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Abstract This paper investigates the event-triggered
dissipative filtering problem for a class of networked
semi-Markov jump systems. As a first attempt, the
event-triggered communication scheme is introduced
to save the limited network bandwidth and preserve
the fixed system performance. By using the stochastic
analysis, the information on the sojourn time between
the mode jumps of the underlying systems is fully con-
sidered. By employing time-delay approach, the filter-
ing performance analysis for the considered systems
is presented, and then a co-design approach for the
event-triggered mechanism and the dissipative filter is
adopted such that the filtering error system is strictly
dissipative. Finally, a numerical comparative example
is used and a mass-spring system model as a realis-
tic example is also provided to show the reduced con-
servatism and applicability of the proposed filtering
scheme.
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1 Introduction

Networked control systems (NCSs) are a special kind
of feedback control systems with control loops closed
through a real-time network [8,17,33]. Roughly speak-
ing, a typical networked control system consists of
four fundamental components: (a) plants; (b) sen-
sors/actuators; (c) controllers/filters; and (d) a shared
communication network. More specifically, the infor-
mation from control system components is transmitted
through a communication network inNCSs. It has been
recognized that there exist many advantages of NCSs
compared to traditional ones, such as reducing sys-
tem wiring, the low installation and maintenance costs,
increasing systemflexibility and high reliability. There-
fore, it is easy to explain why NCSs have been attract-
ing considerable attention and successfully applied in
practice in several areas. Examples range from man-
ufacturing, industrial process control, automation, to
robotics. For more details, we refer readers to [1,2,37].

A fact in NCSs is that the communication band-
width resource becomes more and more limited as
the complexity of the network increases [12,15]. As
a consequence, some phenomena include, but are not
limited to, congestion, quantization errors, network-
induced delays, packet dropouts, inevitably exist in
the applications of NCSs, which lead to some unfa-
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vorable factors for system performance or even insta-
bility [10,11,20,22,23,38]. How to overcome such a
difficulty is therefore a hot topic in the study of NCSs.
Taking limited communication capacity into consider-
ation, the last decades have witnessed a rapid growth
in investigating data sampling schemes in the develop-
ment of NCSs. Usually, there are two typical schemes
to be applied, i.e., the time-triggered sampling scheme
and the event-triggered one. The former has advantages
of reducing the complexity and difficulty of analy-
sis and design, and then has been extensively used to
address the problem of state estimation or control for
NCSs. It should be pointed out that the time-triggered
scheme with the fixed sampling interval cannot per-
form the case when the measurement signals have little
fluctuating [19]. Thankfully, the latter, i.e., the event-
triggered scheme (ETS) has been proposed to screen
the unnecessary information, which the trigger condi-
tion of transferring information is determined by the
occurrence of an “event.” Its superiority in reducing
the utilization of the scarce communication resource
has been demonstrated in many works, e.g., see in [37]
and [19]. It is hardly surprising that the design issue
of NCSs based on the ETS has been widely concerned
and an abundance of the literature has emerged in recent
years. For instance, the problem of distributed event-
triggered H∞ filtering was presented in [4] for sensor
networks, where each sensor node could be capable of
determiningwhether or not to transmit the current sam-
ple information; the distributed event-triggered fuzzy
filter was designed for a class of nonlinear networked
control systems in [29]; the event-triggered H∞ con-
troller was designed for NCSs in [36], where a delayed
system method was constructed.

On the other hand, it is known that Markov jump
model has long enjoyed a good reputation for modeling
many networked-induced phenomena, such as the ran-
dom time delays and the packet dropouts [5,9,14,24–
26,30–32] . Within the Markov jump systems (MJSs)
framework, the problem of discrete-time H2 output
tracking control for wireless NCSs was considered in
[35], where the Markov chains were used to model
the time delays; the H∞ fault detection filter was
designed in [16], in which NCSs were modeled by
MJSs via using the multirate sampling method and
the augmented state matrix method. As stated as previ-
ous, the event-triggered mechanism has a huge advan-
tage in reducing the utilization of the communica-
tion resource; therefore, it is an interesting problem

that the event-triggered mechanism is considered in
the NCSs with Markov jump parameters [28]. How-
ever, in [5,9,14,16,24–26,28,30,32] , the sojourn time
between two successive jumps was assumed to obey
the exponential probability distribution. Owing to the
memoryless property of the exponential probability
distribution, the transition rates of MJSs were required
to be constant and independent of the past. Such a
requirement may be unreasonable in many practical
situation. In order to relax the limitation, the semi-
Markov process has been introduced and a large quan-
tify of results on semi-Markov jump systems (sMJSs)
have been published. To name a few, the design of H∞
controller for a class of sMJSs was presented in [6],
where a sufficient condition for the existence of the con-
troller was proposed; the analysis of the robust stochas-
tic stability and the problem of robust control design for
sMJSswere considered in [7,39]. However, it is worthy
noting that most of the existing results on networked
MJSs have been reported based on the time-triggered
sampling scheme, there are no attempts to the issue
of dissipative filtering for networked sMJSs, and few
efforts forward the co-design approach for the event-
triggered mechanism and the dissipative filter for the
underlying systems, which motivates the recent work.

