chronization and active pinning control [9–12].

In many practical applications, the accurate dynam-
ics of the systems are not available or are perturbed
by the external disturbances, time delays, time-varying
parameters, etc. To cope with the uncertainties and
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perturbations, many robust controllers have been pre-
sented. For instance in [13,14], the H∞ control prob-
lem is investigated for the fractional-order linear sys-
tems. The mean-square exponential stability problem
is studied in [15,16]. In [17], based on the matrix’s sin-
gular value decomposition, some sufficient conditions
for quadratic stability of the uncertain fractional-order
linear systems are presented. The feedback stabiliza-
tion of the fractional-order systems using linear matrix
inequality technique is studied in [18,19]. The prob-
lem of the exponential synchronization of the discrete-
time neural networks with mixed time delays, actuator
saturation and failures, by using Lyapunov functional
approach is investigated in [20]. The robust sliding
mode control of the fractional-order systems is pro-
posed in [21,22]. In [23], a robust model predictive
control scheme is presented to control the fractional-
order discrete-time systems.

To deal with the uncertainties in the dynamics of the
system, some approaches have been presented based
on the approximation property of the fuzzy neural net-
works (FNNs). In [24], a fuzzy sliding mode controller
is proposed. A states feedback method by using LMI
technique, based on fuzzy model, is proposed in [25]
to stabilize the fractional-order chaotic systems. The
generalized projective synchronization by estimating
unknown nonlinear functions using fuzzy systems is
presented in [26]. An adaptive fuzzy controller with
H∞ synchronization performance is studied in [27].

Themain problem in the design of fuzzy controller is
the problem of “curse of dimensionality”. By increas-
ing the input variables of a fuzzy neural network,
the number of rules exponentially increases. Since the
hyperchaotic systems are high-dimensional nonlinear
system, FNNs cannot be adequately applied to esti-
mate the uncertain functions in the dynamic of these
systems. One approach to cope with this problem can
be self-evolving FNNs.

For this purpose, some self-evolving type-2 FNNs
have been proposed. For instance recently in [28], a
SE-T2FNN is presented, the rule database of which is
initially empty, and all rules are automatically grown.
In [29], a self-evolving recurrent type-2 fuzzy radial
basis function network is presented, where new neu-
rons and rules are generated based on a clustering algo-
rithm. In [30], a hierarchical SE-T2FNN is presented in
which its new rules and antecedent part are generated
by using ε-completeness criterion (this means that the
firing strength of at least one fuzzy rule for any input

within the operating range is not less than ε) and its
consequent part is designed by using ant-colony opti-
mization method. In [31], the rule database is modified
in response to the controller’s performance.

Singleton type-2 FNNs are used in all of the men-
tioned self-evolving algorithms, in which the linguis-
tic and input numerical uncertainties are handled only
by MFs. The input uncertainties arise from noise and
inaccuracy of sensors, observers and input devises. The
non-singleton type-2 FNNs are considered in [32–34].
In these papers, some learning algorithms are devel-
oped for tuning free parameters of non-singleton type-2
FNNS.

Motivated by the discussions above, in this paper,
a new self-evolving non-singleton type-2 FNN is pre-
sented. The proposed self-evolving algorithm in this
paper is simple, and it can be applied to the high-
dimensional problems. The proposed SE-NT2FNNhas
only one rule initially. NewMFs are added or replaced,
or the existing MFs are changed such that ε- com-
pleteness criterion is satisfied. The dynamic of FOHS
is assumed to be unknown and the proposed SE-
NT2FNNs are employed to estimate the unknown func-
tions. To eliminate the effect of approximation error, a
LMI-based robust controller is combined with the out-
put feedback control scheme. Some advantages of the
proposed method are as follows:

• The dynamic of fractional-order chaotic system is
assumed to be unknown; then the proposed con-
troller can be applied to a wide class of FOHS.

• A new self-evolving non-singleton type-2 fuzzy
neural network is presented, in which the newMFs
and rules are added based on the simple algo-
rithm, and unimportant rules are deleted. Further-
more, input uncertainties are handled by using non-
singleton fuzzification.

• The effect of approximation error and external dis-
turbance is eliminated by a proposed LMI-based
robust controller.

• Since triangular type-2 MFs are employed, in each
sample time, a few number of MFs are activated
for each input; furthermore, interpretability of the
FNN is increased.

