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Abstract This paper is focused on the dynamic char-
acteristics of a flexible rotor with squeeze film damper
excited by two frequencies. Themultiple harmonic bal-
ancemethod andRunge–Kuttamethod are combined to
analyze the periodic solution and quasi-periodic solu-
tion of the system. The nonlinear characteristics dis-
cussed are fastened on the resonance region corre-
sponding, respectively, to the rigid body translation
mode and first bending mode. In the former region,
the motion of disk center shows the ‘hard spring’ char-
acteristic, and the combination frequencies are domi-
nated by the difference between double low excitation
frequency and high excitation frequency and the dif-
ference between double high excitation frequency and
low excitation frequency. In the latter region, however,
the combination frequencies are dominated by the dif-
ference between high excitation frequency and double
low excitation frequency and the difference between
triple low excitation frequency and double high exci-
tation frequency. Moreover, the motion of disk center
shows a kind of ‘cross’, ‘soft spring’ or ‘hard spring’
characteristics with the variation of the ratio of the two
excitation frequencies. Besides, the independent quasi-
periodic solution coexists with the periodic solution
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in these cases. The system is sensitive to the ratio of
excitation frequencies, and it could have two indepen-
dent quasi-periodic solutions in some conditions. The
results in this paper provide a reveal of nonlinear char-
acteristics in this type of double excitation nonlinear
rotor system.
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damper ·Nonlinear characteristic · Jump phenomenon ·
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1 Introduction

Squeeze film dampers (SFDs) are simple configura-
tions mounted on aircraft engines to suppress vibra-
tions of rotors and promote system stability. The sys-
temwith SFDs is nonlinear, whichmeans the nonlinear
forces caused by oil film will lead to undesired unbal-
ance responses in some operation conditions. These
nonlinear characteristics of squeeze film damper have
provided plenty of material for research since Cooper’s
work in 1963 [1], and many researchers reported jump
phenomenon and non-synchronous motion in SFD-
rotor system by theoretical analysis [2–4] and exper-
imental validation [5,6]. Furthermore, sub-harmonic
motions, which contain fractional frequency compo-
nents in system responses, were observed by Holmes
et al. [7–9] in their experimental works.

With the appearance of more detailed research work
based on different computational methods, more non-
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linear characters alternating with parameters varia-
tion are revealed. Zhao [10,11] used the trigonomet-
ric collocation method embedding arc-length continu-
ation algorithm to investigate the stability and bifur-
cation of an eccentric SFD-rotor system, in which
the period motion, sub-harmonic motion and quasi-
periodic motion transforming into each other with the
variationof rotor speedwere observed, and these results
were compared with those of a concentric system. Zhu
[12] compared the slow acceleration method with syn-
chronous circular centered-orbit motion solution and
numerical integration method in the study of a flex-
ible rotor supported by SFDs, in which three forms
of the multiple-solution responses due to saddle-node
bifurcationwere obtained. Sundararajan [13] presented
a shooting scheme along with arc-length continuation
algorithm for periodically forced rotor systems, as an
example, an eccentric SFD system was solved by this
method. Besides, the similar results to Zhao’s work
[11], this systemexists anothermultiple-solution range,
in which a stable period-3 solution coexists with a
period-1 solution. Furthermore, the system has the evo-
lution route: period-3, period-6, chaos, period-3, with
rotor speed running up. Based on a numerical contin-
uation method, Inayat-Hussain [14,15] also obtained a
period-3 motion which coexists with a chaotic motion
due to period-doubling bifurcation in a rigid rotor sup-
ported by SFDswithout centering springs. This period-
3 motion has two evolution routes to chaos: period-
doubling bifurcation and boundary crisis. Comparing
with the preceding results in SFDs without centering
springs, the system supported by centering springs has
the following two routes to chaos: period-doubling
cascades and type 3 intermittency. Bonello [16] pre-
sented an integrated approach containing receptance
harmonic balance method and time marching tech-
niques to analyze the period solution and aperiodic
solution of a multiple SFDs system, in which the sub-
harmonic motion and quasi-period motion were ver-
ified by simulations and experiments. In conclusion,
since each single method has its advantage and draw-
back, the development of hybrid method is a general
tendency applied to reveal more detailed characteris-
tics of nonlinear system.

