
Nonlinear Dyn (2017) 87:2541–2562
DOI 10.1007/s11071-016-3210-6

ORIGINAL PAPER

The distinct stochastic and deterministic dynamics between
period-adding and period-doubling bifurcations of neural
bursting patterns

Yuye Li · Huaguang Gu

Received: 6 October 2016 / Accepted: 12 November 2016 / Published online: 23 November 2016
© Springer Science+Business Media Dordrecht 2016

Abstract Period-adding bifurcations and period-
doubling bifurcations of neural firing patterns, which
were both observed in the biological experiment on a
neural pacemaker and simulated in a theoretical model
(Chay model), manifested different stochastic dynam-
ics near the bifurcation points. For period-adding bifur-
cations, a noise-induced stochastic bursting, whose
behavior is stochastic transition between period-k and
period-(k + 1) bursts, lying between period-k and
period-(k + 1) burstings (k = 1, 2, 3). For period-
doubling bifurcations, period-1 bursting is changed to
period-2 bursting firstly and then to period-4 burst-
ing. No stochastic firing patterns similar to those lying
in the period-adding bifurcation were detected. Using
the method of the fast–slow variables dissection, the
deterministic burstings in both period-adding bifurca-
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tion and period-doubling bifurcation are classified into
“fold/homoclinic” bursting with a saddle-node point
and a saddle-homoclinic point, which behaves as a
critical phase sensitive to noisy disturbance. For the
bursting pattern near the period-doubling bifurcation
point, the trajectory of burstings is far from the saddle-
homoclinic point. Near the period-adding bifurcation
points fromperiod-k to period-(k+1) burstings, the tra-
jectories of the bursting patterns pass through the neigh-
borhood of the saddle-homoclinic point and exhibit a
platform. The platform appears after the k-th spike for
the period-k bursting and between the k-th spike and
the (k + 1)-th spike for the period-(k + 1) bursting.
For some bursts of period-k bursting, noise can induce
a novel spike near the platform to form a burst with
k + 1 spikes, and for some bursts of period-(k + 1)
bursting, the last spike can be terminated by noise to
form a burst with k spikes. It is the cause that the sto-
chastic bursting whose behavior is stochastic transition
between period-k burst and period-(k + 1) burst is
induced by noise, and the stochastic transition hap-
pens within or near the platform, i.e., the neighborhood
of the saddle-homoclinic point. More detailed transi-
tion dynamics can be explained by the stable/unstable
manifold of the saddle point. The underlying deter-
ministic dynamics between period-adding and period-
doubling bifurcation points that can lead to distinct sto-
chastic dynamics are identified, which are helpful for
understanding the roles of noise and provide critical
phase to apply control strategy to modulate the firing
patterns.
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1 Introduction

In the nervous system, information is encoded into var-
ious firing patterns including bursting or spiking pat-
terns. The nonlinear dynamics of different firing pat-
terns and transition regularities between different firing
patterns are of fundamental importance to the under-
standing of the neural coding [1–4]. In the last three
decades, the transition processes of neural firing pat-
terns have been identified with the help of the bifur-
cation theory. Many bifurcation scenarios of neural
firing patterns have been simulated in the theoreti-
cal models and observed in the biological experiments
[5–17]. These bifurcation scenarios include transitions
from period-1 bursting to period-1 spiking with sim-
ple or complex processes, period-adding bifurcations
of bursting patterns, and period-doubling bifurcations
of firing patterns. Based on these bifurcation processes,
the framework of relationships between periodic and
chaotic firing patterns in the parameter space is pro-
vided [3,18–21].

Period-addingbifurcation andperiod-doublingbifur-
cation, both as the representatives of the neural firing
pattern transition process, exhibit different stochastic
dynamics near bifurcation points [22–28]. When noise
is introduced, period-adding bifurcation from period-
k bursting to period-(k + 1) bursting (k = 1, 2, 3)
directly in the deterministic Chay model is changed
into period-adding bifurcation with stochastic bursting
in the stochastic Chay model [25]. The noise-induced
stochastic bursting lies between period-k bursting and
period-(k + 1) bursting, and the behavior of the sto-
chastic bursting exhibits stochastic transitions between
period-k burst and period-(k + 1) burst (k = 1, 2, 3).
The intervals between continuous period-k or period-
(k + 1) bursts exhibit multimode characteristics (k =
1, 2, 3) similar to those of the interspike interval (ISI)
of the integer multiple bursting caused by coherence
resonance (CR) [25]. In the stochastic Chay model,
the processes of period-doubling bifurcation remain
unchanged and are still from period-1 bursting, to
period-2 bursting, and to period-4 bursting, except that
the ISIs of period-1, 2, and 4 burstings are disturbed by
noise. Period-adding bifurcation and period-doubling

bifurcation processes observed in the biological exper-
iments on a neural pacemaker closely matched those
simulated in the stochastic Chay model.

What’s the cause that can induce distinct stochastic
dynamics between the period-adding bifurcation and
period-doubling bifurcation processes? The answer is
helpful to further identify the dynamics of the firing pat-
terns lying in the period-adding bifurcation and the dif-
ference between firing patterns near period-adding and
doubling bifurcation points. This paperwill answer this
question using the dissection of the fast and slow vari-
ables to the bursting patterns. The dynamical system
of neuronal model with bursting patterns can always
be divided into a fast subsystem and a slow subsys-
tem. The three-dimensional neuronal system such as
the Chay model and the HRmodel is the representative
systems with bursting patterns [8,12,19,20,23,24,29–
34]. There exist only two behaviors in the fast subsys-
tem being of a two-dimensional system, resting state
and spiking, when one-dimensional slow variable is
chosen as the bifurcation parameter. The firing patterns
of the dynamical system can be classified into bursting
or spiking pattern by the bifurcation structures of the
fast subsystem combined with the trajectory of the fir-
ing patterns. The firing pattern is suggested as spiking
pattern if the trajectory does not pass through the rest-
ing state of the fast subsystem and only circles around
the trajectory of spiking of the fast subsystem, or is
thought to be bursting pattern if the trajectory transits
between the resting state and spiking of the fast subsys-
tem. According to two bifurcations within the bursting
pattern, one from the resting state to spiking of the fast
subsystem, and the other from the spiking to the resting
state, bursting patterns can be classified into different
kinds, as proposed by Rinzel or Izhikevich [7,10,35].
For example, type I bursting proposed by Rinzel et al.
is named as “fold/homoclinic” bursting by Izhikevich.
The transition from the resting state to spiking is via a
fold bifurcation of the equilibrium points, and the tran-
sition from spiking behavior to resting state is via a
saddle-homoclinic (abbreviated as SH) orbit of the fast
subsystem.