The remaining of this paper is organized as follows.
In Sect. 2, system description and problem formula-
tion are presented. The proposed non-singleton type-2
fuzzy neural network is presented in Sect. 3. The pro-
posed self-evolving algorithm is introduced in Sect. 4.
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Synchronization of uncertain fractional-order hyperchaotic systems 3

Fig. 1 Proposed control block diagram for the i-th subsystem

Stability analysis is presented in Sect. 5. The simu-
lation results of the controlled fractional-order hyper-
chaotic systems are shown in Sect. 6. Finally, conclu-
sions remarks are presented in Sect. 7.

2 Problem formulation and system description

The following class of FOHS is considered as slave
system:

Dα1 y1 = f1 (y1, . . . , yn) + d1(t) + u1(t)

...

Dαn yn = fn (y1, . . . , yn) + dn(t) + un(t)

(1)

where fi , i = 1, 2, . . . , n are unknown but bounded
functions, di (t) , i = 1, 2, . . . , n are bounded external
disturbance, ui , i = 1, 2, . . . , n are control signals,
y = [y1, y2, . . . , yn]T are the outputs of slave system
and 0 < αi < 1 , i = 1, . . . , n are the fractional deriv-
atives orders. Dα yi is the fractional derivative of yi .
The regular definitions for fractional derivatives are:
Grünwald–Letnikov, Riemann–Liouville and Caputo
definitions. For instance, the Caputo definition is given
as:

Dα y = 1

�(m − α)

∫ t

0

ym(τ )

(t − τ)α−m+1 dτ (2)

where m is integer so that m − 1 < α < m and �(·) is
Gamma function (� (t) = ∫∞

0 xt−1e−xdx).
The master system is considered as follows:

Dβ1x1 = g1 (x1, . . . , xn)

...

Dβn xn = gn (x1, . . . , xn)

(3)

where gi , i = 1, 2, . . . , n are unknown but bounded
functions, x = [x1, x2, . . . , xn]T are the outputs of
master system, and 0 < βi < 1 , i = 1, . . . , n are
the fractional derivatives orders. The synchronization
errors are defined as ei = yi − xi , i = 1, . . . , n.
The control objective is to design controllers ui , i =
1, 2, . . . , n such that ‖ei‖ → 0 as t → ∞.

The proposed control block diagram for i-th sub-
system is shown in Fig. 1. As shown in Fig. 1, the
unknown function in the dynamics of the slave systems
is estimated by the proposed self-evolving fuzzy sys-
tem, and by using this fuzzy system, an error feedback
controller is designed [see Eq. (6)]. Then, the synchro-
nization problem [see Eq. (8)] is rewritten as a standard
H∞ problem [see Eqs. (22, 23)]. To show the robust-
ness of the proposed control scheme and the stability
analysis, a compensator is designed based on the H∞
control technique [see usi in Eq. (23)], by using the
results of [14].

The i-th subsystem is considered as follows:

Dαi yi = fi (y1, . . . , yn) + di (t) + ui (t) (4)

As shown inFig. 1, the term fi (y1, . . . , yn)+di (t) in
(4) is estimated by SE-NT2FNN f̂i . The approximation
error is defined as follows:

εi = fi (y1, . . . , yn) + di (t) − f̂i (5)
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Fig. 2 The proposed secure
communication scheme

We define ui as ui = u∗
i + usi , in which u

∗
i is designed

as follows:

u∗
i = Dαi xi − λi ei − f̂i (6)

where λ i is chosen such that stability condition
|arg(λi )| >αi

π
2 is satisfied. This stability condition is

derived from the following theorem:

Theorem 1 ([35]) The following linear autonomous
system

Dαx = Ax (7)

with 0 < α ≤ 1, x ∈ Rn and A ∈ Rn×n is , is asymptot-
ically stable if and only if all the eigenvalues of matrix
A satisfy |arg(eig (A))| > α π

2 .

By substituting (6) into (4) we have:

Dαi ei + λi ei = εi + usi (8)

usi is designed such that the H∞ norm of closed-loop
transfer function (Teε), from ei to εi is minimized. The
proposed synchronization method is used in a secure
communication application. The proposed secure com-
munication scheme is shown in Fig. 2. The input mes-
sage is encrypted using signals of master hyperchaotic
system and is sent to the receiver. In the receiver, after
synchronization, the message signal hidden inside a
hyperchaotic signal is recovered.