In this paper, we are interested in coping with the
problem of the event-triggered dissipative filtering for
a class of networked sMJSs. An event-triggered mech-
anism is introduced as a sampling scheme aiming at
the benefit of saving the limited network resources. A
Markov switched Lyapunov functional is used to derive
conditions of the existence of the desired filter. A net-
worked mass-spring system model is provided to show
the availability of the proposed approach. The main
contributions of this paper are summarized as two fol-
lowing folds: (1) As a first attempt, a new class of filters
named event-triggered dissipative filters are developed
to reflect the limited communication links between the
plant and the desired filter for networked sMJSs; (2)
The improved delayed system approach is employed
to deal with the event-triggered filtering problem by
using some novel integral inequalities. As a result, the
less conservative conditions are established than the
existing ones, which is shown in Example 1 in Sect. 4.

The rest of this paper is outlined as follows. The for-
mulation of problem under consideration is presented
in Sect. 2. In Sect. 3, the dissipative filtering perfor-
mance analysis and filter design are given. Two exam-
ples are provided to illustrate the efficiency of the pro-
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posed method in Sect. 4. Finally, conclusion is given in
Sect. 5.

Notation Throughout this paper, Rn denotes the n-
dimensional Euclidean space; for symmetric matrices
P , the notation P ≥ 0 (respectively, P > 0) means
that thematrix P is positive semi-definite (respectively,
positive definite); I and 0 represent the identity matrix
and zero matrix with appropriate dimension, respec-
tively. E {·} denotes the expectation operator; the nota-
tion MT represents the transpose of the matrix M ,
and sym{M} stands for M + MT. L2 [0,∞) is the
space of square-summable infinite vector sequences
over [0,∞). In symmetric block matrices or complex
matrix expressions, an asterisk (∗) is employed to rep-
resent a term that is induced by symmetry. Matrices, if
not explicitly stated, are assumed to have compatible
dimensions.

2 Problem formulation

The networked systemwith an event-triggered commu-
nication scheme, as depicted in Fig. 1, contains a linear
continuous-time system, a sensor, a sampler, an event
detector, a zero-order hold (ZOH), a filter and a com-
munication network. Indeed, the output signal of plant
y (t) is transmitted over a communication network,
where a networked dissipative filter will be designed
to estimate the z (t) .

Considering the following plant which is character-
ized as a semi-Markov jump system represented by

(�) :
⎧
⎨

⎩

ẋ (t) = A (β (t)) x (t) + B (β (t)) ω (t) ,

y (t) = L (β (t)) x (t) ,

z (t) = C (β (t)) x (t) + D (β (t)) ω (t) ,

(1)

where x (t) ∈ R
n is the system state, y (t) ∈ R

m is
the measurement output and z (t) ∈ R

q is the signal

Fig. 1 A framework of networked filter with an event-triggered
communication scheme

to be estimated, ω (t) ∈ R
p is assumed to be an arbi-

trary noise signal, and ω (t) ∈ L2 [0,∞). A (β (t)),
B (β (t)), C (β (t)), D (β (t)) and L (β (t)) are known
real constant matrices with appropriate dimensions for
each β (t) ∈ S = {1, 2, . . . , r}. Fixed a probability
space (�,F ,P), where � is a sample space, F is
the σ -algebra of subsets of the sample space and P
is the probability measure on F . The random variable
{β (t) , t � 0} stands for a continuous-time discrete-
state semi-Markov process and taking discrete values
in a given finite set S with transition probability matrix
∏ �= {

πi j (�)
}
given by [13]

Pr {β (t + �) = j |β (t) = i }
=
{

πi j (�)� + o (�) , i �= j
1 + πi i (�)� + o (�) , i = j

, (2)

where� > 0 is the sojourn time, lim�→0 (o (�) /�) =
0 and πi j (�) ≥ 0, for j �= i, is the transition rate from
mode i at time t to mode j at time t + � and

πi i (�) = −
∑

j∈S , j �=i

πi j (�) .

In this paper, we are interested in designing a
Markov switched filter described by the following
state-space realization

ẋ f (t) = A f (β (t)) x f (t) + B f (β (t))
_
y(t),

z f (t) = C f (β (t)) x f (t) + D f (β (t))
_
y(t), (3)

where x f (t) is the filter state vector, z f (t) is the filter
output vector, ȳ(t) is input signal of filter which from
ZOH. A f (β (t)), B f (β (t)),C f (β (t)) and D f (β (t))
are the parameters of the filter to be determined.
For brevity, we denote Ai = A (β (t)) and A f i =
A f (β (t)) for each β (t) = i ∈ S, and the other sym-
bols are similarly denoted.

Remark 1 In the time-triggered scheme, all the sam-
pled data packets will be sent to ZOH for the filter
designed. As a matter of fact, there is no need to trans-
mit those data packets which carry little new informa-
tion. In this case, how to obtain the threshold conditions
to determine whether the current sampled data packets
should be transmitted or not is a key question. It is
obvious that the limited network bandwidth resources
can be saved if we can only transmit the available sam-
pled data packets. Fortunately, event-triggered scheme
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(ETS) could be applied as an effective solution to screen
the unnecessary data packet transmission.

