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Abstract This paper focuses on the transient non-
linear dynamics and targeted energy transfer (TET)
of a Bernoulli–Euler beam coupled to a continuous
bistable nonlinear energy sink (NES). This NES com-
prises a cantilever beam with the partial constrained
layer damping (PCLD) and an end mass controlled by
a nonlinear magnetostatic interaction force. The theo-
retical model of the nonlinear system is built based on
the Lagrange equations and assumed-modes expansion
method. A new parameter system damping ratio is pro-
posed to evaluate the TET efficiencies. Impact experi-
ments are carried out to verify the theoretical model
and mechanisms. The results show that the bistable
NES can achieve high and strongly robust TET effi-
ciencies under broad-range impacts. The shear modu-
lus of the viscoelastic layer, the length of the PCLD
and the end mass have significant influences on TET
efficiencies. Analyses of the TET mechanisms in the
bistable NES show the following: steady transition of
the stable state is an important reason for maintaining
high TET efficiencies; nonlinear beatings can occur
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in high-frequency, fundamental and long-period sub-
harmonic branches; and resonance captures featuring
fundamental and subharmonic also help achieve rapid
energy dissipation.
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1 Introduction

Vibration has large influences on the function, noise
control and reliability of a mechanical system. Pas-
sive vibration control techniques have been chosen
as a primary method in many facilities because of
the advantages of high efficiency and lack of power
consumption. The efficiencies of the traditional linear
vibration absorbers or tuned mass dampers (TMDs)
are restricted by their narrowband and poor robust-
ness [1,2]. A nonlinear approach for vibration suppres-
sion was considered to enable maintain high perfor-
mance with a broader bandwidth under transient exci-
tations. The passive nonlinear targeted energy transfer
(TET) technique utilizes nonlinear mode localization
and internal resonance to irreversibly transfer transient
vibration energy from the primary system to a nonlinear
energy sink (NES) that eventually dissipates the energy
in the NES [3]. The robustness of an NES arises from
the absence of the preferential linear natural frequency
[4]. Research has been extensively investigated the phe-
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nomena and mechanisms of NES [5–7]. Fundamental
TET, subharmonic TET and TET initiated by nonlin-
ear beating are the main mechanisms, and nonlinear
beating along the high-frequency special branches rep-
resents the most efficient mechanism of energy dissi-
pation [8]. Presently, several types of NESs have been
proposed and studied, such as oscillating dissipative
attachments with essentially strong nonlinear stiffness
[9–12], rotational elements [13,14], vibro-impact NES
[15,16] andmagnet-basedNES [17]. Experiments have
been carried out to verify the performance of NESs
[18]. However, a traditional NES has a critical energy
threshold in the transient regime in order to initiate
the nonlinear beating [2,8,18], resulting in only having
high TET efficiency under moderate transient impacts.
Recently, a bistable NES [19,20] was proposed to
breakthrough the limit of the input energy threshold to
maintain high performance of shock mitigation under
a broad range of input energy. To explore the transient
dynamics in a linear system coupled to a lightweight
bistablemass, Romeo et al. [21] carried out a numerical
study and Manevitch et al. [22] presented an analyti-
cal study with the complexification-averaging method
[23]. Both studies focused on the impulsively excited
linear oscillator (LO) to the bistable NES. The results
show that, along with the main regime of 1:1 reso-
nance capture, the superharmonic 1:3 resonance cap-
ture regime can also be realized and thus results in a
strong energy exchange between the LO and bistable
NES. However, the TETmechanisms and the nonlinear
dynamics of the bistable NES need more research and
experimental validations.

At present, a NES consists of a discrete single-
degree-of-freedom (SDOF) nonlinear oscillator and a
viscous damper. The transient dynamic behaviors of the
SDOF NES coupled to a LO have been widely inves-
tigated. The only performance index of absorbers con-
sidered is the percentage of instantaneous total energy
dissipated by the NES. However, this index percentage
cannot reflect the decay rate of vibration energy that
is an important parameter in practice. Recently, Farid
and Gendelman [24] used the relative amount of the
energy left in the system after a given time as an alter-
native index.Moreover, research on theNES composed
of continuous structures is minimal. The bistable con-
tinuous structures were employed as vibration energy
harvesters (VEHs) to achieve good performance under
low-frequency excitations [25]. These VEHs usually
consist of a cantilever beam attached with piezoelec-

tric generators. Most of the relevant literature modeled
the bistable VEH as a SDOF oscillator by consider-
ing the first-order modal of the beam and considered
the primary structures as rigid bodies [25–29]. How-
ever, these modeling methods are not proper for broad-
range and high-frequency vibrations and cannot reveal
the deformation of primary structures.

From the review above, it is important and interest-
ing to study the nonlinear dynamics of a continuous
elastic structure coupled to a continuous bistable NES.
This paper focuses on the transient nonlinear dynamics
and the TET efficiency of a continuous bistable energy
sink coupled to an elastic beam. The NES consists
of a cantilever beam attached with partial constrained
layer damping (PCLD) and a magnetostatic field that
produces an interaction force as the nonlinear restor-
ing force. Based on the Lagrange equations and the
assumed-modes expansion method, the motion differ-
ential equations are established to study the dynamic
behaviors with numerical solutions. Besides the com-
monly used parameter percentage of total energy dissi-
pated by NES, another parameter system damping ratio
is defined to evaluate the TET efficiency. Impact exper-
iments on the structure with different restoring forces
are carried out to validate the theoretical model and the
bistable transition behaviors. Then, the influences of
different PCLD and structure parameters on TET effi-
ciencies are investigated. Finally, this paper analyzes
and summarizes the TET mechanisms of the bistable
NES. There are five sections in this paper. The second
section presents the process to establish the theoretical
model and the analysis method. Impact experiments
and comparisons between the experimental and theo-
retical results are described in Sect. 3. The efficiencies
and mechanisms of the bistable NES are analyzed in
Sect. 4 based on the numerical methods. Finally, we
make conclusions in Sect. 5.

2 Modeling and derivation

2.1 Model description

The related systems are illustrated in Fig. 1. An NES is
coupled to a primary Bernoulli–Euler beam (P-beam).
Boundary conditions of the P-beam can be defined by
its modal functions. The absorber consists of a small
cantilever beam (S-beam) attached with PCLD and an
end mass mt . The magnetostatic interaction force of
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Fig. 1 The model of a monostable/bistable energy sink coupled
to an elastic beam

the permanent magnets provides the nonlinear restor-
ing force for the S-beam. There are two types of con-
figurations: repulsive force and attractive force. Their
modeling methods are identical; thus, only the attrac-
tive force NES is taken into account in the experiments
and analyses. TheS-beam isfixed to theP-beamat point
O1 with a rigid strut whose height is Lc. The other strut
is fixed at point O2 to support the magnets. For attrac-
tive force NES, the two smaller magnets on point O2

are symmetrical to the undeformed S-beam. By mod-
ulating the magnetic forces, the absorber can behave
as a monostable NES or a bistable NES. It is a linear
absorber if the interaction force is zero. The masses of
the struts are mp1 and mp2, respectively. Other para-
meters are labeled in Fig. 1.