3 Proposed non-singleton type-2 fuzzy neural
network

In this section, the structure of proposed SE-NT2FNN
is introduced. As shown in Fig. 1, the unknown func-
tions in the dynamics of the slave systems are esti-
mated by the proposed SE-NT2FNN. The structure and
the consequent parameters of SE-NT2FNN are online
adjusted based on a proposed self-evolving algorithm
and the gradient descent algorithm, respectively [see
Sects. 4.1, 4.2]. As shown in Fig. 1, the training data
are coming from the slave system at each sample time.
The main merits of proposed SE-NT2FNN compared
with other fuzzy neural networks are that the proposed
fuzzy system has only one rule initially and new MFs
and rules are added when necessary and also the unim-
portant rules are deleted based on a simple algorithm.
Furthermore, the input uncertainties are handled by the
proposed non-singleton fuzzification.

The proposed network structure has six layers as
shown in Fig. 3.

Each rule has the following form:

Rule i : I F y1 is Ãi
1 And · · · And yn is Ãi

n T hen f̂

∈
[
wi
l , w

i
r

]
i = 1, . . . , M (9)

where M is the number of rules, yl , l = 1, . . . , n are
inputs of SE-NT2FNN, n is the number of inputs of SE-
NT2FNN, Ãi

j j = 1, . . . , n is the i-th interval type-
2 membership function (MF) for the j-th input and[
wi
l , w

i
r

]
are the consequent parameters. f̂ is output of

SE-NT2FNN. Each layer of SE-NT2FNN is explained
as follows:

Input layer: The inputs of SE-NT2FNN are the out-
puts of slave system.
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Synchronization of uncertain fractional-order hyperchaotic systems 5

Fig. 3 Structure of
SE-NT2FNN

Fuzzification layer: In this layer, the non-singleton
fuzzification operation is performed. The uncertainties
of inputs of SE-NT2FNN are modeled by type-2 MFs.
The proposed type-2 MF for input y j has three points,
in which its first-point, center-point and end-point are
located at y j−	, y j and y j+	, respectively (as shown
in Fig. 4).	 is a designable parameterwhich is constant
for all inputs. By this fuzzifier, crisp inputs are mapped
into a type-2 MF. The non-singleton fuzzifier changes
themembership values ofMFs. Consider i-thMF for j-
th input, the non-singleton fuzzifier transforms y j to �y i

j .

By usingminimum inference �y i
j is obtained as follows:

�y i
j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y j if
(
y j + 	

)
< aij or

(
y j − 	

)
> bij or y j = mi

j

	 × aij +
∣∣∣aij − mi

j

∣∣∣× (y j + 	
)

	 +
∣∣∣aij − mi

j

∣∣∣
else if y j < mi

j see Fig. 5

	 × bij +
∣∣∣bij − mi

j

∣∣∣× (y j − 	
)

	 +
∣∣∣bij − mi

j

∣∣∣
else if y j > mi

j see Fig. 6

(10)

where y j is j-th input, aij , m
i
j and bij are first-point,

center-point and end-point of i-th MF for j-th input,
respectively (Figs. 5, 6).

Membership layer: In this layer, the upper and lower
memberships of MFs are computed. Consider i-th MF
for j-th input y j , the upper and lower memberships of
�y i
j (transformed of y j by non-singleton fuzzifier) are

obtained as follows:
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Fig. 4 Modeling of the uncertainty of inputs by proposed type-2 MF

Fig. 5 Non-singleton fuzzifier by using minimum inference

μ̄i
�yij

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�y i
j − aij

mi
j − aij

if aij < �y i
j ≤ mi

j

�y i
j − bij

mi
j − bij

if mi
j < �y i

j < bij

0 otherwise

μi
�yij

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0.5
�y i
j − aij

mi
j − aij

if aij < �y i
j ≤ mi

j

0.5
�y i
j − bij

mi
j − bij

if mi
j < �y i

j < bij

0 otherwise

(11)

Rule layer: Each node in this layer corresponds to
a rule, which computes the upper and lower firing

degrees. The upper and lower firing degrees of i-th rule
are computed as follows:

z̄i = μ̄
p1
�y p1
1

× μ̄
p2
�y p2
2

× · · · × μ̄
p j

�y p j
j

× · · · × μ̄
pn
�y pn
n

zi = μ
p1
�y p1
1

× μ
p2
�y p2
2

× · · · × μ
p j

�y p j
j

× · · · × μ
pn
�y pn
n

(12)

where μ̄
p j

�y p j
j

and μ
p j

�y p j
j

are the upper and lower mem-

berships of p j -th MF for j-th input, respectively.
T ype-reduction layer : Based on the center of sets

type reduction, f̂r and f̂l are as follows:
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Fig. 6 Non-singleton fuzzifier by using minimum inference

f̂r =
∑R

j=1 z jw
j
r +∑M

j=R+1 z̄ jw
j
r∑R

j=1 z j +∑M
j=R+1 z̄ j

,

f̂l =
∑L

j=1 z̄ jw
j
l +∑M

j=L+1 z jw
j
l∑L

j=1 z̄ j +∑M
j=L+1 z j

(13)

in which R and L are obtained from KM iterative algo-
rithm [36]. w j

r and w
j
l are the consequent parameters.