In the present study, the bursting patterns lying in
the period-adding bifurcation processes and period-
doubling bifurcation processes in the deterministic
Chay model are identified to be “fold/homoclinic”
bursting. Near the period-adding bifurcation point, the
trajectory of the bursting passes through a critical point
of the fast subsystem, a SH point. The SH point is a
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critical point near which a suitable perturbation can
induce two behaviors, either resting state or a spike.
For the period-k bursting, some period-k bursts can
change to period-(k + 1) bursts due to that suitable
noisy disturbance near the critical phase can induce
a spike (k = 1, 2, 3). For the period-(k + 1) bursting,
someperiod-(k+1) bursts can change to period-k bursts
due to that suitable noisy disturbance near the critical
phase (k = 1, 2, 3) can terminate the last spike. More
detailed transition dynamics can be explained by the
stable/unstable manifold of the saddle point of the fast
subsystem. It is the cause that the appearance of the
stochastic bursting whose behavior is stochastic transi-
tion between period-k burst and period-(k + 1) burst
(k = 1, 2, 3). Near the period-doubling bifurcation
point, the trajectory of bursting does not pass through
the SH point. No novel noise-induced firing patterns
can be detected near the period-doubling bifurcation
points.

The rest of paper is organized as follows. Section 2 is
the experimental model and results. Section 3 presents
the theoretical model, and simulation results of the
period-addingbifurcation andperiod-doublingbifurca-
tion processes. Section 4 is the identification of dynam-
ics of deterministic bursting patterns with fast–slow
dissection method. Section 5 presents the dynamics of
stochastic bursting patterns near period-adding bifur-
cation points and the distinction to the period-doubling
bifurcations. Section 6 is discussion and conclusion.

2 Experimental model and results

2.1 Experimental model

Experimental pacemaker is formed at the injured site
of rat sciatic nerve subjected to chronic ligature and
has been widely used to investigate the spontaneous
pain and nonlinear dynamics—such as the bifurcations
and chaos—of the neural firing patterns.Male Sprague-
Dawley rats (200–300g) were used and treated in strict
accord with institutional protocols. All experiments
were approved by the university biomedical research
ethics committee. Surgical operation to produce the
pacemaker was performed at anesthetized state with
pentobarbital sodium (40mg/kg, i.p.; supplemented as
necessary) [36]. After a survival time of 8–12days, the
previously injured site was exposed and perfused con-
tinuously with 34 ◦CKreb’s solution. The spontaneous

spike trains of individual fibers ending at the injured site
were recordedwith aPowerLab system (Australia)with
a sampling frequency being 10.0kHz. Meanwhile, the
spike trains were monitored with the PowerLab system
during the experiment to make sure that the recording
is of a single unit. The time intervals between the max-
imal values of the successive spikes were calculated as
ISI series. The experimental protocol was described in
detailed in our previous studies [11,21].

2.2 Experimental results

Both period-adding bifurcations and period-doubling
bifurcationswere observed in the neural pacemakers, as
extra-cellular calcium concentration ([Ca2+]o) of the
perfusion fluid was gradually decreased from 1.2 to
0mmol.

2.2.1 Difference between period-adding bifurcation
and period-doubling bifurcation from period-1
bursting to period-2 bursting

The process of a period-adding bifurcation scenario
with stochastic bursting was from period-1 bursting, to
stochastic bursting, to period-2 bursting, as shown in
Fig. 1(a1), while a process of the period-doubling bifur-
cation scenario was from period-1 bursting to period-
2 bursting directly, as shown in Fig. 1(a2). The spike
trains of the period-1 bursting, the stochastic bursting
lying between period-1 bursting and period-2 bursting,
and period-2 bursting lying in the bifurcation process
shown in Fig. 1(a1) are depicted in Fig. 1(b1)–(d1),
respectively. The spike trains of the period-1 bursting,
period-2 bursting near period-1 bursting, and period-2
bursting far from period-1 bursting lying in the bifur-
cation process depicted in Fig. 1(a2) are illustrated in
Fig. 1(b2)–(d2), respectively.

2.2.2 Period-adding bifurcation

The transition from period-1 bursting to period-2 burst-
ing shown in Fig. 1(a1) lay in a period-adding bifurca-
tion scenario with a process from period-1 bursting,
to stochastic bursting, to period-2 bursting, to stochas-
tic bursting, to period-3 bursting, to stochastic burst-
ing, and to period-4 bursting, as shown in Fig. 2a.
Figure 1(a1) is a part of Fig. 2a. The spike trains of
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Fig. 1 Bifurcations and
firing patterns observed in
the experimental neural
pacemakers when [Ca2+]o
was decreased.
Bifurcations: (a1)
period-adding bifurcation
with stochastic bursting;
(a2) period-doubling
bifurcation; spike trains:
(b1) period-1 bursting of
panel (a1); (b2) period-1
bursting of panel (a2); (c1)
stochastic firing patterns
lying between period-1
bursting and period-2
bursting of panel (a1); (c2)
period 2-bursting near
period-1 bursting of panel
(a2); (d1) period-2 bursting
of panel (a1); (d2) period
2-bursting far from period-1
bursting of panel (a2)

(a1) (a2)

(b2)(b1)

(c1) (c2)

(d2)(d1)

the stochastic bursting lying between period-2 burst-
ing and period-3 bursting, period-3 bursting, the sto-
chastic bursting lying between period-3 bursting and
period-4 bursting, and period-4 bursting were depicted
in Fig. 2b–e, respectively.