In this paper, an ETS is proposed, where the
event detector is used to determine whether the newly
sampled data packet (tk + n, y (tkh + nh)) should be
stored and sent out to the filter at the same time by using
the following threshold condition [36]:

[y ((tk + n) h) − y (tkh)]T �i [y ((tk + n) h)

−y (tkh)] < λi y
T (tkh)�i y (tkh) , (4)

where h is a constant sampling period, tkh (k ∈ N)

is the triggered instant (or release instant), n =
1, 2, · · · , ρk with ρk = tk+1−tk−1, λi ∈ [0, 1) are the
given scalar parameters that set the detection thresholds
for each i ∈ S,�i > 0 are the event-triggeredmatrices
to be determined in the co-design.

Observe that the transmission delay phenomenon
and the property of ZOH, we obtain
_
y(t) = y (tkh) , t ∈ [tkh + τtk , tk+1h + τtk+1

)
.

Furthermore, under the ZOH, the interval [tkh+τtk ,

tk+1h + τtk+1) can be written as

[
tkh + τtk , tk+1h + τtk+1

) =
ρk⋃

n=0

In,

where

In = [
tkh + nh + τ̂ , tkh + nh + h + τ̂

)
,

withn=1, 2, · · · , ρk−1,I0=[tkh + τtk , tkh+h + τ̂
)
,

and Iρk = [
tkh + ρkh + τ̂ , tk+1h + τtk+1

)
, the net-

work-induced delays τtk ∈ (0, τ̂ ], τ̂ is the upper bound
of τtk , ρk is a positive integer.

Define the network delay τ (t) and the error ek (t)
between the latest transmission data and the current
sampled data as

τ (t) = t − tkh − nh, t ∈ In,
ek (t) = y (tkh) − y (tkh + nh) , t ∈ In,

then, we have

0 < h1 � τtk � τ (t) < h + τ̂
�= h2, h1 = inf{τtk },

and
_
y(t) = y (tkh) = ek (t) + y (t − τ (t)) .

Augmenting the system (�) to include the filter sys-
tem (3), we can get the following filtering error system

(
�̃
)

:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

·
x̃ (t) = Ãi x̃ (t) + B̃i x (t−τ (t)) + C̃iω (t)

+ D̃i ek (t) ,

e (t) = S̃i x̃ (t) + Diω (t)
−D f i Li x (t − τ (t)) − D f i ek (t) ,

(5)

where

x̃ (t) =
[
x (t)
x f (t)

]

, e (t) = z (t) − z f (t) ,

Ãi =
[
Ai 0
0 A f i

]

,

B̃i =
[

0
B f i Li

]

, D̃i =
[

0
B f i

]

,

S̃i = [
Ci −C f i

]
, C̃i =

[
Bi
0

]

,

and the error ek (t) satisfies the following threshold
condition

eTk (t)�i ek (t) < λi [ek (t) + Li x (t − τ (t))]T

�i [ek (t) + Li x (t − τ (t))] , (6)

which is obtained from the triggering condition (4).

Definition 1 Given a scalar α > 0, real matrices
WT

1 = W1 = −W̄T
1 W̄1 � 0, W2 and W3 = WT

3 > 0,
the system (5) is said to be stochastically stable and
strictly (W1,W2,W3) − α−dissipative. Then, the fol-
lowing conditions are satisfied:

1. the system (5) with ω(t) = 0 is stochastically sta-
ble;

2. under zero initial condition, the following condition
is satisfied:

E
{∫ γ

0
eT (t)W1e (t) + sym

(
eT (t)W2ω (t)

)

+ωT (t)W3ω (t) dt
}

� α

∫ γ

0

[
ωT (t) ω (t)

]
dt,

(7)

for any γ � 0 and any nonzero ω (t) ∈ L2 [0,∞).

Remark 2 By changing W1 and W2, the condition of
(7) can degrade into the H∞ performance index and
the passive performance index as follows:

1. when letting W1 = −I , W2 = 0, and W3 > α I ,
the condition of (7) reduces to the H∞ performance
index;
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2. when letting W1 = 0, W2 = I , and W3 > α I , the
condition of (7) turns into the passive performance
index.

Lemma 1 [18] Let f1, f2, . . . , fN : Rm −→ R have
positive values in an open subset A of Rm. Then, the
reciprocally convex combination of fi over A satisfies

min{

θi

∣
∣
∣
∣θi>0,

∑

i
θi=1

}

∑

i

1

θi
fi (t)

=
∑

i

fi (t) + max
gi, j (t)

∑

i �= j

gi, j (t) (8)

subject to
{
gi, j : Rm −→ R, g j,i (t) � gi, j (t) ,

[
fi (t) gi, j (t)
gi, j (t) f j (t)

]

� 0

}

.

Lemma 2 [21] For scalars 0< h1 < h2 and matrices

Z1∈R
n×n and X =

[
X11 X12

X21 X22

]

∈R
2n×2n satisfying

� �
[
diag {Z1, 3Z1} X

∗ diag {Z1, 3Z1}
]

� 0, (9)

if there exists a vector function x : [t − h2, t] −→
R
n such that the integrations in the following are well

defined, then

−h2

∫ t

t−h2
ẋT (s) Z1 ẋ (s) ds

� −ςT (t)�T
12��12ς (t) , (10)

where

ςT (t) =
[
xT (t) xT (t − h1) xT (t − h2) ςT

1 (t) ςT
2 (t) ωT (t)

]
,

ς1 (t) = 1

h1

∫ t

t−h1
x (s) ds, ς2 (t) = 1

h12

∫ t−h1

t−h2
x (s) ds,

�1 =
[
I −I 0 0 0 0
I I 0 −2I 0 0

]

,

�2 =
[
0 I −I 0 0 0
0 I I 0 −2I 0

]

,

�12 =
[

�1
�2

]

, X =
[
X11 X12
X21 X22

]

.