2.2 Magnetostatic interaction forces of permanent
magnets

Traditionally, dipole–dipole magnetostatic interaction
equations were used by most of the authors to incorpo-
rate the magnetic coupling induced into the dynamics
of the energy harvesters [25–28]. However, the dipole–
dipole formulation restricts the application within the
sphere of its corresponding assumptions. Vokoun et
al. [30,31] proposed the equations for magnetostatic
forces between cylindrical permanent magnets. Avvari
[32] used these equations to generate multi-stable
states. With parameters labeled in Fig. 2b, the potential
energy is [31,32]

E (D, y) = εμ0M1M2πR2R
2
1

·
∫ ∞

0
J0

(
yq

R1

)
J1 (R2q/R1)

q2
J1 (q)U (D, q) dq

(1)

where ε = −1(ε = 1) denotes the attractive (repul-
sive) force, μ0 is the vacuum permeability μ0 =
4π ×10−7 NA−2, Ri denotes the radiuses of the cylin-
ders, R2 ≤ R1 is assumed,M1 andM2 are the saturation
magnetizations, and J0(·) and J1(·) are the zero-order
and first-order Bessel functions, respectively.U (D, q)

is expressed as [32]

U (D, q) = e−q(d1+d2+D)/R1 + e−qD/R1

− e−q(D+d1)/R1

− e−q(D+d2)/R1

dJ0(x)/dx = − J1(x) and the interaction forces are
obtained by Fy(D, y)= − ∂E/∂y. Therefore, for the
NES of the attractive force configuration, the total force
in the transverse direction is

Fy (D,�) = μ0M1M2πR1R2

·
∫ ∞

0

[
J1

(
(d/2 − �) q

R1

)
− J1

(
(d/2 + �) q

R1

)]

· J1 (R2q/R1)

q
J1 (q)U (D, q) dq (2)

As analyzed in Fig. 3, � denotes the displacement of
the end magnet on a cantilever beam relative to its
undeformed point. Although J0(·) and J1(·) cannot
be accurately expanded with few low-order terms of
the Taylor series (order< 5), we can still accurately fit
the force � curves described by (2) with a function
Fy(D,�) = ε(β1� + β2�

3) + O(�5). Thus,

Fy (D,�) ≈ β1� + β2�
3 (3)

One can use the polynomial fitting method to obtain
parameters β1 and β2. It can be deduced from equation
(2) that the stiffness of β1 and β2 are correlative and
that β1 > 0, β2 < 0.

2.3 Motion equations for NES coupled to an elastic
beam

In engineering, the effectiveness of vibration control
also depends on the damping configurations.Viscoelas-
tic damping is widely adopted in continuous struc-
tures [33]. Constrained layer dampers (CLDs) were
proposed by Edward and Kerwin [34]. The dissipa-
tion mechanisms of CLD mainly arise from the shear
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Fig. 2 Magnetostatic interaction in a dipole–dipole configura-
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Fig. 3 Interaction forces generated by repulsive and attractive
forces

deformation of the viscoelastic layer [33]. PCLD was
proposed by Plunkett and Lee [35] to increase struc-
tural damping.Many researchers used the genetic algo-
rithm method [36], moving asymptotes [37] and evo-
lutionary structural optimization [38] to optimize the
parameters of CLDs and PCLDs. This paper adopted
unilateral PCLD to realize the damping of NES. The
analytical calculations of CLD and PCLD are based
on modal strain energy approaches proposed by Mead
et al. [39,40].

The basic assumptions for the analytical model are
(1) the presence of shear strain in the base and con-
strained layers; the rotary inertia of all layers is neg-
ligible; (2) the presence of only shear stress but no
normal stress in the viscoelastic layer; (3) the strain
is small compared to the structure for both linear and
nonlinear NES; (4) the slipping does not occurs at the
interfaces between layers and the deformations at the
interfaces are continuous; (5) the plane transverse to the
middle layer cross section remains planar during bend-
ing; and (6) the transverse displacements of all layers
are identical. Based on these assumptions, the deforma-
tion patterns of the base beam, viscoelastic layer and
constrained layer are illustrated in Fig. 4.

The geometry functions of displacements are

uc = uv + hv (γ − θ)/2 − hcθ/2

bu

vu

cu

γ

θ

bh

vh

ch
y

x
rw

Fig. 4 Deformation pattern of three layers in PCLD treatment

ub = uv − hv (γ − θ)/2 + hbθ/2 (4)

where subscripts ‘b’, ‘v’ and ‘c’ denote the base beam
of the absorber, the viscoelastic layer and the con-
strained layer, respectively; ub, uv and uc are longitu-
dinal displacements (in x direction) of middle planes;
wr is the transverse displacement of the base beam rel-
ative to point O1 in Fig. 1, and angle θ = ∂wr/∂x ; γ

denotes the angle of the transverse plane of viscoelas-
tic layer relative to its transverse direction; and hb, hv,
and hc represent the heights of the corresponding lay-
ers. Solving Eq. (4) obtains

uv = ub + uc
2

+ hc − hb
4

∂wr

∂x

γ = 1

hv

[
uc − ub + ht

∂wr

∂x

]
, ht = hc+hb+2hv

2
(5)

Assuming that the longitudinal displacement of the P-
beam is negligible, the P-beam has a transverse dis-
placement y(x, t) only. Because the strut connecting
the P-beam and the S-beam is rigid, the displacements
and angles for the two beams should be identical at
point O1. Assuming the displacement at point O1 is
ϕ(t) = y(L0, t), the absolute displacement of the S-
beam is

w (x, t)=wr +ϕ+x sin θ0 ≈ wr +ϕ+x
∂y (L0, t)

∂x
(6)

where x is the distance between the point on the S-beam
and its root O1. For the P-beam, a further assumption is
made that additionalmassmpi are scattered at positions
Lxi .

When the absorber is coupled to the P-beam, the
kinetic energy of the entire system is

T = Tp + Tb + Tv + Tc + Tm (7)
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The subscripts ‘p’ and ‘m’ denote the P-beam and
the end mass mt , respectively. The expressions for
Tp, Tb, Tv, Tc and Tm are shown in Appendix.

The potential energy of the system includes two
parts: the strain energy of structures and the magne-
tostatic potential energy generated by force Fy(D,�)

in Eq. (3). The strain potential energy of the P-beam,
the base beam of absorber and the constrained layer are

Vp = 1

2

∫ L

0
Ep Ip

(
∂2y (x, t)

∂x2

)2

dx

Vb = 1

2

∫ Lb

0

[
EbAb

(
∂ub
∂x

)2

+ Eb Ib

(
∂2wr

∂x2

)2
]
dx

Vc = 1

2

∫ x2

x1

[
Ec Ac

(
∂uc
∂x

)2

+Ec Ic

(
∂2wr

∂x2

)2
]
dx

(8)

where Is, Ib and Ic represent the moment of inertia
across the neutral surface of P-beam, the S-beam and
the constrained layer, respectively, and they are Ib(c) =
bh3b(c)/12, where b is thewidth. The shear strain energy
of the viscoelastic layer is

Vv = 1

2

∫ x2

x1
GvAvγ

2dx (9)

In Eqs. (8) and (9), Ep(b,c) are elastic moduli and Gv

is the shear modulus. These moduli are expressed as
complex formats Ep(b,c) = Ē p(b,c)(1+iηp(b,c)),Gv =
Ḡv(1+ iηv), i2 = −1, where ηp(b,c,v) are loss factors.