2.2.3 Period-doubling bifurcation

Period-doubling bifurcation, which is from period-1
bursting to period-2 bursting shown in Fig. 1(a2), lay
within a period-doubling bifurcation scenario to chaos,

123



The distinct stochastic and deterministic dynamics 2545

Fig. 2 a Period-adding
bifurcation with stochastic
bursting observed in an
experimental neural
pacemaker as [Ca2+]o was
decreased from 1.2 to
0mmol. Spike trains; b
stochastic firing patterns
lying between period-2
bursting and period-3
bursting; c period-3
bursting; d stochastic firing
patterns lying between
period-3 bursting and
period-4 bursting; e
period-4 bursting

(a)

(b) (c)

(e)(d)

as shown in Fig. 3a. The process was from period-1
bursting, to period-2 bursting, to period-4 bursting, and
to chaotic bursting. The spike trains of the period-4
bursting are depicted in Fig. 3b.

In the present study, the dynamics of the period-
adding and period-doubling bifurcation points from
period-1 bursting to period-2 bursting and the firing
patterns lying between period-1 bursting and period-2
bursting were studied particularly.

3 Theoretical model and simulation results

3.1 Chay model

Chaymodel [8,9,37] contains the ionic channel dynam-
ics based on Hodgkin–Huxley model and is verified to
be closely relevant to the experimental neural pace-
maker [11,25]. It contains the following three simulta-
neous differential equations given as follows:
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Fig. 3 a Period-doubling
bifurcation observed in an
experimental neural
pacemaker as [Ca2+]o was
decreased; b spike trains of
period-4 bursting

(a) (b)

dV

dt
= gIm

3∞h∞(vI − V ) + gkvn
4(vk − V )

+ gkc
C

1 + C
(vk − V ) + gl(vl − V ) (1)

dn

dt
= n∞ − n

λn(αn + βn)
(2)

dC

dt
= ρ(m3∞h∞(vc − V ) − kcC) (3)

Here, t is the time (the independent variable). The
dependent variables are V (the membrane potential),
C (the dimensionless intracellular concentration of cal-
cium ion), and n (the probability of potassium channel
activation). vk, vI , vl , and vc are the reversal poten-
tials for K+, mixed Na+–Ca2+, leakage ions, and Ca2+
respectively; gI , gkv , gkc, and gl are, respectively, the
maximal conductance divided by themembrane capac-
itance; kc is the rate constant for the efflux of intracel-
lular Ca2+ ions. τn is the relaxation time of the voltage-
gatedK+ channel; and ρ is a time constant which deter-
mines how fast C changes with respect to time. n∞ is
the steady-state value of n; h∞ and m∞ are the proba-
bilities of activation and inactivation of themixed chan-
nel. The explicit expressions for m∞, h∞, n∞, and τn
are given in the previous description [8,9,37].

When a stochastic factor, a Gaussian white noise,
ξ(t), reflecting the fluctuation in the real nervous sys-
tem, is directly added to the right hand of Eq. (1)
with other two equations unchanged, the stochastic
Chay model is then formed. The stochastic factor pos-
sesses the statistical properties as <ξ(t)> = 0 and
<ξ(t)ξ(t ′)> = 2Dδ(t−t ′), where D is the noise inten-
sity, reflecting the degree of noise fluctuation. δ(·) is the
Dirac δ-function. The simulation results of the dynam-
ics of stochastic firing patterns are qualitatively similar
if noise is added to Eqs. (1) or (3) (not shown here).

In the present paper, the parameter values are vI =
100mV, vk = −75mV, vl = −40mV, gl = 7mS,
gI = 1800mS, kc = 3.3/18, ρ = 0.27. The deter-
ministic and stochastic Chay models are solved by
Mannella numerical integrate method [38] with inte-
gration time step being 10−4 s. Upstrokes of the volt-
age reached the amplitude −25.0mV are counted as
spikes.

3.2 Period-adding bifurcation simulated in the Chay
model

In the present paper, the period-adding bifurcation
process is simulated when λn = 1

τn
= 215, gkv =

1400mS, and gkc = 27mS.
In the deterministic Chaymodel, when vc is changed

from 108 to 20mV, the behavior of the firing patterns is
changed fromperiod-1bursting, to period-2 bursting, to
period-3 bursting, and to period-4 bursting directly, as
shown in Fig. 4a. No firing patterns are simulated lying
between two neighboring periodic bursting patterns.

In the stochastic Chay model, a noise-induced firing
pattern lies between two neighboring periodic firing
patterns. For example, when D = 0.01, the bifurca-
tion process is from period-1 bursting, to stochastic
bursting, to period-2 bursting, to stochastic bursting, to
period-3 bursting, to stochastic bursting, and to period-
4 bursting, as shown in Fig. 4b. When D is between
10−6−10−1, the bifurcation processes are similar.

The period-adding bifurcation from period-1 burst-
ing to period-2 bursting in the deterministic Chay
model and stochastic Chay model with D = 0.01 is
shown in Fig. 4c, d, respectively. A novel stochastic
bursting lies between period-1 firing and period-2 fir-
ing patterns.
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Fig. 4 a Period-adding
bifurcation simulated in the
deterministic Chay model; b
period-adding bifurcation
with stochastic bursting
simulated in the stochastic
Chay model (D = 0.01); c
period-adding bifurcation
from period-1 bursting to
period-2 bursting directly in
the deterministic Chay
model; d period-adding
bifurcation from period-1
bursting, to stochastic
bursting, and to period-2
bursting in the stochastic
Chay model (D = 0.01)

(a) (b)

(d)(c)

The trajectory of (C, V ) of the period-1 bursting in
the deterministic Chay (vc = 85.2mV), of the sto-
chastic bursting in the stochastic Chay model (vc =
85.2mV), of the period-2 bursting in the determinis-
tic Chay (vc = 85.0mV), and of the stochastic burst-
ing in the stochastic Chay model (vc = 85.0mV) are
shown in Fig. 5(a1)–(a4), respectively. Figure 5(b1)–
(b4) are the trajectory of (C, V ) of bursting patterns
corresponding to Fig. 5(a1)–(a4), respectively. Com-
pared these trajectories of (C, V ), a critical phase can
be identified locate near a platform appearing after
the first spike of the period-1 bursting or between
the first and second spikes of the period-2 bursting.
Near the critical phase, for period-1 bursting, a novel
spike can be induced by suitable noisy disturbance and
some period-1 bursts change to period-2 bursts, and for
period-2 bursting, the second spike of period-2 burst-
ing can be terminated by suitable noisy disturbance
to form period-1 spike. This is the cause that the sto-
chastic bursting whose behavior is stochastic transi-
tion between period-1 and period-2 bursts is induced
by noise.