Similar to the research works of SFDs with simple
structure, complex nonlinear dynamic behaviors also
have been found in some other SFDswith sophisticated
structure. In the study of a porous squeeze film damper
system lubricated by micropolar fluid, Cai-Wan [17]

showed the wide ranges of quasi-period motion and
chaotic motion with varying rotor speed. In rotor sys-
tems with full-floating ring bearings, containing two
serial SFDs separated by a rotatable floating ring, the
undesired symmetry-breaking effect and total insta-
bility phenomenon caused by self-excited vibrations
were reported by Schweizer [18]. Further, the sub-
synchronous oscillations and the critical limit cycle
were reported in the semi-floating ring bearings [19],
the floating ring of which is not rotatable. Zhou [20]
analyzed the nonlinear responses of rotor with ball
bearing and floating ring squeeze film dampers by
discussing the effects of out-ring mass, bearing stiff-
ness and supports stiffness on the non-synchronous
response, and it was concluded that the floating ring
SFD can effectively prevent bistable responses of the
system.

All these research works mentioned above focus
on the responses with a single-frequency excitation.
However, there remains a need for the studies of
responses caused by two-frequency excitations which
comes fromdual-rotor systems such as aircraft engines.
To simulate on a twin-spool aero-engine system with
a real size, Bonello and Pham [21,22] introduced the
impulsive receptance method (IRM) and compared it
with reformulation of the Newmark-beta method and
receptance harmonic balancemethod (RHBM) in order
to choose proper methods for analyzing large-order
nonlinear systems. Furthermore, these selected meth-
ods [23] were used to achieve an insight into the
effect of the ratio between two rotor’s speeds on the
vibration response. It was shown that the responses
are particularly sensitive to the initial phase angle
between the rotors, especially when the speed ratio
was a ratio of two low integers. Obviously, affected
by two unbalanced excitations of different frequen-
cies, a nonlinear system shows some interesting com-
plex characteristics which need to be investigated in
detail.

The motivation of this paper is to detect the non-
linear characteristics of a flexible rotor supported by
squeeze film damper excited by two different frequen-
cies. By using harmonic balance method matching
fourth Runge–Kutta method and Hsu method, the peri-
odic solutions containing combined frequencies and
quasi-period solutions are obtained, and stability of the
periodic solutions affected by parameters, such as ratio
of excitation frequencies, oil viscosity and clearance,
are also analyzed.
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2 Model of SFD-rotor system

As outlined in Fig. 1, the low-pressure rotor of aircraft
engine is simplified as an asymmetric, linear-elastic
rotor, the left end is supported by a SFD in parallel with
linear spring, and the right end is supported by a lin-
ear spring. The dotted line disk represents a simplified
high-pressure rotor, which provides a high-frequency
excitation to the system. The rotor model is comprised
of a disk of mass mo, left journal of mass ma, right
journal of mass mb and massless flexible shaft. The
left journal is supported by a linear spring of stiffness
ka and a SFD of clearance c. The right journal is sup-
ported by a linear spring of stiffness kb. Hence, consid-
ering the short bearing approximation of oil film [12],
the motion equations of the rotor system can be written
as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mo ẍ + c1 (ẋ − ẋ1) − c2
(
θ̇y − θ̇y1

) + krr (x − x1)

− krϕ
(
θy − θy1

) = δ1�
2
1cos�1t + δ2�

2
2 cos�2t

mo ÿ + c1 (ẏ − ẏ1) + c2
(
θ̇x − θ̇x1

) + krr (y − y1)
+ krϕ (θx − θx1) = δ1�

2
1sin�1t + δ2�

2
2 sin�2t

Jd θ̈x + Jp�1θ̇y + c3 (ẏ − ẏ1) + c4
(
θ̇x − θ̇x1

)

+kϕr (y − y1) + kϕϕ (θx − θx1) = δ2�
2
2l3 sin�2t

Jd θ̈y − Jp�1θ̇x − c3 (ẋ − ẋ1) + c4
(
θ̇y − θ̇y1

)

−kϕr (x − x1) + kϕϕ

(
θy − θy1

) = −δ2�
2
2l3 cos�2t

ma ẍa − γ2c1 (ẋ − ẋ1) + γ2c2
(
θ̇y − θ̇y1

) − γ2krr (x−x1)