The magnetostatic potential energy depends on the
relative motion of magnets. As shown in Fig. 5, the
end point of the undeformed S-beam falls at position
O3. O4 marks this point on the P-beam. After being
deformed, O3, moves to O ′′

3 , while O4 moves to O ′
4,

with a generated relative displacement �= |O ′′
3O

′
4|.

Seriously, |O ′′
3O

′
4|is not a transverse displacement. In

practice, the distance D in Fig. 2b has a small alteration,
and |O ′′

3O
′
4| can be used to approximate this alteration.

According to Eq. (6), � is expressed as

� = w (Lb, t) − y (Lm, t) = wr (Lb, t) + y (L0, t)

+ Lb
∂y (L0, t)

∂x
− y (Lm, t) (10)

Defining y�(t)= y(L0, t)− y(Lm, t), then the magne-
tostatic potential energy generated by force Fy(D,�)

is

Vm =Vm0− 1

2
β1

[
wr (Lb, t)+Lb

∂y (L0, t)

∂x
+y� (t)

]2

− 1

4
β2

[
wr (Lb, t) + Lb

∂y (L0, t)

∂x
+ y� (t)

]4

(11)

in which Vm0 = E(D, 0) is the potential energy when
the system is undeformed. Combining Eq. (5), the total
energy is

V = Vp + Vb + Vv + Vc + Vm + Vst0 (12)

where Vst0 is an artificial parameter added in the equa-
tion that makes the total potential energy zero when
NES is positioned at its stable equilibrium at rest. One
can obtain Vst0 by making V (t → ∞) = 0. For a cer-
tain absorber, Vst0 is a unique constant. If there is only
one stable equilibrium, Vst0 ≡ 0.

This paper adopts the assumed-modes expansion
method to investigate the nonlinear dynamics of
monostable/ bistable NES. With the separation of vari-
ables, displacements are assumed to be

y (x, t) =
ns∑
i

Yi (x) φi (t) = φTY

wr (x, t) =
nw∑
i=1

Wri (x) ηi (t) = ηTWr

ub (x, t) =
nb∑
i=1

Ubi (x) ξi (t) = ξTUb

uc (x, t) =
nc∑
i=1

Uci (x) αi (t) = αTUc (13)

in which Yi (x),Wri (x),Ubi (x) and Uci (x) are modal
shape functions, andφi (t), ηi (t), ξi (t) andαi (t) are the
corresponding time functions of displacements. Then,
letting Y�i = Yi (L0) − Yi (Lm), one obtains y�(t) =∑ns

i Y�iφi (t).
Assuming that the distributed transverse loads

f p(x, t) are applied on the P-beam and that fn(x, t)
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is applied on the S-beam, the generalized forces on the
P-beam and S-beam can be calculated using

Fp (t) =
∫ L

0
f p (x, t)Y (x)dx

Fn (t) =
∫ Lb

0
fn (x, t)Wr (x)dx (14)

Subscript ‘n’ represents the NES or linear absorber.
Usually, the external loads applied on the S-beam are
zero.

The motion equations of the system can be set up
with the Lagrange equations

d

dt

(
∂T

∂q̇i

)
− ∂T

∂qi
+ ∂V

∂qi
= Fi , i = 1, 2, . . . (15)

in which qi denotes the generalized modal coordinates
in (13) and Fi represents the generalized force in (14).
Substituting Eq. (13) into Eqs. (7) and (12) gives the
total kinetic energy and potential energy. Then, we can
calculate the motion differential function of the nonlin-
ear system

Mep̈ (t) + Kep (t)

−β2

[
wr (Lb, t)+Lb

∂y (L0, t)

∂x
+y� (t)

]3
P=Fe

(16)

p (t) =
[
φT ηT ξT αT

]T

Fe = [
Fp (t)T Fn (t)T 0 0

]T
(17)

In Eq. (16), Me and Ke are the generalized mass and
complex stiffness matrices, respectively. Fe is the gen-
eralized excitation force vector. Subscript ‘e’ represents
the ‘entire’ system.p(t) is the time function array of the
displacement.P is an array that represents the influence
of nonlinear elements.

Both Me and Ke are symmetrical block matrices,
as listed in Appendix. Mcφφ represents the coupling
effect. The linear part of themagnetic force is exhibited
in the matrices Kφη and Kηη. If the bistable NES was
not coupled to an elastic beam but was fixed on a rigid
plane, all the terms relevant to y(x, t) in the equations
above are zero. In this situation, the motion differential
equation for the standalone NES can be written as

Mnq̈ (t) + Knq (t) − β2w
3
r (Lb, t)Pn = Fn (t)

q (t) =
[
ηT ξT αT

]T
(18)

Mn and Kn are also presented in Appendix.

2.4 Modal shape functions

Modal shape functions can be determined by boundary
conditions. The P-beam is considered to be a cantilever
beam whose modal shape functions are

Yi (x) = cos gi x − cosh gi x

+ sin gi L − sinh gi L

cos gi L + cosh gi L
(sin gi x − sinh gi x)

(19)

with the eigenfunction cos gL cosh gL = − 1. And
i = 1, 2 . . . n p. Other beams under different boundary
conditions can be considered by choosing propermodal
shape functions. For the S-beam in the absorber, the
modal shape function of the transverse relative motion
has the same form as (19) except the length is Lb. Its
modal shape function of longitudinal motion is

Ub(x) = sin
(2i − 1)πx

2Lb
, i = 1, 2 . . . nb (20)

The constrained layer is considered as a fee-free rod;
therefore,

Uc(x) = cos
(i − 1)πx

x2 − x1
, i = 1, 2 . . . nc (21)

2.5 Damping transfer and definitions of TET
efficiencies

Based on Eq. (16), for the linear system β1 = β2 = 0,
the steady response formula under an excitation Fe =
F̄eeiωt is

[
Ke − ω2Me

]
p̄ = F̄e. Then

p̄ =
[
Ke − ω2Me

]−1
F̄e (22)

substituting (22) into (13) provides the analytical
solution for the steady response of the linear sys-
tem. By comparing the analytical results with the lin-
ear finite element (FE) results, one can determine
the proper DOF numbers for this research: being
np = 5, nw = 6, nb = nc = 2. This part of the content is
presented in Supplementary material. The results also
validate the accuracy of Eq. (22).