z̄ j and z j are the upper and lower firing degrees of j-th
rule, respectively, andM is the number of rules. To sim-
plify Eq. (13), the following definitions are considered:

qr
	=
[

R︷ ︸︸ ︷
1 1 · · · 1

M−R︷ ︸︸ ︷
0 0 · · · 0

]T
,

ql
	=
[

L︷ ︸︸ ︷
1 1 · · · 1

M−L︷ ︸︸ ︷
0 0 · · · 0

]T (14)

where

R︷ ︸︸ ︷
1 1 · · · 1 represent that the number of ones is R.

According to (14), Eq. (13), can be rewritten as follows:

f̂r =
∑M

j=1

[
qr ( j)z j + (1 − qr ( j)) z̄ j

]
× w

j
r

∑M
j=1

[
qr ( j)z j + (1 − qr ( j)) z̄ j

] ,

f̂l =
∑M

j=1

[
ql( j)z̄ j + (1 − ql( j)) z j

]
w

j
l∑M

j=1

[
ql( j)z̄ j + (1 − ql( j)) z j

] (15)

where qr ( j) and ql( j) represent the j-th element of
vector qr and ql , respectively. Output layer : The
defuzzified crisp output f̂ is the average of f̂r and f̂l :

f̂ = f̂r + f̂l
2

(16)

4 Self-evolving algorithm

In this section, consequent parameters [see Eq. (13)]
and the structure of type-2 fuzzy neural network are
tuned.

4.1 Parameter learning

The consequent parametersw
j
r , w

j
l , j = 1, . . . , M are

tuned based on gradient descent algorithm.As shown in
Fig. 1, the parametersw

j
r , w

j
l , j = 1, . . . , M are tuned

such that the following cost function is minimized:

E = 1

2

[
yi − D−αi

(
f̂i + ui

)]2
(17)
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8 A. Mohammadzadeh, S. Ghaemi

where yi is the output of i-th subsystem, D−αi is frac-
tional integrator, f̂i is the output of i-th SE-NT2FNN
and ui is i-th control signal in i-th subsystem. Based
on gradient descent algorithm, we have:

w
j
r (t + 1) = w

j
r (t) − η

∂E

∂w
j
r

= w
j
r (t) − η

∂E

∂ f̂i

∂ f̂

∂w
j
r

= w
j
r (t)

+ η
[
yi − D−αi

(
f̂i + ui

)]
D−αi

×

⎛
⎜⎜⎜⎝

qr ( j)z j + (1 − qr ( j)) z̄ j
M∑
j=1

[
qr ( j)z j + (1 − qr ( j)) z̄ j

]

⎞
⎟⎟⎟⎠

(18)

Similar to (18), for training of w
j
l we have:

w
j
l (t + 1)

= w
j
l (t) + η

[
yi − D−αi

(
f̂i + ui

)]
D−αi

×
⎛
⎝ ql( j)z̄ j + (1 − ql( j)) z j∑M

j=1

[
ql( j)z̄ j + (1 − ql( j)) z j

]
⎞
⎠

(19)

4.2 Structure learning

In this section, a new structure learning algorithm is
presented. Our proposed SE-NT2FNN has only one
rule initially. New rules and new MFs are added, and
unnecessary rules and MFs are deleted, when neces-
sary. And the proposed algorithm limits the number
of rules from indefinitely growing. The flowchart of
proposed algorithm is shown in Fig. 7. When tracking
error is greater than a predefined threshold, the struc-
ture is changed. Detailed explanation is given in the
following.

4.2.1 Adding new MF

Consider input y j , at time t , if the maximum of upper
memberships of all MFs to input y j is less than 0.5, a
new MF is added for input y j as shown in Fig. 8. The

center-point of new MF mnew
j is located at y j , its first-

point anewj is chosen as center-point of neighboringMF
and its end-point bnewj is chosen as bnewj = 2×mnew

j −
anewj . It must be noted that each input has only one
type-2 MF initially.