3 Main results

Theorem 1 For given scalars α, 0 ≤ λi < 1, h2 >

h1 > 0, matrices WT
1 = W1 = −W̄T

1 W̄1 � 0, W2

and W3 = WT
3 > 0, if there exist real matrices �i >

0, Pi > 0, Q1i > 0, Q2i > 0, T > 0, Z1 > 0,
Z2 > 0 and Y of appropriate dimensions such that the
following matrix inequalities hold for each i ∈ S

�i �
[

�11i �12i
∗ �22i

]

< 0, (11)

� �
[
diag {Z1, 3Z1} X

∗ diag {Z1, 3Z1}
]

≥ 0, (12)

�1 �
[−Z2 −Y

∗ −Z2

]

< 0, (13)

�1,i �
∑

j∈S
πi j (�)

(
Q1 j + Q2 j

)− T < 0, (14)

�2,i �
∑

j∈S
πi j (�) Q2 j − T < 0, (15)

where

�11i �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

�11
11i �12

11i �13
11i 6HTZ1 2HT (X12 + X22)

∗ �22
11i �23

11i �24
11i 6Z1 − 2 (X12 − X22)

∗ ∗ �33
11i −2

(
XT
21 − XT

22

)
6Z1

∗ ∗ ∗ −12Z1 + h1�1,i −4X22
∗ ∗ ∗ ∗ −12Z1 + h12�2,i

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

�12i �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

PT
i B̃i PT

i D̃i PT
i C̃i + H ATi

(
h22Z1 + h212Z2

)
Bi − S̃Ti W2 S̃Ti W̄

T
1

Z2 − Y 0 0 0
Z2 − YT 0 0 0

0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

�22i �

⎡

⎢
⎢
⎢
⎣

�11
22i λi L

T
i �i LTi D

T
f i W2 −LTi D

T
f i W̄

T
1

∗ (λi − 1)�i DT
f i W2 −DT

f i W̄
T
1

∗ ∗ �33
22i DT

i W̄
T
1∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎦

,
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with

�11
11i � −4HTZ1H + HT (Q1i + Q2i

+ h2T + h22A
T
i Z1Ai + h212A

T
i Z2Ai

)
H

+ sym
(
ÃT
i Pi

)
+
∑

j∈S
πi j (�) Pj ,

�12
11i � −2HTZ1 − HT (X11 + X21 + X12 + X22) ,

�13
11i � HT (X11 + X21 − X12 − X22) ,

�22
11i � −8Z1 + sym (X11 − X21 + X12 − X22)

−Q1i − Z2,

�23
11i � −2Z1 + (−X11 + X21 + X12 − X22) + Y,

�24
11i � 6Z1 + 2

(
XT
21 + XT

22

)
,

�33
11i � −4Z1 − Q2i − Z2,

�11
22i � −2Z2 + Y T + Y + λi L

T
i �i Li ,

�33
22i � BT

i

(
h22Z1 + h212Z2

)
Bi + α I − W3

−sym
(
DT
i W2

)
,

h12 � h2 − h1, H �
[
I 0

]
.

Then the closed-loop system
(
�̃
)
is stochastically sta-

ble and strictly (W1,W2,W3) − α−dissipative.

Proof For the filtering error system
(
�̃
)
, the

Lyapunov–Krasovskii function for analyzing stability
is constructed as

V (xt , i, t) =
3∑

s=1

Vs (xt , i, t) , (16)

where

V1 (xt , i, t) = x̃T (t) Pi x̃ (t) ,

V2 (xt , i, t) =
∫ t

t−h1
xT (s) Q1i x (s) ds

+
∫ t

t−h2
xT (s) Q2i x (s) ds

+
∫ 0

−h2

∫ t

t+β

xT (s) T x (s) dsdβ,

V3 (xt , t) = h2

∫ 0

−h2

∫ t

t+β

ẋT (s) Z1 ẋ (s) dsdβ

+ h12

∫ −h1

−h2

∫ t

t+β

ẋT (s) Z2 ẋ (s) dsdβ,

with Pi > 0, Q1i > 0, Q2i > 0, T > 0, Z1 > 0 and
Z2 > 0.

Taking the time derivative along the trajectory of

system
(
�̃
)
yields

LV (xt , i, t) = LV1 (xt , i, t) + LV2 (xt , i, t)

+LV3 (xt , t),

where

LV1 (xt , i, t) = sym

(
·
x̃
T

(t) Pi x̃ (t)

)

+ x̃T (t)
∑

j∈S
πi j (�) Pj x̃ (t) , (17)

LV2 (xt , i, t) = xT (t) (Q1i + Q2i + h2T ) x (t)

−xT (t − h1) Q1i x (t − h1)

−xT (t − h2) Q2i x (t − h2)

+
∫ t

t−h1
xT (s)�1,i x (s) ds

+
∫ t−h1

t−h2
xT (s)�2,i x (s) ds, (18)

LV3 (xt , t) = ẋT (t)
(
h22Z1 + h212Z2

)
ẋ (t)

−h2

∫ t

t−h2
ẋT (s) Z1 ẋ (s) ds

−h12

∫ t−h1

t−h2
ẋT (s) Z2 ẋ (s) ds. (19)

Using Jensen’s inequality, it can see that
∫ t

t−h1
xT (s) �1,i x (s) ds � h1ς

T
1 (t)�1,iς1 (t) ,

(20)
∫ t−h1

t−h2
xT (s)�2,i x (s) ds � h12ς

T
2 (t)�2,iς2 (t) .