However, for the nonlinear NES that β1 �= 0, β2 �= 0,
the solutions for both transient and steady responses
become difficult because the DOF numbers are much
larger than that of the 2DOF discrete oscillators.
Numerical methods are adopted to solve the responses
from the ordinary differential equations in (16) and
(18). Because the imaginary part in the matrix Ke
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makes thenumerical integrationbecomenon-convergent,
we transform the structure damping model into a
viscous damping model with an equivalent method.
Decomposing the stiffness matrices into real and imag-
inary parts,

Ke = Ker + i · KeI, Kn = Knr + i · KnI (23)

The imaginary part represents the damping effect.
Under 1:1 resonance, one obtains

i · KeIp(t) = 1

ω
KeIṗ(t) (24)

Although the equivalent method (24) is under 1:1
resonance, it is also a valid approximation in other
regimes. Under transient impact excitations, the sys-
tem responses are mainly about the first-order natural
frequency though higher-order modal responses still
exist. Thus, one can replace the ω in Eq. (24) with the
first natural frequency ωs1 of the P-beam. Defining the
total damping matrix asCe =KeI/ωs1, then the motion
equation can be expressed as

Mep̈(t) + Ceṗ(t) + Kerp(t)

−β2

[
wr (Lb, t) + Lb

∂y(L0, t)

∂x
+ y�(t)

]3
P = Fe

(25)

A similar treatment to Eq. (18) obtains

Mnq̈(t)+Cnq̇(t)+Knrq(t)−β2w
3
r (Lb, t)Pn=Fn(t)

(26)

Thereafter, the response of the nonlinear system can be
accurately solved with the solver ode23t in MATLAB.

Simplifying expressions in (7) and (12), we obtain

T = 1

2
ṗ(t)TMeṗ(t)

V = 1

2
p(t)TKerp(t) − 1

4
β2�

4 + Vst0 (27)

The energy dissipated by the whole structure Eed and
by absorber End in the time interval (t0, t) is

Eed(t) =
∫ t

t0
ṗ(τ )TCeṗ(τ )dτ

End(t) =
∫ t

t0
q̇(τ )TCnq̇(τ )dτ (28)

Therefore, the percentage of total impulse energy dis-
sipated by the absorber (or energy dissipation percent-
age) can be defined as

rdn = End/(Eed + Vst0) × 100% (29)

However, rdn cannot reflect the decay rate of vibration
energy that is also an important parameter in practice.

As is well understood, the response of a 1DOF lin-
ear oscillator under impact excitation has the form
y(t) = Āe−λωn t sin(ωd t + θ) and ωd = ωn

√
1 − λ2

[41], whereωn is the natural frequency and λ is the crit-
ical damping ratio. For a continuous system, the ampli-
tude follows the same rule. With an analogical method,
the total energy of the NES system can be estimated as

Ee(t) = T + V ≈ ĀEe
−2λωs1t sin(2ωd t + θ) (30)

where ωs1 is the first natural frequency. The term
e−2λωs1t plays the major role in amplitude decay in
Eq. (30). Actually, the total energy can be always fitted
with an exponential expression Ee(t)≈ ĀEe−2λωs1t .
Therefore, one can define λ as the damping ratio of
the entire system that represents the decay rate of the
impact energy. Then, the system damping ratio can be
accurately evaluated when the responses of the system
are calculated. In engineering, not only a large energy
dissipation percentage but also high damping ratios are
needed to protect the primary system.

2.6 Analysis of stable equilibriums

The stiffness of the absorber will increase after the S-
beam is attachedwith thePCLDandbecomes nonlinear
when themagnetostatic force is applied at the end of the
S-beam. The first-order nonlinear stiffness determines
the number of stable equilibriums of the NES.

Firstly, the nonlinear NES coupled to a rigid body
is considered. Assuming that a constant force f̄ (x) is
applied on point Lx , then Fn(t)= fn · s(Lx ), where
fn(x, t)= f̄ (x)δ(x − Lx ), and the array s(Lx )= [Wr1

(Lx ). . .Wrnw(Lx )0. . .0]T. By setting q̈(t) = 0 in
Eq. (26), one obtains q̄ = f̄ · K−1

nr s(Lx ). Therefore,
the deflection at point Lx is w̄r = f̄ · sTK−1

nr s. The
first-order stiffness near the center point is

k̃1 = f̄

w̄r
= 1

sTK−1
nr s

(31)

In practice, the NES is fixed to an elastic deformable
structure. In this situation, the first-order stiffness k1
of NES is smaller than k̃1. With array P and the same
approaches above, the equation is given by

k1 = F̄

w̄
= 1

PTK−1
er P

(32)
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Fig. 6 Testing scheme and experiment setups

For a linear structure β1 = β2 = 0, one obtains the
stiffness of the linear absorber k0 with Eq. (32),
k0 = k1|β1=0. For the pure cantilever beam without
PCLD, its static stiffness is kp0 = 3E I/L3. Because
PCLD increases the stiffness, kp0 is smaller than k0,
and a larger difference would occur for longer PCLD.

For nonlinear structures, the total restoring force
for NES is Fr (t)= k1� − β2�

3 where k1 = k0 − β1.
Therefore, with specified parameters k0 and β1, it is
convenient to determine the stable state of NES based
on k1. As stated before, β1 > 0. If β1 ≤ k0, k1 ≥ 0,
although the magnetostatic force has a negative stiff-
ness, theNES has single stable equilibrium that leads to
a monostable NES. However, if β1 > k0, k1 < 0, there
will be three equilibriums on the occasion a bistable
NES is obtained: the center unstable point and the other
two stable equilibriums.

3 Experiments and comparisons

3.1 Experiment setups and parameters

The laser vibrometer Polytec-PSV-500 is used to mea-
sure the transient responses of the system. The testing
scheme and experiment setup are illustrated in Fig. 6.
Three vibrometers are employed to measure the vibra-
tion velocities at the three points, A, B and C, simulta-
neously. Point A is positioned at the end of the P-beam,
point B is next to the endpoint of the S-beam, and point
C is fixing point O1. The distance between B and C is
0.07 m. The modal hammer-2302 with a rubber head

is used to impact the P-beam at point A. The hammer’s
sensitivity is 2.5mV/N.

The experiment parameters are listed in Table 1.
Other parameters are as follows: the complex modulus
of theviscoelastic layerGv = 3(1+0.1i) MPa; theposi-
tion of the fixing point L0 = |OO1| = 0.19 m, as shown
inFig. 1; and thepositionofPCLD x1 = 0, x2 = 0.03 m,
as shown in Fig. 3. The masses and positions of
the two struts are mp1 = 0.005 kg and Lx1 = L0

and mp2 = 0.016 kg and Lx2 = L0 + Ln. With these
parameters, we can calculate the stiffness of the lin-
ear absorber k̃0 = 454.47 N/m and k0 = 453.26 N/m.
The end mass of the absorber is mt = 0.0156 kg,
R1 = 0.0075 m, R2 = 0.005 m, d1 = 0.012 m, d2 =
0.004 m and d = 0.03 m, as illustrated in Fig. 3. The
saturation magnetizations are M1 = M2 = 12.6 ×
105 A/m.