4.2.2 Replacing new MF

Consider input y j , if the number of MFs for input y j
is greater than a predefined threshold, after adding new
MF, the furthest MF from newly added MF is deleted.

4.2.3 Generate new rules

After adding or replacing new MFs, all new rules, the
firing degrees of which are greater than 0.5 are gener-
ated. Let the current SE-NT2FNN output value be w,
the consequent parameters of new ruleswnew

r , wnew
l are

initialized, as follows:

{
wnew
r = w , wnew

l = 0 w >= 0
wnew
r = 0 , wnew

l = w w < 0
(20)

If by adding or replacing new MFs, there is no a
new rule the firing degree of which is greater than 0.5,
or there is not any rule in the rule database, the firing
degree of which is greater than 0.5 , then a new rule is
generated as follows:

For each input, one MF is found which its upper
membership is maximum. The center of this MF is
changed to the current input value. Also the end-point
of left neighboringMFand thefirst-point of right neigh-
boring MF are modified to the current input value [see
Fig. 9].

For example, assume y1, y2 and y3 are the inputs
of SE-NT2FNN, Ã1

y1 , Ã
2
y1 , Ã

3
y1 are the type-2 MFs for

input y1, B̃1
y2 , B̃

2
y2 , B̃

3
y2 are the type-2 MFs for input

y2 and C̃1
y3 , C̃

2
y3 , C̃

3
y3 are the type-2 MFs for input y3 .

And assume the output of SE-NT2FNN at time t is w.
If the center of MFs Ã1

y1 , B̃
3
y2 and C̃

2
y3 are changed [see

Fig. 9], the new rule is generated as follows:

If y1 is Ã1
y1, and y2 is B̃3

y2 , and y3 C̃2
y3, Then f̂ is

G̃ Centroid of G̃ is [wl , wr ] where{
wr = w, wl = 0 if w ≥ 0
wr = 0, wl = w if w < 0

(21)
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Synchronization of uncertain fractional-order hyperchaotic systems 9

Fig. 7 Proposed structure learning algorithm

4.2.4 Add new rules to the rule database

If by adding new rules to the rule database, the number
of rules is greater than a predefined threshold (max-
imum number of rules), the new generated rules are

replaced with the rules which have the smallest firing
degrees. Otherwise, new rules are added to rule data-
base. It must be noted that since the consequent para-
meters of new rules are initialized to SE-NT2FNN cur-
rent output value, the control signal remains continues,
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10 A. Mohammadzadeh, S. Ghaemi

Fig. 8 Adding new MF for input y j

Fig. 9 Change the center of one MF which its upper membership is maximum
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Synchronization of uncertain fractional-order hyperchaotic systems 11

Fig. 10 Configuration of standard H∞ problem

and then, our assumption about bounded approxima-
tion error remains valid. So the stability analysis are
valid when the structure changes.

5 Stability analysis

In this section, a compensator is designed such that H∞
norm of transfer function Teε is minimized. We repre-
sent the Eq. (8) as a standard H∞ problem as shown in
Fig. 10.

where,

P

⎧⎨
⎩

Dαi ei = Aei + Busi + Bεεi
y = Cei + Dusi + Dεεi
z = Czei + Dzusi + Dzεεi

(22)

K

{
Dαi xk = Akxk + Bk y
usi = Ckxk + Dk y

(23)

in which, A = −λi , B = 1, Bε = 1, C = 1, D =
0, Dε = 0, Cz = 1, Dz = 0, Dzε = 0, ei ∈ Rn is
the state of subsystem (8), ui ∈ Rnu is control signal,
y ∈ Rny and z ∈ Rnz are outputs and xk ∈ Rn is the
state of controller.

With definition x̃(t) = [
ei xk

]T
, the state-space

representation of the closed-loop T cl
zεi can be written

as follows:

T cl
zεi =

{
Dαi x̃ = Acl x̃ + Bclεi
z = Ccl x̃ + Dclεi

(24)

where

Acl =
[
A + BDkC BCk

BkC Ak

]
, Bcl =

[
Bε + BDkDε

BkDε

]

Ccl =[Cz + DzDkC DzCk
]
, Dcl = Dzε + DzDkDε

(25)

Various methods have been presented for computa-
tion of the upper bound of H∞-norm.