3.3 Period-doubling bifurcation simulated
in the Chay model

The period-doubling bifurcation is simulated in the
deterministic Chay model when λn = 1

τn
= 221,

gkv = 1700mS, and gkc = 17mS. As vc is changed
from 120 to 63mV, period-1 bursting is changed to
period-2 bursting, and to period-4 bursting, as shown
in Fig. 6a.

In the stochastic Chay model, the process of the
period-doubling bifurcation remains unchanged. For
example, when D = 0.001, the process of the period-
doubling bifurcation is still from period-1 bursting, to
period-2 bursting, and to period-4 bursting, as shown
in Fig. 6b. When D is between 10−6−10−3, the bifur-
cation processes are similar.

Theperiod-doublingbifurcation fromperiod-1burst-
ing to period-2 bursting in the deterministic Chay
model and stochastic Chay model with D = 0.001 are
shown in Fig. 6c, d, respectively. No a novel stochastic
bursting is detected lies between period-1 and period-2
bursting patterns.
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Fig. 5 Spike trains and
trajectory of the firing
patterns simulated in the
Chay model. Spike trains:
(a1) period-1 bursting in the
deterministic model when
vc = 85.2mV; (a2)
stochastic bursting when
vc = 85.2mV and
D = 0.01; (a3) period-2
bursting in the deterministic
Chay model when
vc = 85.0mV; (a4)
stochastic bursting when
vc = 85.0mV and
D = 0.01. Trajectory: (b1),
(b2), (b3) and (b4)
corresponding to (a1)–(a4),
respectively

(a1)

(a2)

(a3) (b3)

(b4)(a4)

(b2)

(b1)

The trajectories of (C, V ) of the period-1 burst-
ing in the deterministic Chay (vc = 102.0mV), of
the stochastic bursting in the stochastic Chay model
(vc = 102.0mV), of the period-2 bursting determinis-
tic Chay (vc = 101.4mV), and of the stochastic burst-

ing in the stochastic Chay model (vc = 101.4mV) are
shown in Fig. 7(a1)–(a4), respectively. Figure 7(b1)–
(b4) are the trajectories of (C, V ) of the bursting pat-
terns corresponding to Fig. 7(a1)–(a4), respectively.
No a stochastic bursting similar to that lies in the

123



The distinct stochastic and deterministic dynamics 2549

Fig. 6 Period-doubling
bifurcation: a deterministic
Chay model; b stochastic
Chay model (D = 0.001);
period-1 bursting to
period-2 bursting: c
deterministic Chay model; d
stochastic Chay model
(D = 0.001)

(a) (b)

(d)(c)

period-adding bifurcation is detected near the period-
doubling bifurcation point. Compared these trajecto-
ries of (C, V ), no a critical phase resembling that of
the stochastic bursting pattern lying in period-adding
bifurcations can be identified.

4 Identification of dynamics of bursting patterns
with fast–slow dissection method

The period-1 bursting and period-2 bursting near both
period-adding bifurcation point and period-doubling
bifurcation point are studied as representative in this
section.

4.1 The bifurcations of equilibrium points of the fast
subsystem

The Chay model composed of Eqs. (1)–(3) is called
full system in the present paper. According to the fact
that ρ is usually a small quantity, the slow variability
C is considered as a parameter of the fast subsystem.
The fast subsystem of the Chay model is the first two
equations shown as follows:

dV

dt
= gIm

3∞h∞(vI − V ) + gkvn
4(vk − V )

+ gkc
C

1 + C
(vk − V ) + gl(vl − V ) (4)

dn

dt
= n∞ − n

λn(αn + βn)
(5)

Here, C is chosen as the bifurcation parameter.

4.1.1 Bursting lying in the period-adding bifurcation

For the bursting lying in the period-adding bifurca-
tion, as C is changed, the equilibrium points of the
fast subsystem of Chay model form a Z-shaped bifur-
cation curve, as shown in Fig. 8(a1). Lower branch of
the Z-shaped curve is a stable node (thin solid line)
and C is between [0.14664, +∞). Middle branch of
the Z-shaped curve is a saddle (dashed line) and C is
within (0.14664, 0.51156). The intersection of the left
knee of the Z-shaped curve is a saddle-node bifurcation
point of equilibrium point, also named as a fold bifur-
cation point (C ≈ 0.14664). Upper branch of the Z-
shaped curve is a focus andC is within (−∞, 0.51156].
There exists a supercritical Hopf bifurcation point in
the upper branch when C ≈ −0.07615. The focus
is stable (middle solid line) when C is within (−∞,
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Fig. 7 Spike trains and the
trajectory of the firing
patterns simulated in the
Chay model. Spike trains of
period-1 bursting when
vc = 102.0mV: (a1)
deterministic Chay model;
(a2) stochastic Chay model
with D = 0.01. Spike trains
of period-2 bursting when
vc = 101.4mV: (a3)
deterministic Chay model;
(a4) stochastic Chay model
with D = 0.01. (b1), (b2),
(b3), and (b4) are the
trajectory of bursting
patterns corresponding to
(a1)–(a4), respectively

(a1) (b1)

(a2) (b2)

(a3) (b3)

(a4) (b4)

−0.07615] and becomes unstable (dotted line) whenC
within (−0.07615, 0.51156). Related to the supercriti-
cal Hopf bifurcation point locating at the upper branch,
a limited cycle appears when C > −0.07615 and dis-
appears when the limited cycle comes into contact with
the middle branch (the saddle) to form a SH orbit bifur-

cation atC ≈ 0.16002. The upper gray and lower black
bold solid lines, respectively, represent theminimal and
maximal values of V of the limited cycle. The saddle
locating at the limited cycle, which is a homoclinical
orbit, is a SH point. Figure 8(b1) is the enlargement
around SH point of Fig. 8(a1).
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Fig. 8 Bifurcation of
equilibrium points and
limited cycles of the fast
subsystem of the Chay
model with period-adding
bifurcation or
period-doubling bifurcation
when C is taken as the
bifurcation parameter. (a1)
Period-adding bifurcation;
(a2) period-doubling
bifurcation; (b1) and (b2): a
part of panel (a1) and (a2),
respectively. The V -C
trajectory of the bursting
patterns and bifurcation
structures of the fast
subsystem of the Chay
model with period-adding
bifurcation or
period-doubling bifurcation
plotted in one figure. (c1)
Period-1 bursting
(vc = 85.2mV, blue line)
and period-2 bursting
(vc = 85.0mV, green line)
for period-adding
bifurcation and bifurcation
structure; (c2) Period-1
bursting (vc = 102.0mV,
blue line) and period-2
bursting (vc = 101.4mV,
green) for period-doubling
bifurcation and bifurcation
structure; (d1) and (d2): a
part of panel (c1) and (c2),
respectively. (Color figure
online)