3.2 Transient response of the cantilever beam coupled
to a bistable NES

Before moving on to the nonlinear system contain-
ing bistable NES, three impact experiments were car-
ried out on the pure P-beam, the P-beam coupled to
a linear absorber and the P-beam coupled to a tradi-
tionalmonostableNES (Test-1 inTable 2), respectively.
These experiments were conducted to verify the theo-
retical model for a linear and monostable NES under
complex inputs and also to validate these parameters
in part 3.1. Because the tested hammer impact forces
contain a ‘double hit,’ the test forces were directly used
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Table 1 Experiment parameters

Material properties Primary beam (P-beam) Base beam of absorber Constrained layer Viscoelastic layer

Elastic modulus (GPa) 70 (1 + 0.01i) 70 (1 + 0.01i) 49 (1 + 0.001i) –

Density ρ (kg/m3) 2700 2700 7500 1000

Height h (m) 0.005 0.001 0.0004 0.00054

Length (m) 0.35 0.08 0.03 0.03

Width b (m) 0.04 0.012 0.012 0.012

Table 2 Additional experimental parameters for nonlinear
restoring force

D (mm) β1 (N/m) β2 × 106 (N/m3) k1 (N/m)

Test-1 11.2 255.83 −0.13654 197.43

Test-2 8.0 551.80 −2.8311 −98.740

Test-3 6.9 715.71 −3.6302 −262.46

as the input signals in the theoretical simulations to
achieve a better comparison between the tests and the-
oretical results. These results are presented in Supple-
mentary Materials.

With the same k0, themodulation of distance D gen-
erates different nonlinear dynamic properties. Addi-
tional parameters of the tests are provided in Table 2.
The first test is monostable NES, and the second and
the third tests are bistable NESs with different first-
order stiffness k1. The fourth-order complex Gaussian
wavelets are adopted in wavelet transforms (WTs).

Figures 7 and 8 illustrate the transient responses of
the system inTest-2 under the impact amplitude of 40N
including the ‘double hit’ effects (as seen in the small
iconography in Fig. 7b. As shown in Fig. 7a, b, the
experimental and theoretical results are consistent in
the initial stage; in the consequent motion, although
they have differences in certain time ranges because
of the frequency difference, the oscillating trends in
the time domain and WTs are the same. A high-order
response appears in the continuousNES, but it is not the
major component. As seen in the theoretical phase dia-
gram of point B, the distance between the two symmet-
rical stable equilibriums is 8.4 mm. However, the un-
centering installation errors in the experiments cause
the experimental phase diagram of point B to be asym-
metrical. The bistable NES generates two jumps from
one stable equilibrium to another one with a subhar-
monic frequency. This paper defines this phenomenon
as the stable state transition. Combining the results of

WTs, the high-amplitude transition generates a 1:2 sub-
harmonic nonlinear beating (during 0–0.3s) that results
in highly efficient TET with a simultaneously rapid
dissipation of energy. After the transition, motions
of bistable NES are captured by one stable equilib-
rium.Additionally, vibrations in the primary systemare
largely weakened, and the 2:3 subharmonic resonance
capture takes places to transfer energy to NES contin-
uously. The subharmonic nonlinear beating observed
in experiments is different from the high-frequency
nonlinear beating occurring in traditional monostable
NES.

In Test-3, both |k1| and |β2| are increased, but the
wave of the impact force is similar to that of Test-2.
As shown in Fig. 9a–c and Fig. 10a, b, the theoreti-
cal results exactly depict the vibration attenuation laws
in this experiment. In (a) (b) (c) Figure 9c, the un-
centering error still exists in the measurements. In this
case, the distance between the two stable equilibriums
increases to 13.8 mm, while the energy needed for the
absorber to transition from one stable state to another
one also increases. Therefore, the bistable NES in Test-
3 only generates one transition under a similar impact.
In the WTs plots, obvious components lower than 10
Hz during 0–0.2 s caused by the nonzero mean value
rather than the vibration are observed. After a tran-
sient 1:1 resonance capture, energy localized in NES
increases enough to drive the NES to transition and
simultaneously bring a strongnonlinear beating follow-
ing the 2:3 subharmonic orbit. During 0.3–1 s, continu-
ous nonlinear beatings take place following the 1:1 res-
onance orbit. These nonlinear beatings generate highly
efficient TET to suppress the vibration of the primary
structure.

The analyses above indicate that the theoretical
model established for continuous NES coupled to the
elastic beam can accurately describe the dynamics of a
linear system,monostableNES and bistableNESunder
complex impacts.
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Fig. 7 Transient response of the system in Test-2. a Response at point A; b response at point B; c phase portraits of point B

Fig. 8 Wavelet transforms of the response displacements in Test-2. a Theoretical results and b experimental results
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Fig. 9 Transient response of the system in Test-3. a Response at point A; b response at point B; c phase portraits of point B
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Fig. 10 Wavelet transforms of the response displacements in Test-3. a Theoretical results and b experimental results

4 TET efficiency and mechanisms

In this section, the TET efficiencies and TET mecha-
nisms of bistable NES are discussed based on the the-
oretical model. Analysis of a large number of impact
force signals generated by a hammer revealed that the
width of a pulse is approximately 0.004 s. Therefore,
the half sinusoidal pulseswith a constantwidth of 0.004
s are used to simulate the impact forces on the P-beam.

4.1 TET efficiency of different absorbers

The TET efficiencies rdn and λ of the linear absorber
are independent on the input pulse. By modulating the
elastic modulus Eb of the S-beam, TET efficiencies
with different stiffness ks0 are illustrated in Fig. 11. The
linear absorber is sensitive to the structure parameters,
leading to poor robustness. Moreover, the parameter
Eb = 70 GPa in the experiments in Sect. 3 is demon-
strated to be the optimal choice for a linear structure
(rdn = 66%, λ = 0.016) attached with a certain PCLD.

To explore the TET efficiency of an NES, a group
of simulations are performed, as listed in Table 3. The
structure parameters in Group 1 are identical with the
parameters in the experiments. In the following con-
tents, the numbers are labeled Gi-S-Nj and Gi-Bi-Nj.
‘Gi’ denotes the i th Group, ‘S-N’ denotes the tra-
ditional monostable NES, and ‘Bi-N’ represents the
bistable NES.