Lemma 1 ([37,38]): The H∞-norm of system (24), is
bounded by γ , if and only if there exists symmetric
positive definite X = X∗ ∈ R2n×2n such that:

⎡
⎣ r̄ AT

cl X + Xr Acl X Bcl r̄ CT
cl

BT
cl X −γ 2 I DT

cl
rCcl Dcl −γ I

⎤
⎦ < 0

wi th r = e(1−αi ) jπ/2

(26)

Partition the solution of (26) as follows:

X =
[

Y N
NT ∗

]
, X−1 =

[
Z M
MT ∗

]
(27)

in which, Z and Y are symmetric and n × n. By
using (26) and linearizing change of variables, The-
orem 2, [14] has been derived:

Theorem 2 ([14]): The fractional-order system (22)
with 1 < αi < 2, by output feedback control (23),
is Bounded-Input Bounded-Output (BIBO) stabilizable
and

∥∥T cl
zw

∥∥ < γ , if there exist Z = ZT ∈ Rn×n, Y =
Y T ∈ Rn×n, Â ∈ Rn×n, B̂ ∈ Rn×ny , Ĉ ∈ Rnu×n and
D̂ ∈ Rnu×ny such that LMI (29) is feasible with
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[
Z I
I Y

]

 0 (28)

⎡
⎢⎢⎢⎢⎢⎢⎣

r̄
(
AZ + BĈ

)
+ r

(
Z AT + ĈT BT

)
r̄
(
Y A + B̂C

)
+ r

(
AT Y + CT B̂T

)

r
(
A + BD̂C

)T + r̄ Â
(
Y Bw + B̂Dw

)T
(
Bw + BD̂Dw

)T
r
(
Cz + Dz D̂C

)

r
(
Cz Z + DzĈ

)
r̄
(
Y A + B̂C

)
+ r

(
AT Y + CT B̂T

)

Bw + BD̂Dw r̄
(
Cz Z + DzĈ

)T

Y Bw + B̂Dw r̄
(
Cz + Dz D̂C

)T

−γ 2 I
(
Dzw + Dz D̂Dw

)T
Dzw + Dz D̂Dw −I

⎤
⎥⎥⎥⎥⎥⎥⎦

< 0 (29)

where

Â
	= N AkM

T + N BkCZ + Y BCkM
T + Y (A + BDkC) Z

B̂
	= N Bk + Y BDk (30)

Ĉ
	=CkM

T + DkCZ

D̂
	= Dk

The results of Theorem 2 is derived from [38] and can
be easily extended to case of fractional-order system
(22) with 0 < αi < 1.

After solving (29), matrices M and N must be find
such that:

MNT = I − ZY (31)

By using (31) and (30), the controller matrices
Ak, Bk,Ck, Dk can be derived as follows:

Dk
	= D̂

Ck
	=
(
Ĉ − DkCX

)
M−T

Bk
	= N−1

(
B̂ − Y BDk

)

Ak
	= N−1( Â−N BkCX − Y BCkM

T−Y (A+BDkC)X)M−T

(32)

6 Simulations

In this section, two examples are presented to evaluate
the performance of proposed controller for the synchro-
nization of uncertain fractional hyperchaotic systems
and its application to secure communication.

Many numerical methods, based on the approxima-
tion of fractional derivative (integral) operators, have
been presented for solving the fractional differential

Eqs. [39–42]. In this paper, for simulation the Caputo
derivative of fractional-order, we use Simulink block
nid, which has been created by Duarter Valerio [43].
The use of Caputo derivative is more popular in real
applications.

Example 1 In this example, the proposed controller
is applied to synchronize the fractional-order hyper-
chaoticNovel systemand fractional-order hyperchaotic
Chen system [44]. The master and slave systems
dynamics are given as follows:

Master system:

⎧⎪⎪⎨
⎪⎪⎩

Dβ1x1 = 35 (x2 − x1) + 35x2x1
Dβ2x2 = 25x1 − 5x1x3 + x2 + x4
Dβ3x3 = x1x2 − 4x3
Dβ4x4 = −100x2

(33)

and

Slave system:

⎧⎪⎪⎨
⎪⎪⎩

Dα1 y1 = 35 (y2 − y1) + y4 + d1+u1
Dα2 y2 = 7y1 − y1y3 + 12y2+d2+u2
Dα3 y3 = y1y2 − 3y3 + d3 + u3
Dα4 y4 = y2y3 + 0.3y4 + d4 + u4

(34)

where ui , i = 1, 2, 3, 4 are controllers, di , i =
1, 2, 3, 4 are external disturbance which are considered
to be white noise with zero mean and variance 0.1. The
fractional derivative orders are αi = βi = 0.97 , i =
1, . . . , 4. Initial conditions are chosen as x1(0) = 1,
x2(0) = 1, x3(0) = 1, x4(0) = 1, y1(0) = 0.61,
y2(0) = 0.21, y3(0) = 0.61 and y4(0) = 0.21.
The parameters of self-evolving algorithm are given
in Table 1. The input message is considered as sin(t).