(21)

And in light of Lemma 2, it is straightforward that

−h2

∫ t

t−h2
ẋT (s) Z1 ẋ (s) ds � −ςT (t)�T

12��12ς (t) .

On the other hand, from Lemma 1, the following
inequality holds

−h12

∫ t−h1

t−h2
ẋT (s) Z2 ẋ (s) ds

�
[

(x (t − h1) − x (t − τ (t)))

(x (t − τ (t)) − x (t − h2))

]T [−Z2 −Y

∗ −Z2

]

[
(x (t − h1) − x (t − τ (t)))

(x (t − τ (t)) − x (t − h2))

]
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�

⎡

⎢
⎣

x (t − h1)

x (t − h2)

x (t − τ (t))

⎤

⎥
⎦

T ⎡

⎢
⎣

−Z2 Y Z2 − Y

∗ −Z2 Z2 − YT

∗ ∗ −2Z2 + YT + Y

⎤

⎥
⎦

⎡

⎢
⎣

x (t − h1)

x (t − h2)

x (t − τ (t))

⎤

⎥
⎦ . (22)

In view of (6), we define

R(t)
�= λi y

T (tkh)�i y (tkh) − eTk (t)�i ek (t) > 0,

(23)

and it is easy to yield that

[
xT (t − τ (t)) eTk (t)

]
[

λi LT
i �i Li λi LT

i �i

∗ (λi − 1) �i

]

[
x (t − τ (t))

ek (t)

]

� 0. (24)

Recall now that Definition 1 of the dissipation, we
denote

T (W1,W2,W3, t) � −eT (t)W1e (t)

− sym
(
eT (t)W2ω (t)

)
− ωT (t)W3ω (t)

+αωT (t) ω (t) . (25)

Then, relying on the conditions (23) and (25), and
substituting (20)–(24) to (18), (19), (23 ), it holds that

E{LV (xt , i, t) + R(t) + T (W1,W2,W3, t)}
≤ E{ξT(t)�̄iξ(t)}, (26)

where

ξT(t) � [x̃T (t) , xT(t − h1), x
T(t − h2), ς

T
1 (t) ,

ςT
2 (t) , xT (t − τ (t)) , eTk (t) , ωT (t)],

�̄i �
[

�̄11i �̄12i

∗ �̄22i

]

,

�̄11i �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�11
11i − S̃Ti W1 S̃i �12

11i �13
11i 6HTZ1 2HT (X12 + X22)

∗ �22
11i �23

11i �24
11i 6Z1 − 2 (X12 − X22)

∗ ∗ �33
11i −2

(
XT
21 − XT

22

)
6Z1

∗ ∗ ∗ −12Z1 + h1�1,i −4X22

∗ ∗ ∗ ∗ −12Z1 + h12�2,i

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�̄22i �

⎡

⎢
⎢
⎣

�11
22i − LT

i D
T
f iW1D f i Li λi LT

i �i − LT
i D

T
f iW1D f i LT

i D
T
f iW2 + LT

i D
T
f iW1Di

∗ (λi − 1) �i − DT
f iW1D f i DT

f iW2 + DT
f iW1Di

∗ ∗ �33
22i − DT

i W1Di

⎤

⎥
⎥
⎦ ,

�̄12i �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

PT
i B̃i + S̃Ti W1D f i Li PT

i D̃i + S̃Ti W1D f i PT
i C̃i + H AT

i

(
h22Z1 + h212Z2

)
Bi − S̃Ti W2 − S̃Ti W1Di

Z2 − Y 0 0

Z2 − Y T 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Then, according to condition (11) and Schur com-
plement, it follows from (26) that,

�̄i < 0,

relying on the conditions (23), one has

E {LV (xt , i, t) + T (W1,W2,W3, t)} < 0. (27)
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Under the zero initial condition, it is readily con-
cluded that for any γ � 0

E
{∫ γ

0
T (W1,W2,W3, t) dt

}

� E
{∫ γ

0
(LV (xt , i, t) + T (W1,W2,W3, t)) dt

}

� 0.

Thus, one can yield that

E
{∫ γ

0
[eT (t)W1e (t) + sym

(
eT (t)W2ω (t)

)

+ωT (t)W3ω (t)]dt
}

� α

∫ γ

0

[
ωT (t) ω (t)

]
dt.

It results that the condition (7) is assured for any
nonzeroω (t) ∈ L2 [0,∞). Furthermore, whenω(t) =
0, according to (27), there exists a scalar a > 0 such
that

LV (xt , i, t) � −ax̃T (t) x̃(t).

Then, following the similar line as the proof of The-
orem 1 in [34], and applying Dynkin’s formula and
Gronwall–Bellman lemma, we have

E
{∫ ∞

0
x̃T (t) x̃(t)dt

}

< ∞.

In this way, the considered system
(
�̃
)
withω(t) =

0 is stochastically stable. Thus, in view of Defini-

tion 1 , the system
(
�̃
)
is strictly (W1,W2,W3) −

α−dissipative, which completes the proof of Theo-
rem 1.