200 400 600 800
40

60

80

r dn
 %

200 400 600 800
0.005

0.01

0.015

 ks0 (N/m)

λ

Fig. 11 TET efficiencies of linear absorbers with different stiff-
ness ks0

For bistable NES, there are two cases with opposite
force directions, as shown in Fig. 12a. Taking G1-Bi-
N2 as an example, Fig. 12b expatiates on the influence

Table 3 Parameters of restoring forces in Group 1

Numbers D (mm) β1 (N/m) β2 × 106 (N/m3) k1 (N/m)

G1-Linear – 0 0 453.26

G1-S-N1 9.85 354.56 −1.8621 98.74

G1-S-N2 9.5 403.19 −2.1044 50.07

G1-S-N3 8.82 453.26 −2.3515 0

G1-Bi-N1 8.37 504.26 −2.6037 −50.0

G1-Bi-N2 8.0 551.80 −2.8311 −98.74

G1-Bi-N3 7.2 666.31 −3.3924 −213.05
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Fig. 12 TET efficiencies of bistable NES in two cases. a Two
directions of excitation force and b TET efficiency

of force directions on the TET efficiencies. Both cases
exhibit the sensitivity to the amplitudes of pulses, and
TET efficiencies follow the same variation rule as a
whole. When 1< F̄ ≤ 5N, case II has higher rdn and λ

because the force in this direction excites a more effi-
cient TET mechanism. When F̄ > 65N, the variation
trends of rdn and λ are different; λ decreases while rdn
maintains a high value as the pulse amplitude increases.
The mean value of the two cases is calculated to evalu-
ate the TET efficiencies of bistable NES in the follow-
ing analyses.

TET efficiencies of different NESs in Group 1 are
illustrated in Fig. 13. Under an extremely high-energy
input (F̄ > 100 N), deformations of the P-beam and S-
beam would exceed the size and linearity limits, which
is not considered in this paper. Because of the weak
robustness of the linear absorber, 85% of the optimal
values (rdn = 56%, λ = 0.0136) are also described.As
shown in Fig. 13a, there is a critical threshold of impact
amplitude, approximately 60 N, for highly efficient
TET for monostable NESs. Under lower impacts, their
efficiencies almost maintain constants and are much
lower than the linear absorbers. In contrast, bistable
NESs do not have the input threshold and can exceed
the optimal efficiencies of the linear absorber in a wide
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Fig. 13 TET efficiencies of different absorbers in Group 1.
a Monostable NES and b bistable NES

impact range through modulating parameters. More-
over, the capacities for vibration attenuation of bistable
NESs can be much better than monostable NESs under
the middle-to-low amplitudes of impacts. The chang-
ing rules of TET efficiencies prove that the variation of
rdn is not consistent with that of λ under higher-energy
input again.

4.2 Influences of structure parameters on TET
efficiencies of bistable NES

We can interpret bistable NESs in terms of the influ-
ences of parameters on TET efficiencies of linear
absorbers. The influences of Gv and hv on the TET
efficiencies of linear absorbers are shown in Supple-
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Fig. 14 TET efficiencies of absorbers in Group 2

mentary Material. From the results, a set of proper
parameter Gv = 6(1 + 0.1i) MPa and hv = 0.25 mm
(suboptimal values) are adopted for the simulations
of the second group of bistable NESs. In this case,
k0 = 489.16 N/m, rdn = 74.73%, λ = 0.0339 for
linear absorber and d2 = 6 mm for nonlinear ones.
The restoring force parameters in Group 2 are listed in
Table 4 in Appendix.

The TET efficiencies of the five absorbers are illus-
trated in Fig. 14. Compared with Group 1, the TET
efficiencies of bistable NESs get enhanced with the
increase in the shear modulus of the viscoelastic layer
and the damping ratios are enhanced much more. Effi-
ciencies of the bistable NES are similar with the opti-
mal linear absorber but are much better than the 85%
of the optimal value. Although the stiffness changed
remarkably, the efficiencies of the bistable NES remain
steadywith different impact amplitudes, indicating that
an optimized NES has strong robustness.

With the parameters of G2-Bi-N2, influences of the
length of PCLD with x1 = 0 are investigated in Group
3. Its parameters are listed in Table 5 in Appendix.
The results in Fig. 15 indicate that the PCLD length
has important influence. Increasing the length will gain
an additional energy dissipation percentage. However,
when the length exceeds 30 mm, rdn remains close
to the upper limit of 80% although the PCLD length
increases greatly. However, continuously increasing
the length still significantly improves λ under small-
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Fig. 15 TET efficiencies of bistable NESs in Group 3

and high-amplitude impacts.Moreover,modulating the
nonlinear stiffness will improve the damping ratio fur-
ther.

With the parameters of G2-Bi-N2, the influences of
the end mass on TET efficiencies of bistable NES are
shown in Fig. 16. The total mass of primary structures
is mpt = mp + mp1 + mp2 = 204.6 g. The mass
ratio is defined as ε = mt/mpt × 100%. Similar to the
monostableNES, there is also a critical threshold for the
small endmass continuous bistableNES (see the region
F̄ < 40N and ε < 4%). Near ε = 5%, rdn reaches
its optimal value, and there is a peak-value interval of
40 < F̄ < 70N for λ. This interval is to the right
of the lowly efficient interval in Group 3, indicating
that modulating the end mass can further optimize the
bistable NES. However, the influences of the end mass
are not monotonous; both rdn and λwill decrease when
ε increases continuously, and λ decreases faster.

In brief, the shear modulus of the viscoelastic layer,
the PCLD length and the end mass of NES have impor-
tant influences on the TET efficiencies of bistable
NESs, and the system damping ratio is more easily
affected.

4.3 TET mechanisms of bistable NES

Because of the strong nonlinearity, the TET mecha-
nisms of bistable NES are much more complicated
than that of the monostable NES. In recent publica-
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Fig. 16 Influences of end mass on TET efficiencies of bistable
NES

tions [21,22], the main regimes considered in the dis-
crete bistable oscillator are 1:1 and 1:3 resonance cap-
tures. Romeo et al. [20] found that the twomainmecha-
nisms in a discrete bistable NES are aperiodic (chaotic)
cross-well oscillations and in-well nonlinear beats. In
this section, nonlinear beating, fundamental and sub-
harmonic resonance capture, and transitions of stable
state are analyzed with examples in Group 1.

Under middle and higher-amplitude pulses, TET
efficiencies of the bistable NES in Group 1 are steady.
In the contents below, the relative displacement of NES
denotes the point on the S-beam to be x = Lb. TheWTs
of displacements and the frequency energy plot (FEP)
of the relative displacement under F̄ = 80 N are illus-
trated in Fig. 17. Smn and Umn (m and n are integers)
are frequency orbits where the main frequency of the
NES is ω = mωs0/n, ωs0 = 60π . This paper decom-
poses S11 into S11+ and S11- but does not decompose
other orbits as [3] did.

As shown in Fig. 17b, TET is initiated by high-
frequency nonlinear beating following special orbits
U65 to U32. Impact energy is transferred from low-
frequency modes to high-frequency modes and is
localized in NES. Therefore, the bitable NES gets a
highly efficient TET. During 0.1–0.35 s, the mecha-
nisms transform from the fundamental resonance cap-
ture along S11+ to subharmonic resonance capture

Escape S13 resonance capture
(Stable transition)

U65

S11+ to S32

S11-

U32
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S15
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Fig. 17 WTs and FEP of G1-Bi-N2 under 80N. a Displace-
ments; bWTs of the displacements; c FEP

along S23. Then, NES escapes from S23 and gener-
ates a steady 1:3 subharmonic resonance capture until
there is no enough energy localized in NES to support
its transition between two stable equilibriums. During
the subharmonic resonance capture, the low-amplitude
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high-frequency vibration of the primary system drives
the bistable NES to generate a high-amplitude low-
frequency (HALP) response. Simultaneously, the high
strain energy will dissipate the impact energy. The two
stable equilibriums attract the bistable NES generat-
ing steady transitions with higher amplitudes than the
monostable ones.