To design the controller, we rewrite slave system
(34) as follows:
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Table 1 Parameters of self-evolving algorithm

Maximum number of
rules

Maximum number of
MFs for each input

The structure is changed
when the tracking error
greater than:

	 see Fig. 4 Initial type-2 MF for each input:
first-point, center-point, end-point

20 5 0.5 0.1 −10,0,10

Dα1 y1 = f1
(
y
)

+ u1

Dα2 y2 = f2
(
y
)

+ u2

Dα3 y3 = f3
(
y
)

+ u3

Dα4 y4 = f4
(
y
)

+ u4

(35)

in which y = [y1, y2, y3, y4] and f1, f2, f3, f4 are
nonlinear and unknown but bounded functions. The
controllers u1, u2, u3, u4 are designed as follows:

u1 = Dα1x1 − λ1e1 − f̂1 + us1

u2 = Dα2x2 − λ2e2 − f̂2 + us2

u3 = Dα3x3 − λ3e3 − f̂3 + us3

u4 = Dα4x4 − λ4e4 − f̂4 + us4

(36)

where f̂i , i = 1, 2, 3, 4 are SE-NT2FNNs which esti-
mate fi (y)+di (t) , i = 1, 2, 3, 4 [see Fig. 1]. By sub-
stituting (36) into (34), we have:

Dα1e1 = −λ1e1 + ε1 + us1
Dα2e2 = −λ2e2 + ε2 + us2
Dα3e3 = −λ3e3 + ε3 + us3
Dα4e4 = −λ4e4 + ε4 + us4

(37)

where εi , i = 1, 2, 3, 4 are approximation errors [see
Eq. (5)], by considering λi = 100, i = 1, 2, 3, 4, after
solving LMI (29), the matrices of controllers usi , i =
1, 2, 3, 4 [see Fig. 10 and Eq. (23)] are obtained as
follows:

⎧⎨
⎩

Aki = −18.4916, Bki = −1.3122
Cki = 8.4653, Dki = 99.2928
γ 2 = 0.7602

(38)

Output trajectory of xi and yi , i = 1, 2, 3, 4 is shown
in Fig. 11. The results of the encryption and decryption
are shown in Fig. 12. It can be seen that the synchro-
nization performance is desired, and the input message

is recovered with a good accuracy. The fractional-order
hyperchaotic systems of this example have been syn-
chronized in [44], by a new nonlinear technique. The
comparison values of root-mean-square error (RMSE)
are given in Table 2. It can be seen that RMSE values
for the synchronization error of our method are signif-
icantly less than [44]. It must be noted that dynamic
of slave and master systems is assumed to be unknown
in our method, and furthermore, external disturbance
has been considered. But in [44], dynamic of slave and
master system assumed to be known, and there is no
external disturbance.

Example 2 In this example, the proposed controller is
applied to synchronize the uncertain fractional-order
hyperchaotic Lorenz system as the slave system, and
fractional-order hyperchaotic Chen system as the mas-
ter system. The hyperchaotic Lorenz system is as fol-
lows:

Dα y1 = 10 (y2 − y1) + y4 + ds1 + u1

Dα y2 = 28y1 − y2 − y1y3 + ds2 + u2

Dα y3 = y1y2 − 8/3y3 + ds3 + u3

Dα y4 = −y2y3 − y4 + ds4 + u4

(39)

Hyperchaotic chen system is:

Dβx1 = 35 (x2 − x1) + x4 + dm1

Dβx2 = 7x1 + 12x2 − x1x3 + dm2

Dβx3 = x1x2 − 8x3 + dm3

Dβx4 = x2x3 + 0.3x4 + dm4

(40)

where [45]

ds1 = 0.25 cos(6t)y1 − 0.15 sin(t),

dm1 = −0.25 sin(4t)x1 + 0.1 sin(7t)

ds2 = −0.2 cos(2t)y2 + 0.1 sin(3t),

dm2 = 0.1 cos(t)x2 + 0.15 cos(3t) (41)

ds3 = 0.15 sin(3t)y3 + 0.2 cos(5t),
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Fig. 11 Output trajectory of master and slave systems, Example 1
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Fig. 12 Results for the encryption and decryption, Example 1
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Table 2 Comparison results of proposed method in this paper and the proposed nonlinear technique in [44], Example 1