Remark 3 Note that the conditions in (11), (14) and
(15) are not easy to be solved. The main reason is
that they are dependent on the time-varying terms
∑

j∈S πi j (�), and then not line matrix inequalities-
based. In practice, the transition rate πi j (�) of semi-
Markov process can be partly available [7]. Based on
this consideration, as same as that in [7], πi j (�) is

assumed to be in the bound of
[
πd
i j , π

u
i j

]
. As a result, an

assumption on the πi j (�) can be naturally presented:

πi j (�) =
M∑

k=1

χkπi j,k,

M∑

k=1

χk = 1, χk ≥ 0,

(28)

and

πi j,k =

⎧
⎪⎨

⎪⎩

πd
i j + (k − 1)

πu
i j−πd

i j
M−1 , i �= j, j ∈ S,

πu
i j − (k − 1)

πu
i j−πd

i j
M−1 , i = j, j ∈ S

(29)

Having obtained the performance results, we are
now ready to solve the event-triggered filtering prob-
lem. Note that from (11), the filter parameters are cou-
pled with the matrices Pi . A co-design scheme will be
presented, and the dissipative filter parameters and the
event-triggered matrix will be determined simultane-
ously based on Theorem 1.

Theorem 2 For given scalars α, 0 ≤ λi < 1, h2 >

h1 > 0, matrices WT
1 = W1 = −W̄T

1 W̄1 � 0, W2 and
W3 = WT

3 > 0, if there exist real matrices �i > 0,
Gi > 0, Vi > 0, Q1i > 0, Q2i > 0, T > 0, Z1 >

0 and Z2 > 0 of appropriate dimensions such that
(12)–( 13) and the following conditions hold for each
i ∈ S

�̂i,k �
[

�̂11i,k �̂12i

∗ �̂22i

]

< 0, (30)

P̂i �
[
Gi Vi

Vi Vi

]

> 0, (31)

�1,i,k �
∑

j∈S
πi j,k

(
Q1 j + Q2 j

)− T < 0, k = 1, 2, . . . ,M,

(32)

�2,i,k �
∑

j∈S
πi j,k Q2 j − T < 0, k = 1, 2, . . . ,M, (33)

where
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�̂11i,k �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

�̂11
11i,k �̂12

11i,k �̂13
11i �̂14

11i 6Z1 2 (X12 + X22)

∗ sym
(
Â f i

)
+ ∑

j∈S
πi j,kVj 0 0 0 0

∗ ∗ �22
11i �23

11i �24
11i 6Z1 − 2 (X12 − X22)

∗ ∗ ∗ �33
11i −2

(
XT
21 − XT

22

)
6Z1

∗ ∗ ∗ ∗ −12Z1 + h1�1,i,k −4X22

∗ ∗ ∗ ∗ ∗ −12Z1 + h12�2,i,k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�̂12i �

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B̂ f i Li B̂ f i �̂13
12i CT

i W̄
T
1

B̂ f i Li B̂ f i Vi Bi + ĈT
f iW2 −ĈT

f i W̄
T
1

Z2 − Y 0 0 0

Z2 − Y T 0 0 0

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

�̂22i �

⎡

⎢
⎢
⎢
⎢
⎢
⎣

�11
22i λi LT

i �i LT
i D̂

T
f iW2 −LT

i D̂
T
f i W̄

T
1

∗ (λi − 1) �i D̂T
f iW2 −D̂T

f i W̄
T
1

∗ ∗ �33
22i DT

i W̄
T
1

∗ ∗ ∗ −I

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

with

�̂11
11i,k � −4Z1 + Q1i + Q2i + h2T + h22A

T
i Z1Ai

+ h212A
T
i Z2Ai + 2AT

i Gi +
∑

j∈S
πi j,kG j ,

�̂12
11i,k � Â f i + AT

i Vi +
∑

j∈S
πi j,kVj ,

�̂13
11i � −2Z1 − (X11 + X21 + X12 + X22) ,

�̂14
11i � X11 + X21 − X12 − X22,

�̂13
12i � GT

i Bi + AT
i

(
h22Z1 + h212Z2

)
Bi − CT

i W2.

Then the resulting filtering error system
(
�̃
)

is

strictly (W1,W2,W3)−α−dissipative. In this case, the
filtering gains A f i , B f i , C f i , and D f i can be given by

A f i � SV−1
i Â f i S

−1, B f i � SV−1
i B̂ f i ,

C f i � Ĉ f i S
−1, D f i � D̂ f i . (34)

Proof First, sinceπi j (�)=∑M
k=1 χkπi j,k,

∑M
k=1 χk =

1, χk ≥ 0, one can obtain that

M∑

k=1

χk�1,i,k =
M∑

k=1

χk

∑

j∈S
πi j,k

(
Q1 j + Q2 j

)−
M∑

k=1

χkT

=
∑

j∈S

M∑

k=1

χkπi j,k
(
Q1 j + Q2 j

)− T

=
∑

j∈S
πi j (�)

(
Q1 j + Q2 j

)− T = �1,i ,

which implies that �1,i < 0 is satisfied if condition
(32) holds. As a similar way, we can find that �2,i < 0
is also guaranteed if condition (33) holds. Next, let us
prove that conditions (30)–(31) can ensure that condi-
tion (11) is satisfied. To this purpose, we suppose that
exist matrices Pi with the form of