When the impact energy decreases, the frequency of
nonlinear beating is also reduced from high-frequency
branches to 1:1 orbits. However, when the pulse ampli-
tudes are lower than the critical threshold ofmonostable
NES, the TET mechanism of monostable NES is 1:1
resonance capture along the orbit S11-, and nonlinear
beatings disappear [3]. In contrast, bistable NES can
still generate subharmonic responses because of the
stable state transition. However, if the motions are cap-
tured by one stable state, the mechanisms will change.

Taking F̄ = 41N as an example, results are shown in
Fig. 18. In the initial stage before 0.1 s, energy transfer
is initiated by a transient 1:1 fundamental resonance

Nonlinear beating
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Fig. 18 Displacements and WTs of G1-Bi-N2 under 41 N. a
Displacements and b WTs of displacements

Fig. 19 WTs of G1-Bi-N2 under case II F= 5 N (case I F= −
5 N is presented in Supplementary material)

capture rather than the nonlinear beating. However,
during 0.1–0.4 s, the bistable NES behaves as a HALP
subharmonic response following S23 to S12; this is not
the resonance capture but a long period of subharmonic
nonlinear beating with the primary structure, mak-
ing the energy irreversibly localized in bistable NES.
Subsequently, another beating occurs along branch
S13. The frequency of monostable NES monotonously
decreases with energy. However, for a bistable NES,
when the motions are captured by single stable equi-
librium after 0.6 s, the responses of NES transfer from
orbit S13 to S12, implying that the resonant frequency
increases but the energy decreases. Figure 17c also
illustrates this abnormal non-monotonic phenomenon.

Under small impacts, the NES motions are captured
by single stable equilibrium. This situation is identi-
cal with that of the energy in NES attenuates from the
transition to being captured by a stable equilibrium as
shown above. Taking F= 5N as an example, it gener-
ates a highly efficient long period of 1:2 subharmonic
nonlinear beating, as illustrated in Fig. 19. Because the
impact direction has influence on the TET efficiency
in this case, F= − 5N results in lower efficiencies
because the bistable NES under F= − 5N only gener-
ates a lowly efficient 1:1 resonance capture along orbit
S11-, as shown in Fig. S7 See SupplementaryMaterial.
Under micro-impacts (F ≤ 1 N), bistable NES behaves
with similar dynamics with the linear absorber that
generates a 1:1 beating along S11-, as shown in Fig.
S8 See Supplementary Material. Therefore, different
from traditional monostable NES, the orbit S11- is not
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Fig. 20 Displacements and phase diagram of G1-Bi-N2 for
F= − 43 N

always a lowly efficient orbit for TET. Furthermore, a
1:1 resonance under low energy may not always exist.
It depends on the parameters of NES and impact forces.

The work has analyzed the steady transition behav-
iors.However, for non-optimizedbistableNES, because
of the sensitivities to impact force, an unstable tran-
sition may appear. As shown in Fig. 20, before 0.5 s,
there is 1:1 resonance, but the NES oscillates between a
stable equilibrium and the unstable equilibrium. This is
the unstable transition. Therefore, under amoderate-to-
high impact, if unstable transition occurs in the initial
stage of TET, the vibration attenuation efficient will be
low. Subharmonic steady transition appears after 0.5 s,
and then, the vibration of the primary beam is rapidly
suppressed.

Based on the simulations above, the TET mecha-
nisms of bistable NES are classified below.

1. Fundamental TET (S11+ and S11-)

3.1 Fundamental nonlinear beating 
(beating along the orbit S11-). Occurs 
in the motions that captured by a 
stable equilibrium

2. Subharmonic resonance capture TET

3.2 Subharmonic nonlinear beating 
along the branches Smn, m<n

3.3 Nonlinear beating along the high 
frequency branches Umn, m≥n. 
(occurs in the steady transition mo-
tions between the two stable equilib-
riums)

4. Unstable transition in initial stage

3. TET 
initiated by 
nonlinear 
beating

5 Conclusions

The investigated continuous system consists of a
Bernoulli–Euler beam coupled to a continuous bistable
NES.TheNEScomprises a cantilever beamwithPCLD
and an end mass controlled by a nonlinear magnetosta-
tic interaction force.Bothmonostable and bistableNES
can be achieved by modulating the nonlinear restor-
ing force. This paper focuses on the transient nonlinear
dynamics and TET efficiencies.

(1) The motion differential equations of the system
are established based on the Lagrange equations
and assumed-modes expansion method. In addi-
tion to the energy dissipation percentage, a new
index system damping ratio is proposed for evalu-
atingTET efficiencies. The respectivemean values
of the two efficiency parameters in two opposite
impact directions are calculated. Changing rules of
the two parameters are not consistent, especially
under large amplitude impacts.

(2) Impact experiments on the linear absorber,
monostable NES and bistable NES are gradually
carried out to verify the theoretical model. The
transition of the stable state, resonance capture
and subharmonic nonlinear beating are observed in
experiments. There are also high-order responses.

(3) The monostable NES has to breakthrough a crit-
ical energy threshold to generate highly efficient
TET.BistableNEScan achievehighly efficient and
strongly robust TET under broad-range impacts.
Efficiencies of bistable NESs are similar with the
corresponding optimized linear absorber but are
much better than the 85% of the optimal value.
The impact directions influence the local but not
the global properties ofTETefficiencies. The shear
modulus of the viscoelastic layer, the length of
PCLD and the end mass have great influences on
the TET efficiencies of bistable NESs, and the sys-
tem damping ratio is more easily affected.

(4) TET mechanisms in bistable NES are complex;
nonlinear beating that achieves highly efficient
irreversible TET can occur in high-frequency,
fundamental and long-period subharmonic orbits.
Resonance captures featuring fundamental and
subharmonic also help achieve rapid energy dissi-
pation. The steady transition of the stable state is an
important reason formaintaining high efficiencies.
However, an unstable transition may result in low
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capacity for vibration attenuation. Furthermore,
NES frequencies would not decrease monoto-
nously with decreasing energy when motions are
captured by a stable equilibrium.