(a1)

(b1)

(a2)

(b2)

(c1) (c2)

(d1) (d2)

4.1.2 Bursting lying in period-doubling bifurcation

For the bursting lying in the period-doubling bifurca-
tion, the equilibrium points of the fast subsystem of
Chay model is also composed of three branches of a
Z-shaped curve similar to Fig. 8(a1). The saddle-node
(fold) bifurcation point corresponding to the left knee

of the Z-shaped curve appears at C ≈ 0.25136. The
intersection of the right knee of the Z-shaped curve is
atC ≈ 0.84346.There exists a supercriticalHopf bifur-
cation point in upper branch atC ≈ −0.31000 and aSH
orbit bifurcation in the middle branch at C ≈ 0.25609.
Figure 8(b2) is the enlargement around SH point of
Fig. 8(a2).
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4.2 Dynamics of the bursting patterns identified by
the method of the fast–slow variables dissection

For bothperiod-addingbifurcation andperiod-doubling
bifurcation, the behaviors of the deterministic period-1
bursting (blue) and period-2 bursting (green) are the
transition between the limited cycle around the upper
branch and the stable node corresponding to the lower
branch, as shown in Fig. 8(c1), (c2), respectively. The
transition from stable node to the stable limited cycle is
caused by the fold bifurcation of equilibriumpoints and
the transition from the stable limited cycle to the stable
node is caused by the SH bifurcation. Both period-1
and period-2 bursting patterns can be classified into
“fold/homoclinic” bursting according to Izhikevich’s
scheme or is called type I bursting according toRinzel’s
scheme.

For period-addingbifurcation, Fig. 8(c1), (d1) shows
the critical phase between period-1 bursting andperiod-
2 bursting, which is identified appear near the SH point
of the fast subsystem. For period-doubling bifurca-
tion, no a critical phase can be detected, as shown in
Fig. 8(c2), (d2), respectively.

4.3 The dynamics in cross section (n, V ) of the fast
subsystem near the SH point

Because the bifurcation structures and trajectories of
bursting patterns in the three-dimensional phase space
(V,C, n) is difficult to be visualized, dynamics in two-
dimensional cross section (n, V ) at three fixedC values
near SH point are investigated.

4.3.1 The period-adding bifurcation

There are three equilibriums, stable node, saddle, and
unstable focus, in each of the planes of (n, V ) at fixed
C values, as shown by bold cycle point, half-bold cycle
point, and hollow circle in Fig. 9(a1)–(e1). The stable
manifold (the line with smaller slope) and the unsta-
ble manifold (the line with larger slope) of the sad-
dle shown in Fig. 9 are represented by bold black
solid line and bold gray solid line, respectively. When
C = 0.15950, a stable limit cycle around the focus and
up-right to the saddle appears, as shown in Fig. 9(a1).
Figure 9(b1) is the enlargement of Fig. 9(a1). When
C = 0.16002 (corresponding to value of the SH point,
the vertical red line shown in Fig. 8(b1)), the saddle

hits the limited cycle to form a SH orbit (red line), as
depicted in Fig. 9(c1). Figure 9(d1) is the enlargement
of Fig. 9(c1). When C = 0.16070, the limit cycle dis-
appears, as illustrated in Fig. 9(e1).

4.3.2 The period-doubling bifurcation

As performed in the period-adding bifurcation, the
dynamics in two-dimensional (n, V ) planes at C =
0.25500, 0.25609, and 0.25700, which locate left to,
approximately at, and right to the SH point, and corre-
spond to red vertical bold lines shown in Fig. 8(b2),
were identified. The results resemble those of the
period-adding bifurcation, as shown in Fig. 9(a2)–(e2).

4.4 The dynamics of deterministic and stochastic
bursting patterns near the SH point

4.4.1 Deterministic bursting patterns lying in the
period-adding bifurcation

Three (n, V ) planes corresponding to Fig. 9(a1)–(e1)
are adopted. The trajectories of both period-1 bursting
(vc = 85.2mV) and period-2 bursting (vc = 85.0mV)
across each of the three (n, V ) planes two times, and
two points appear in the corresponding (n, V ) plane,
as shown in Fig. 10. Figure 10(b1), (b2), (d1), (d2) are
the enlargement of a part of Fig. 10(a1), (a2), (c1), (c2),
respectively. One point is labeled with “outward orbit”
and the other “inward orbit”. The “outward orbit” cor-
responds to the trajectory passing through the cross
section from right to left, i.e., from a larger C value to
a lower C value. The “inward orbit” corresponds to the
trajectory passing through the cross section from left to
right, i.e., from a lower C value to a largerC value. The
“outward orbit” point in three (n, V ) planes is close to
the stable node for both period-1 and period-2 bursting,
as shown in Fig. 10.

Although the “inward orbit” in (n, V ) planes is close
to the saddle, the detailed relationships between the
saddle and the “inward orbit” for the period-1 bursting
(vc = 85.2mV) and period-2 bursting (vc = 85.0mV)
are shown in Fig. 10(b1), (d1), (b2), (d2). When C =
0.16002 (the vertical red line shown in Fig. 8(b1)),
for both period-1 bursting and period-2 bursting, the
“inward orbit” point locates above the stable manifold
of the saddle, on the upper branch of the unstable mani-
fold of the saddle, and near the saddle point, i.e., the SH
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Fig. 9 Dynamics in the
cross section (n, V ) at
different C values of the
bifurcation structures of the
fast subsystem.
Period-adding bifurcation:
(a1) C = 0.15950; (b1) a
part of panel (a1); (c1)
C = 0.16002; (d1) a part of
panel (c1); (e1)
C = 0.16070.
Period-doubling bifurcation:
(a2) C = 0.25500; (b2) a
part of panel (a2); (c2)
C = 0.25609; (d2) a part of
panel (c2); (e2)
C = 0.25700. Circle,
half-bold cycle point, and
bold cycle point represents
unstable focus, saddle, and
stable node, respectively.
Bold black solid line, bold
gray solid line, and thin
solid red line represents
stable manifold of the
saddle, unstable manifold of
the saddle, and a
saddle-homoclinic orbit,
respectively. (Color figure
online)