Pi =
[
P1i P2i
PT
2i P3i

]

,

and set Gi
�= P1i , Vi

�= P2i P
−1
3i PT

2i , P3i S
�= PT

2i . It is
readily concluded that

P̂i =
[
Gi Vi
Vi Vi

]

=
[

P1i P2i S
STPT

2i STP3i S

]

> 0.
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Clearly, Pi > 0. Furthermore, define

J
�= diag{I, ST, I, . . . , I

︸ ︷︷ ︸
8

}, and pre- and post-multi-

plying both sides of (11) with J and its transpose,
respectively, it follows from (28) that condition (11)
holds if condition (30) is assured. According to The-
orem 2, it can be concluded that the resulting fil-

tering error system
(
�̃
)
is strictly (W1,W2,W3)-α-

dissipative. This completes the proof.

4 Numerical examples

In this section, two examples are given to illustrate the
effectiveness and improvement of the proposed design
technique. In the first example, we consider a modified
networked semi-Markov jump system, whose parame-
ters are borrowed from [27]. By addressing the same
issue, the less conservative results will be presented
than those in [27]. In the second example, our aim is to
illustrate the applicability of the proposed theoretical
results, and for this end, the state estimation problem
of the networked mass-spring system demonstrated in
Fig. 2 will be taken into account.

Example 1 In this example, we used the Markov jump

system
(
�̃
)
with the following parameters [27]

A1 =
⎡

⎣
−3 1 0
0.3 −2.5 1

−0.1 0.3 −3.8

⎤

⎦ , B1 =
⎡

⎣
1
0
1

⎤

⎦ ,

L1 = [
0.8 0.3 0

]
,C1 = [

0.5 −0.1 1
]
,

A2 =
⎡

⎣
−2.5 0.5 −0.1
0.1 −3.5 0.3

−0.1 1 −2

⎤

⎦ , B2 =
⎡

⎣
−0.5
0.2
0.3

⎤

⎦ ,

L2 = [−0.5 0.2 0.3
]
,C2 = [

0 1 0.6
]
.

Fig. 2 A mass-spring system in Example 2

Table 1 Comparisons of maximum h2 for different methods in
Example 2

Methods λi = 0.1 λi = 0.3 λi = 0.5 λi = 0.7

[27] 0.21 0.09 Unsolvable Unsolvable

Theorem 2 0.47 0.39 0.29 0.17

In order to compare our results with that in [27], we
first set D1 = D2 = 0, D f 1 = D f 2 = 0, h1 = 0.01s
and dissipative-based parameters W̄1 = −1, W2 = 0,
W3 = 0.26, α = 0.1. Then, the designed filter reduces
to the H∞ filter with the same H∞ performance level in
[27]. Let semi-Markov chain β (t) reduces to Markov

chain with the transition matrix � =
[−0.5 0.5

0.3 −0.3

]

.

As stated in Remark 4 in [27], we also set S = I, and
the next example has the same assumption. Table 1 lists
the maximum h2 for the different thresholds λi .

FromTable 1, we can easily get two facts: on the one
hand, the value of h2 reduces with the increasing of λi .
On the other hand, ourmethod can tolerate bigger time-
delay h2 than [27], which means the proposed method
is superior to [27].

Example 2 As mentioned earlier, we consider a net-
worked mass-spring system demonstrated in Fig. 2 in
this example. Referring to [3], where x1 and x2 are two
positions of massed M1 and M2, Kc, K1, K2, K3, K4

are the stiffness of the springs, and c denotes the vis-
cous friction coefficient between the masses and the
horizontal surface. And the plant noise is defined by

ω(t). Denoting xT(t) = [xT1 (t), xT2 (t),
·
x
T

1 (t),
·
x
T

2 (t)],
the state-space realization of the continuous-time semi-
Markov jump system is described by the system (4)
with the following parameters:

Ai =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

−Kc−Ki
M1

Ki
M1

−c
M1

0

Ki
M2

−Ki
M2

0 −c
M2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

, Bi =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0

0

1
M1

0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

,

Ci = [
0 1 0 0

]
, Di = 0,

Li = [
1 0 0 0

]
, i = 1, 2, 3, 4,

where M1 = 1 kg, M2 = 0.5 kg, Kc = 1 N/m, K1 = 1
N/m, K2 = 1.04 N/m, K3 = 1.09 N/m, K4 = 1.13
N/m and c = 0.5 kg/s. In this example, suppose that
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the event-triggered thresholds are λ1 = 0.1, λ2 = 0.3,
λ3 = 0.2, λ4 = 0.3, the transition rates of semi-
Markov chain β (t) in the model are π12(�) ∈ [0, 0.1],
π13(�) ∈ [0.1, 0.2], π14(�) ∈ [0.1, 0.2], π21(�) ∈
[0.15, 0.2], π23(�) ∈ [0.05, 0.1], π24(�) ∈ [0.2, 0.3],
π31(�) ∈ [0.1, 0.3], π32(�) ∈ [0.1, 0.3], π34(�) ∈
[0, 0.1], π41(�) ∈ [0.05, 0.1], π42(�) ∈ [0.05, 0.1],
π43(�) ∈ [0.1, 0.2], (i �= j), whichwill be represented
with a two-vertex polytope in view of Remark 3. The
other parameters are chosen that W̄1 = −1, W2 = 5,
W3 = 15, α = 0.1, h1 = 0.01s and h2 = 1s. By solv-
ing the conditions in Theorem 2, we can get the event-
triggered parameters �1 = 2.3932, �2 = 1.2039,
�3 = 1.7218, �4 = 1.1336, and the filter gains are
given as