RMSE

e1 e2 e3 e4

Proposed method 0.1599 0.0229 0.0145 0.0064

The method of [44] 1.5884 3.9767 2.5956 13.3590

dm3 = 0.25 sin(4t)x3 − 0.15 sin(5t)

ds4 = −0.2 cos(2t)y4 − 0.15 cos(t),

dm4 = −0.15 sin(t)x4 + 0.2 cos(2t)

Initial conditions of master and slave systems are
as y1(0) = 1, y2(0) = 2, y3(0) = 3, y4(0) = 4,
x1(0) = 3, x2(0) = 1, x3(0) = 4 and x4(0) = −1. The
fractional derivative orders are αi = βi = 0.98 , i =
1, . . . , 4. Other controller parameters are the same
as the Example 1. The synchronization performance
is shown in Fig. 13. The results of the encryption
and decryption are shown in Fig. 14. The comparison
results of proposed method and fractional non-singular
terminal slidingmode technique [45] are given Table 3.
It can be seen that the proposed controller shows better
performance.

Example 3 In this example, the proposed controller is
applied for synchronization of twouncertain fractional-
order Liu systems with different initial conditions. The
obtained results are compared with the results of [46].
In [46], the synchronization of two fractional-order
Liu systems has been used in a secure communication
scheme. The Liu system is as follows:

Dα y1 = 10 (y2 − y1)

Dα y2 = 40y1 − y1y3

Dα y3 = −4y21 − 2.5y3

(42)

where α = 0.9, the initial conditions of master and
slave systems are y1(0), y2(0), y3(0) = (2, 1, 3) and
y1(0), y2(0), y3(0) = (15, 6.5, 7) [46]. The input mes-
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Fig. 13 Output trajectory of master and slave systems, Example 2
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Fig. 14 Results for the encryption and decryption, Example 2

Table 3 Comparison results of proposed method in this paper and fractional non-singular terminal sliding mode technique [45],
Example 2

RMSE
e1 e2 e3 e4

Proposed method 0.0291 0.0680 0.1533 0.2707

The results of [44] 0.3342 0.2104 0.1972 1.7383

sage is considered as sin(t). Other controller parame-
ters are the same as the Example 1. The synchroniza-
tion performance is shown in Fig. 15. The results of
the encryption and decryption are shown in Fig. 16. The
comparison results of proposedmethod and themethod
of [46] are given in Table 4. As the same as the previous
examples, this example also shows that the proposed
controller shows better performance. It must be noted
that the image encryption based on the fractional-order
chaotic systems has been studied in many papers. For
instance in [47,48] the image encryption scheme are
proposed based on a fractional-order chaotic logistic
systems.

7 Conclusion

A new robust control strategy is proposed in this
paper for synchronization of fractional-order hyper-
chaotic systems. Furthermore, a new self-evolving non-
singleton type-2 fuzzy neural network (SE-NT2FNN)
presented, in which the structure of fuzzy neural net-
work is not fixed and is modified when necessary
and the proposed SE-NT2FNN has ability to iden-
tify dynamic of hyperchaotic systems. The effect of
approximation error and external disturbance can be
eliminated by H∞ LMI-based control approach. It is
shown that the closed-loop system is stable. The pro-
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Fig. 15 Output trajectory of master and slave systems, Example 3
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Fig. 16 Results for the encryption and decryption, Example 3
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Table 4 Comparison of our results and the results of [46], Example 3

RMSE
e1 e2 e3

Proposed method 0.1754 0.0845 0.1187

The method of [46] 3.3043 1.1299 1.1347

posed method is successfully applied to synchronize
two identical and nonidentical fractional-order hyper-
chaotic systems. The simulation results verified that
proposed controller shows good performance in the
presence of unknown functions and external distur-
bances. Also the results for the encryption and decryp-
tion of the input message in the secure communication
system, confirmed the effectiveness of the proposed
synchronization scheme. As we know, in all of works
in the field of synchronization of the fractional-order
chaotic systems and also in this paper, the value of the
fractional-order is assumed to be known. In the future
works, we will extended the results to the cases that the
controller is not depend on the value of fractional-order.
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