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e1) (e2)

point, as shown in Fig. 10(b1), (b2). No distinction can
be identified between period-1 and period-2 bursting.
For the cross sectionwithC = 0.16070, it can be found
distinction between period-1 bursting (Fig. 10(d1)) and
period-2 bursting (Fig. 10(d2)). For period-1 bursting,

the “inward orbit” point locates below the stable man-
ifold of the saddle, on the lower branch of unstable
manifold of the saddle point, and near the saddle. For
the period-2 bursting, the “inward orbit” point locates
above the stable manifold of the saddle, on the upper
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Fig. 10 Dynamics of
period-1 (vc = 85.2mV)
and period-2 bursting
(vc = 85.0mV) patterns
lying in period-adding
bifurcation near SH point at
(n, V ) cross section with
different values. (a1)
Period-1 bursting when
C = 0.16002; (a2) period-2
bursting when
C = 0.16002; (b1) and (b2)
are the enlargement of (a1)
and (a2), respectively; (c1)
period-1 bursting when
C = 0.16070; (c2) period-2
bursting when
C = 0.16070; (d1) and (d2)
are the enlargement of (c1)
and (c2), respectively

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

branch of unstable manifold of the saddle point, and
near the saddle.

These indicate that the both trajectory of period-1
bursting and period-2 bursting pass through the neigh-
borhood of the SH point. For the period-1 bursting, the
trajectory passes through the stable manifold of the SH
point from upper to lower and along the lower branch

of the unstable manifold of the saddle, and turns to
the stable node to terminate the spike. However, for
period-2 bursting, the trajectory locates above the sta-
blemanifold of the SHpoint and and passes through the
neighborhood of the SH point along the upper branch
of the unstable manifold of the saddle and becomes far
from the SH point to form the second spike. The mini-
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Fig. 11 Dynamics of
original bursting pattern
(solid line) lying in
period-adding bifurcation
scenarios and the response
after a suitable disturbance
(dashed line). Period-1
bursting when
vc = 85.2mV: a V − t ;
b the trajectory in the
(C, V ) plane and the
bifurcations of the fast
subsystem; period 2
bursting when
vc = 85.0mV: c V − t ;
d the trajectory in the
(C, V ) plane and the
bifurcations of the fast
subsystem

(a) (b)

(d)(c)

mumdistance between the “inward orbit” point and SH
point is 0.00030 for the period-1 bursting and 0.00067
for the period-2 bursting.

4.4.2 Responses of bursting lying in period-adding
bifurcation to disturbance near the SH point

A platform appears after the first spike of the period-1
bursting (vc = 85.2mV) and near the critical phase
corresponding to the neighborhood of the SH point.
When a suitable positive disturbance is introduced into
the platform, a novel spike is induced to form a period-
2 burst instead of the original period-1 burst, as shown
in Fig. 11a, b.

The deterministic period-2 bursting (vc = 85.0mV)
manifests period-2 burst in each period without any
disturbance. When a suitable negative disturbance is
introduced into the trough or platform before the sec-
ond spike, i.e., the critical phase near the SH point,
the original second spike can be terminated to form a
period-1 burst instead of the original period-2 burst, as
shown in Fig. 11c, d.

The dynamics of the response of the bursting to suit-
able disturbance can be used to the understanding of
the generation of stochastic bursting in the stochastic
Chay model. When noise intensity is suitable, some

disturbances induced by noise near the critical phase
can terminate the second spike of the period-2 burst
and lead to a period-1 burst, and others cannot termi-
nate the second spike, and the period-2 burst pattern
remained unchanged. It indicates that the trajectory of
period-2 burst near the saddle passes through the sta-
ble manifold of the SH point and form a period-1 burst
when noise intensity is suitable. It is the cause that a sto-
chastic bursting whose behavior is stochastic transition
between period-1 burst and period-2 burst instead of
period-2 bursting is induced. Similarly, the disturbance
induced by noise near the critical phase can evoke an
extra spike followed the period-1 burst to formaperiod-
2 burst. It indicates that the trajectory of period-1 burst
near the saddle can transit into the neighborhood above
the stable manifold of the SH point and form a new
spike (period-2 bursting) when noise intensity is suit-
able. It is the cause that the stochastic bursting instead
of the period-1 bursting is induced in the stochastic
Chay model.

4.4.3 The dynamics of the stochastic bursting patterns
lying in the period-adding bifurcation near the
SH point

The dynamics of the stochastic bursting (D = 0.01)
changed from period-1 bursting (vc = 85.2mV) and
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Fig. 12 Dynamics of
stochastic bursting pattern
(D = 0.01) lying in
period-adding bifurcation
near SH point at (n, V )
cross section with different
C values. The stochastic
bursting: (a1)
vc = 85.2mV; (a2)
vc = 85.0mV; the (n, V )
cross section for different
values: (b1) the stochastic
bursting when
vc = 85.2mV and
C = 0.16002; (b2) the
stochastic bursting when
vc = 85.0mV and
C = 0.16002; (c1) and (c2)
are the enlargement of (b1)
and (b2), respectively; (d1)
the stochastic bursting when
vc = 85.2mV and
C = 0.16070; (d2) the
stochastic bursting when
vc = 85.0mV and
C = 0.16070; (e1) and (e2)
are the enlargement of (d1)
and (d2), respectively

(a1) (a2)

(b1) (b2)

(c1) (c2)

(d1) (d2)

(e1) (e2)

from period-2 bursting (vc = 85.0mV) are shown in
Fig. 12. For the stochastic burstings, the stochastic tran-
sitions between period-1 burst and period-2 burst hap-
pen near the critical phase, i.e., the neighborhood of the

SH point, as shown in Fig. 12(a1), (a2). The dynamics
of the stochastic bursting patterns in the (n, V )-cross
section are illustrated in Fig. 12(b1)–(e2). Compared
with the deterministic situation (Fig. 10), the “outward
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orbit” points (blue points) still appear near the sta-
ble node; however, the dynamics of the “inward orbit”
points changed.