A f 1 =

⎡

⎢
⎢
⎢
⎣

−0.9327 0.1442 3.1068 0.0689

0.0565 −0.8701 −0.7473 0.8222

−2.9663 1.2111 −1.2710 0.0950

0.2283 −0.8048 −0.3641 −0.6526

⎤

⎥
⎥
⎥
⎦

,

B f 1 =

⎡

⎢
⎢
⎢
⎣

−0.0425

−0.0217

−0.0080

−0.0233

⎤

⎥
⎥
⎥
⎦

,

C f 1 = [−0.0354 −0.4499 0.2886 0.0468
]
,

D f 1 = 0.0027,

A f 2 =

⎡

⎢
⎢
⎢
⎣

−0.1020 0.0126 0.3001 0.0028

0.0060 −0.0891 −0.0823 0.0886

−0.2860 0.1195 −0.1291 0.0043

0.0274 −0.0868 −0.0299 −0.0729

⎤

⎥
⎥
⎥
⎦

,

B f 2 =

⎡

⎢
⎢
⎢
⎣

−0.0030

−0.0014

−0.0005

−0.0017

⎤

⎥
⎥
⎥
⎦

,

C f 2 = [−0.0264 −0.4093 0.2580 0.0573
]
,

D f 2 = 0.0017,

A f 3 =

⎡

⎢
⎢
⎢
⎣

−0.0493 0.0076 0.1634 0.0018

0.0019 −0.0458 −0.0435 0.0450

−0.1562 0.0666 −0.0670 0.0037

0.0132 −0.0438 −0.0181 −0.0351

⎤

⎥
⎥
⎥
⎦

,

B f 3 =

⎡

⎢
⎢
⎢
⎣

−0.0019

−0.0010

−0.0004

−0.0010

⎤

⎥
⎥
⎥
⎦

,

C f 3 = [−0.0379 −0.4287 0.2762 0.0596
]
,

D f 3 = 0.0023,

A f 4 =

⎡

⎢
⎢
⎢
⎣

−0.0321 0.0061 0.1135 0.0010

0.0006 −0.0307 −0.0286 0.0295

−0.1083 0.0464 −0.0454 0.0040

0.0087 −0.0289 −0.0143 −0.0215

⎤

⎥
⎥
⎥
⎦

,

B f 4 =

⎡

⎢
⎢
⎢
⎣

−0.0012

−0.0006

−0.0002

−0.0006

⎤

⎥
⎥
⎥
⎦

,

C f 4 = [−0.0428 −0.4576 0.3056 0.0535
]
,

D f 4 = 0.0023.

On investigating the performance of the designed
dissipative filter, we assume the initial condition x0 =
[
1.5 −0.5 0.8 −1

]T
, x f 0 = [

0 0 0 0
]T

and the exter-
nal disturbance is

ω (t) =

⎧
⎪⎨

⎪⎩

1
t2+1

, 0 � t � 5s

− 1
t2+1

, 10 � t � 15s
0, otherwise

.

Giving a possible time sequences of the mode jumps
for β (t) as in Fig. 3, the event-triggering release
instants and intervals are shown in Fig. 4, and the
state responses of closed-loop system are depicted in
Fig. 5. Figure 6 shows the filtering error, where the
curve demonstrates the effectiveness of our method.
In addition, on the time interval [0, 50s] and the sam-
pling period h = 0.12 s, only 137 sample data are sent
to the ZOH through a communication network, which
means that the transmission rate of sampled data pack-

t/s
0 10 20 30 40 50

m
od

e

0

1

2

3

4

5

Fig. 3 Semi-Markov jump mode in Example 2
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Fig. 4 Release instants and intervals with an event-triggered
scheme in Example 2
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Fig. 5 State responses with an event-triggered scheme in Exam-
ple 2
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Fig. 6 Filter error with an event-triggered scheme in Example 2

ets (SDPs) defined as the number of successfully trans-
mitted SDPs/the total number of SDPs is 32.9%, and it
is obvious to save the resource utilization via ETS by
67.1% of the total communication resources.

5 Conclusions

In this paper, the problem of co-designing a combined
event-triggered communication scheme and dissipa-
tive filtering for networked control systems with semi-
Markov jumping parameters has been investigated. An
new event-triggeredmechanism has been introduced to

reduce the utilization of network bandwidth. Based on
the Lyapunov–Krasovskii methodology and stochastic
analysis, some sufficient conditions for the stochastic
stability and the strictly dissipativity property of the
resulting filtering error system have been established.
Then, the explicit expression of the desired filter has
been presented by solving a convex optimization prob-
lem. Finally, the effectiveness and superiority of our
method have been demonstrated by a mass-spring sys-
tem and a numerical example. It is noteworthy that all
data package is assumed to be received in real time,
which is difficult to achieve in practice. Therefore,
when event-triggered scheme is adopted, how to relax
such an assumption on the network communication is
a significative question. Besides, the method presented
in this paper is expected to be extended into more com-
plex systems, for example, singular semi-Markov jump
systems, nonlinear semi-Markov jump systems.
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