We perform the conclusions about the mechanisms
based on abundant numerical results (partially pre-
sented in this paper). An analytical proof would also
be necessary to prove the results made in this study.
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Appendix

The kinetic energies of different parts can be expressed
as

Tp = 1

2

∫ L

0

[
ρp Ap +

∑
i

m pi δ (x − Lxi )

](
∂y (x, t)

∂t

)2

dx

Tb = 1

2

∫ Lb

0
ρb Ab

[(
∂wr

∂t
+ϕ̇+x

∂2y (L0, t)

∂x∂t

)2

+
(

∂ub
∂t

)2
]
dx

Tv + Tc = 1

2
(ρv Av + ρc Ac)

·
∫ x2

x1

(
∂wr

∂t
+ ϕ̇ + x

∂2y (L0, t)

∂x∂t

)2

dx

+ 1

2

∫ x2

x1

(
ρv Av

(
∂uv

∂t

)2

+ ρc Ac

(
∂uc
∂t

)2
)
dx

Tm = 1

2
mt

(
∂wr (Lb, t)

∂t
+ ϕ̇ + Lb

∂2y (L0, t)

∂x∂t

)2

+ 1

2
mt

(
∂ub (Lb, t)

∂t

)2

+ 1

2
Jt

(
∂2wr (Lb, t)

∂x∂t

)2

where Jt is the end mass’s moment of inertia relative
to the axis oz in Fig. 2b, Jt = mt R2

1/4 + mtd21/12.
The elements in the generalized mass matrix and

generalized complex stiffness matrix are listed below.

Me =

⎡
⎢⎢⎣
Mφφ + Mcφφ Mφη 0 0

MT
φη Mηη Mηξ Mηα

0 MT
ηξ Mξξ Mξα

0 MT
ηα MT

ξα Mαα

⎤
⎥⎥⎦

Ke =

⎡
⎢⎢⎣
Kφφ Kφη 0 0
KT

φη Kηη Kηξ Kηα

0 KT
ηξ Kξξ Kξα

0 KT
ηα KT

ξα Kαα

⎤
⎥⎥⎦

Table 4 Parameters of restoring forces in Group 2

Numbers D (mm) β1 (N/m) β2 × 106 (N/m3) k1 (N/m)

G2-S-N 9.16 490 −2.0729 0

G2-Bi-N1 7.5 721 −3.3828 −231.84

G2-Bi-N2 7.2 775.54 −3.6324 −286.384

G2-Bi-N3 7 814.22 −3.8093 −325.064

G2-Bi-N4 6.8 854 −3.9952 −364.84

Table 5 Parameters for Group 3

x2 (mm) k0 (N/m) k1 (N/m) β2 × 106 (N/m3)

G3-Bi-N1 15 429.49 −346.054 −3.6324

G3-Bi-N2 20 444.76 −330.784 −3.6324

G2-Bi-N2 30 489.16 −286.384 −3.6324

G3-Bi-N3 40 547.4 −228.144 −3.6324

G3-Bi-N4 45 578.38 −197.164 −3.6324

G3-Bi-N5 45 854 −275.62 −3.9952

Mφφ,i j =
∫ L

0
ρp ApYiY jdx+

∑
k

m pkYi (Lk)Y j (Lk),

i, j = 1, 2 . . . n p

Mcφφ,i j =
∫ Lb

0
ρb Ab[Yi (L0) + xY ′

i (L0)]
· [Y j (L0) + xY ′

j (L0)]dx + (ρc Ac + ρvAv)

·
∫ x2

x1
[Yi (L0) + xY ′

i (L0)][Y j (L0) + xY ′
j (L0)]dx

+mt [Yi (L0) + LbY
′
i (L0)][Y j (L0) + LbY

′
j (L0)],

i, j = 1, 2 . . . n p

Mφη,i j =
∫ Lb

0
ρb Ab[Yi (L0) + xY ′

i (L0)]Wr j (x)dx

+
∫ x2

x1
(ρvAv+ρc Ac)[Yi (L0)+ xY ′

i (L0)]Wr j (x)dx

+mt [Yi (L0) + LbY ′
i (L0)]Wr j (Lb),

i = 1, 2 . . . n p, j = 1, 2 . . . nw

Mηη,i j =
∫ Lb

0
ρb AbWriWr jdx

+
∫ x2

x1
(ρvAv + ρc Ac)WriWr jdx

·
∫ x2

x1
ρvAv

(hc − hb)2

16
W ′

riW
′
r jdx

+mtWri (Lb)Wr j (Lb) + JtW
′
ri (Lb)W

′
r j (Lb),

i, j = 1, 2 . . . nw
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Mηξ,i j = 1

8

∫ x2

x1
ρvAv(hc − hb)W

′
riUbjdx,

i = 1, 2 . . . nw, j = 1, 2 . . . nb

Mηα,i j = 1

8

∫ x2

x1
ρvAv(hc − hb)W

′
riUcjdx,

i = 1, 2 . . . nw, j = 1, 2 . . . nc

Mξξ,i j =
∫ Lb

0
ρb AbUbiUbjdx

+ 1

4

∫ x2

x1
ρvAvUbiUbjdx + mtUbi (Lb)Ubj (Lb),

i, j = 1, 2 . . . nb

Mξα,i j = 1

4

∫ x2

x1
ρvAvUbiUcjdx,

i = 1, 2 . . . nb, j = 1, 2 . . . nc

Mαα,i j =
∫ x2

x1

(
ρc Ac + 1

4
ρvAv

)
UciUcjdx,

i, j = 1, 2 . . . ncKφφ,i j =
∫ L

0
Ep IpY

′′
i Y

′′
j dx

−β1
(
Y�i + LbY

′
i

) (
Y� j + LbY

′
j

)
,

i, j = 1, 2 . . . n p

Kφη,i j = −β1
(
Y�i + LbY

′
i

)
Wr j (Lb),

i = 1, 2 . . . n p, j = 1, 2 . . . nw

Kηη,i j =
∫ Lb

0
Eb IbW

′′
riW

′′
r jdx +

∫ x2

x1
Ec IcW

′′
riW

′′
r jdx

+
∫ x2

x1

GvAv

h2v
h2t W

′
riW

′
r jdx − β1Wri (Lb)Wr j (Lb),

i, j = 1, 2 . . . nw

Kηξ,i j = −
∫ x2

x1

GvAv

h2v
htW

′
riUbjdx,

i = 1, 2 . . . nw, j = 1, 2 . . . nb

Kηα,i j =
∫ x2

x1

GvAv

h2v
htW

′
riUcjdx,

i = 1, 2 . . . nw, j = 1, 2 . . . nc

Kξξ,i j =
∫ Lb

0
EbAbU

′
biU

′
bjdx+

∫ x2

x1

GvAv

h2v
UbiUbjdx,

i, j = 1, 2 . . . nb

Kξα,i j = −
∫ x2

x1

GvAv

h2v
UbiUcjdx,

i = 1, 2 . . . nb, j = 1, 2 . . . nc

Kαα,i j =
∫ x2

x1
Ec AcU

′
ciU

′
cjdx+

∫ x2

x1

GvAv

h2v
UciUcjdx,

i, j = 1, 2 . . . nc

Pi =
⎧⎨
⎩

(Y�i + LbY ′
i ) f or i = 1, 2 . . . n p

Wri (Lb) f or i = n p + 1, . . . n p + nw

0 others

Mn =
⎡
⎣
Mηη Mηξ Mηα

MT
ηξ Mξξ Mξα

MT
ηα MT

ξα Mαα

⎤
⎦ ,

Kn =
⎡
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Kηη Kηξ Kηα
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ηξ Kξξ Kξα

KT
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ξα Kαα
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⎦
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