For both stochastic burstingpatterns (vc = 85.2mV,
and vc = 85.0mV) and both values (C = 0.16002, and
C = 0.16070), the “inward orbit” point in the (n, V )-
cross section appears on not only the upper branch
but also the lower branch of the unstable manifold
of the saddle, as shown in Fig. 12(c1), (c2), (e1), (e2).
Figure 12(c1), (c2), (e1), (e2) are the enlargement of
Fig. 12(b1), (b2), (d1), (d2), respectively. For both sto-
chastic bursting patterns, the “inward orbit” points cor-
responding to period-1 burst locates below the stable
manifold of the saddle and the “inward orbit” points
corresponding to period-2 burst above the stable mani-
fold. The stochastic transitions between period-1 burst
and period-2 burst are the transitions across the stable
manifold of the saddle.

4.4.4 The deterministic bursting patterns lying in the
period-doubling bifurcation

As performed in the bursting patterns lying in period-
adding bifurcation scenario (Fig. 10), the dynamics of
the period-1 bursting (vc = 102.0mV) and period-
2 bursting (vc = 101.4mV) lying in period-doubling
bifurcation are shown in Fig. 13. Two (n, V ) planes at
C = 0.25609 and C = 0.25700 are adopted. Com-
pared with Fig. 10 to show the dynamics of bursting
patterns lying in period-adding bifurcations, distinc-
tion is found from Fig. 13.

For the period-1 bursting, there exist an “outward
orbit” point and an “inward orbit” point. For the period-
2 bursting patterns, there exist two “outward orbit”
points and two “inward orbit” points. For both bursting
patterns and both (n, V ) planes, the “outward orbit”
points still locate below the stable manifold of the sad-
dle but the distance between the “outward orbit” points
and the stable node becomes longer, compared with
those of the period-adding bifurcations. It is the most
important distinction that the “inward orbit” points
locate far from the saddle, as shown in Fig. 13. When
C = 0.25609 (the cross section corresponding to the
SH point, the vertical red line shown in Fig. 8(b2)),
the “inward orbit” points locate on the limit cycle. The
minimal distance between the “outward orbit” point
and SH point is 0.75958 for the period-1 bursting and
0.42346 for the period-2 bursting. The minimal dis-
tance between the “inward orbit” point and SH point is

20.45344 for the period-1 bursting and 23.97828 for the
period-2 bursting. The distances are much longer than
those of the period-adding bifurcation scenarios. It is
the cause that no a critical phase is detected within the
bursting pattern lying in period-doubling bifurcations.

4.4.5 The dynamics of the bursting patterns lying in
the period-doubling bifurcation in the stochastic
Chay model

As performed in the deterministic bursting patterns
(Fig. 13), the dynamics of bursting when vc =
102.0mV (D = 0.01) and when vc = 101.4mV
(D = 0.01) are shown in Fig. 14. For both period-1
bursting and period-2 bursting, no novel spike can be
induced by noise, as shown in Fig. 14(a1), (a2).

The dynamics of the stochastic bursting patterns in
the (n, V )-cross section are shown in Fig. 14(b1)–(c2).
For both bursting patterns (vc = 102.0mV, and vc =
101.4mV) and C value (C = 0.25609), the “inward
orbit” points in the (n, V )-cross section locate far from
the saddle, which is different from that of the period-
adding bifurcation, as shown in Fig. 14(b1)–(c2). Fig-
ure 14(c1), (c2) are the enlargement of Fig. 14(b1), (b2),
respectively. The similar results are obtained when
C = 0.25700. However, the locations of “outward
orbit” and “inward orbit” points are different from those
of the period-adding bifurcation. The “outward orbit”
points locate below the stable manifold of the saddle,
and the “inward orbit” points locate above the stable
manifold of the saddle. Noise cannot induce transitions
across the stable manifold of the saddle for the period-
doubling bifurcation. No novel spike can be induced
by noise for period-1 bursting and period-2 bursting.

5 Firing patterns near other bifurcation points

As shown in Eqs. (4) and (5), the fast subsystem does
not contain the bifurcation parameter vc. It shows that
the bifurcation structures of the equilibrium points and
the limited cycle of the fast subsystem are independent
of vc.

5.1 Dynamics near other period-adding bifurcation
points

The period-k bursting and period-(k+1) bursting (k =
2, 3) near period-adding bifurcation point from period-
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Fig. 13 Dynamics of
period-1 (vc = 102.0mV)
and period-2 bursting
(vc = 101.4mV) patterns
lying in period-doubling
bifurcation near SH point at
(n, V ) cross section with
different C values. (a1)
Period-1 bursting when
C = 0.25609; (a2) period-2
bursting when
C = 0.25609; (b1) and (b2)
are the enlargement of (a1)
and (a2), respectively; (c1)
period-1 bursting when
C = 0.25700; (c2) period-2
bursting when
C = 0.25700; (d1) and (d2)
are the enlargement of (c1)
and (c2), respectively

(a1) (a2)

(b2)(b1)

(c1) (c2)

(d2)(d1)

k bursting to period-(k+1) burstingmanifest dynamics
similar to those of the period-1 bursting and period-2
bursting near the bifurcation point from period-1 burst-
ing to period-2 bursting. To avoid repetition, we do not
address the detailed results of the period-k bursting and
period-(k + 1) bursting (k = 2, 3) near period-adding

bifurcation point from period-k bursting to period-
(k + 1) bursting. For example, the period-2 bursting
when vc = 47.9mV (blue line) and the period-3 burst-
ing when vc = 47.8mV (green line) in the determin-
istic Chay model are shown in Fig. 15a, b. The mini-
mal distance between the “inward orbit” point and SH
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Fig. 14 Dynamics of
stochastic bursting pattern
(D = 0.01) lying in
period-doubling bifurcation
near SH point at (n, V )
cross section with different
C values. The stochastic
bursting: (a1)
vc = 102.0mV; (a2)
vc = 101.4mV. The (n, V )
cross section for different
values: (b1) the stochastic
bursting when
vc = 102.0mV and
C = 0.25609; (b2) the
stochastic bursting when
vc = 101.4mV and
C = 0.25609; (c1) and (c2)
are the enlargement of (b1)
and (b2), respectively

(a1) (a2)

(b1) (b2)

(c1) (c2)

point is 0.00721 for the period-2 bursting and 0.00056
for the period-3 bursting. The period-3 bursting when
vc = 30.6mV (blue line) and the period-4 bursting
when vc = 30.4mV (green line) in the deterministic
Chaymodel are shown inFig. 15c, d. Theminimumdis-
tance between the “inward orbit” point and SH point
is 0.00697 for the period-3 bursting and 0.00091 for
the period-4 bursting. The minimum distance between
SH point and the trajectory of the bursting near the
period-adding bifurcation point is shorter than 0.01.
The trajectory of the bursting near the period-adding
bifurcation point passes through the neighborhood of
the SHpoint. The SHpoint is a critical point nearwhich
a suitable perturbation can induce transition between
two behaviors, quiescent state or a spike.

5.2 Dynamics near period-doubling bifurcation point
from period-2 to period-4 bursting patterns

When the trajectory of (C, V ) of the bursting and
the bifurcation structures of the fast subsystem of the
Chay model are plotted in one figure, it can be found
that period-2 bursting (vc = 66mV) and period-4
(vc = 65.5mV) bursting are far from the SH point
of the fast subsystem, as shown in Fig. 16. The min-
imal distance between the “outward orbit” point and
SH point is 0.75513 for the period-2 bursting and
0.49078 for the period-4 bursting. The minimal dis-
tance between the “inward orbit” point and SH point is
24.35367 for the period-2 bursting and 26.63235 for the
period-4 bursting. The minimal distance between SH
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Fig. 15 Trajectory of
(C, V ) of bursting and
bifurcation structures of the
fast subsystem of the Chay
model plotted in one figure.
a Period-2 bursting when
vc = 47.9mV (blue line)
and period-3 bursting (green
line) when vc = 47.8mV;
b a part of panel (a); c
period-3 bursting when
vc = 30.6mV (blue line)
and period-4 bursting (green
line) when vc = 30.4mV;
d a part of panel (c). (Color
figure online)

(a) (b)

(d)(c)

Fig. 16 a The trajectory of
(C, V ) of period-2 bursting
(vc = 66.0mV, blue line)
and period-4 bursting
(vc = 65.5mV, green line)
and bifurcation structures of
the fast subsystem of the
Chay model plotted in one
figure; b a part of panel (a)

(a) (b)

point and the trajectory of the bursting near the period-
doubling bifurcation point is great than 0.4. The trajec-
tory of bursting near the period-doubling bifurcation
point does far from the SH point. No noise-induced fir-
ing patterns can be detected near the period-doubling
bifurcation points.

6 Discussion and conclusion

Period-adding bifurcation scenario with stochastic
bursting patterns and period-doubling bifurcation of
neural firing pattern were the important transition
regularities observed in the experiments and simu-
lated in theoretical models [11,12,27,28]. No sto-
chastic firing patterns like those within period-adding

bifurcation scenario were detected lies in the period-
doubling bifurcation. In the present paper, using the
fast–slow variables dissection method, the determin-
istic burstings lying in both period-adding bifurca-
tion and period-doubling bifurcation are classified into
“fold/homoclinic” burstingwith a SH point. The trajec-
tory is far from the SH point for the bursting patterns
near period-doubling bifurcation points, and passes
through the neighborhood of the SH point for the
bursting patterns near the period-adding bifurcation
points. The SH point behaves as a critical point near
which a suitable perturbation can induce twobehaviors,
either resting state or a spike. Near the critical phase,
some period-k bursts can change to period-(k + 1)
bursts due to suitable noisy disturbance can induce a
novel spike for the period-k bursting, and some period-
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(k + 1) bursts can change to period-k bursts due to
suitable noisy disturbance can terminate the last spike
to form quiescent state for the period-(k + 1) bursting
(k = 1, 2, 3). It is the cause that the stochastic bursting
whose behavior is stochastic transition between period-
k burst and period-(k + 1) burst lies not in the period-
doubling bifurcation but in the period-adding bifurca-
tion scenarios. The critical point also provides suitable
phase to apply control signal to modulate the firing
patterns.

The stochastic transition and coherence resonance
of the stochastic bursting patterns lying in the period-
adding bifurcation, and the distinction to the chaotic
bursting have been investigated [21,25,26,39]. In the
present paper, the underlying dynamics to induce the
stochastic bursting, i.e., the dynamics near the SH
point, are identified with bifurcation analysis and fast–
slow variables dissection method. The fast subsystem
exhibits a stable node, a saddle, and a stable limited
cycle. The dynamics near the SH point, including the
trajectory of the bursting and the dynamics of the sad-
dle, play important roles in the generation of the sto-
chastic bursting. The trajectory of bursting lying in
period-adding bifurcation passes through the neighbor-
hood of the SH point, and the behavior of the stochastic
bursting pattern across the (n, V ) plane runs along the
unstable manifold of the saddle.

Noise has been identified play important roles near
the bifurcation points [2,21,40–43]. In the nervous
system, stochastic resonance or coherence resonance
has been observed near the bifurcation points of equi-
librium points, such as the supercritical and subcrit-
ical Hopf bifurcation points, saddle-node bifurcation
point, bifurcation point of saddle-node bifurcation on
an invariant cycle [40,41,44]. The stochastic firing pat-
terns are dependent on the types of the bifurcation
points. The roles of the threshold effect near the equi-
librium bifurcation points in the stochastic resonance
or coherence resonance have been widely investigated
[2,21,40,45,46]. In the present paper, the stochas-
tic bursting patterns does not appear near the period-
doubling bifurcation points but the period-adding bifur-
cation points, which are also dependent on the types
of the bifurcations. The stable manifold of the saddle
forms a threshold across which the period-k burst and
period-(k + 1) burst can be changed each other. The
trajectory of the period-k burst across the (n, V ) plane
runs along lower branch of the unstable manifold of
the saddle and of the period-(k + 1) burst run along the

upper branch of the unstable manifold of the saddle.
The upper and lower branches of the unstable mani-
fold of the saddle locate above and below the stable
manifold of the saddle, respectively. The detailed tran-
sition dynamics of the stochastic bursting patterns can
well be explained by the stable/unstable manifold of
the saddle point.
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