+ γ2krϕ
(
θy − θy1

) + c5 ẋa + kaxa + Fcx = 0

ma ÿa − γ2c1 (ẏ − ẏ1) − γ2c2
(
θ̇x − θ̇x1

) − γ2krr (y−y1)

− γ2krϕ (θx − θx1) + c5 ẏa + ka ya + Fcy = 0

mb ẍb − γ1c1 (ẋ − ẋ1) + γ1c2
(
θ̇y − θ̇y1

) − γ1krr (x−x1)

+ γ1krϕ
(
θy − θy1

) + c6 ẋb + kbxb = 0

mb ÿb − γ1c1 (ẏ − ẏ1) − γ1c2
(
θ̇x − θ̇x1

) − γ1krr (y−y1)

− γ1krϕ (θx − θx1) + c6 ẏb + kbyb = 0

(1)

in which, l = l1 + l2, γ1 = l1/ l and γ2 = l2/ l are
used to define the length and ratio parameters, x1 =
γ2xa + γ1xb, y1 = γ2ya + γ1yb, θx1 = (ya − yb) / l
and θy1 = (xb − xa) / l are rigid body displacements
of disk center, krr, krϕ and kϕϕ represent stiffness para-
meters of the shaft, c1 ∼ c6 represent damper para-
meters, Jp and Jd represent polar moment of iner-
tia and equatorial moment of inertia, δ1 and δ2 are
equivalent unbalance values, ω1 and ω2 are rotational
speeds of low-pressure rotor and high-pressure rotor,
Fcx = Frxa/r − Fτya/r and Fcy = Fr ya/r + Fτxa/r
are components of oil film force in x-coordinate and y-

coordinate, Fr = μRL3/c3
(
I 023 ṙ + I 113 rψ̇

)
and Fτ =

μRL3/c3
(
I 113 ṙ + I 203 rψ̇

)
are the oil film forces of

radial direction and tangential direction, r = √
x2a + y2a

andψ = arctan (ya/xa) are the displacements of radial
direction and tangential direction, μ is the viscosity
coefficient of oil, R is the radius of journal, L is the
length of SFD, and the integral parameters are defined

as I lmn = ∫ θ2
θ1

sinl θ cosm θdθ
(1+r cos θ/c)n [24].

The dimensionless parameters are introduced as fol-
lows:

τ = �1t, q1 = x

c
, q2 = y

c
, q3 = θxl

c
,

q4 = θyl

c
, q5= xa

c
, q6= ya

c
, q7= xb

c
, q8= yb

c
.

Thus, the motion equation (1) can be rewritten as:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q ′′
1 + ζ1q

′
1 − ζ2q

′
4 − (ζ2 + ζ1γ2) q

′
5

+ (ζ2 − γ1ζ1) q
′
7+κ1q1 − κ2q4−(κ2 + κ1γ2) q5

+ (κ2 − γ1κ1) q7 = U1cosτ + ξ2U2 cos ξτ

q ′′
2 + ζ1q

′
2 + ζ2q

′
3 − (ζ2 + ζ1γ2) q

′
6

+ (ζ2 − γ1ζ1) q
′
8 + κ1q2 + κ2q3 − (κ2 + κ1γ2) q6

+ (κ2 − γ1κ1) q8 = U1sinτ + ξ2U2 sin ξτ

α0q
′′
3 + α0ηq

′
4 + ζ3q

′
2 + ζ4q

′
3 − (ζ4 + ζ3γ2) q

′
6

+ (ζ4 − γ1ζ3) q
′
8+κ3q2+κ4q3 − (κ4+κ3γ2) q6

+ (κ4 − γ1κ3) q8=ξ2U3 sin ξτ

α0q
′′
4 − α0ηq

′
3 − ζ3q

′
1 + ζ4q

′
4 + (ζ4 + ζ3γ2) q

′
5

− (ζ4 − γ1ζ3) q
′
7−κ3q1+κ4q4+(κ4 + κ3γ2) q5

− (κ4 − γ1κ3) q7 = −ξ2U3 cos ξτ

α1q
′′
5 − γ2ζ1q

′
1 + γ2ζ2q

′
4 + γ2 (ζ2 + γ2ζ1) q

′
5

− γ2 (ζ2 − γ1ζ1) q
′
7 + ζ5q

′
5 − γ2κ1q1 + γ2κ2q4

+ γ2 (κ2 + γ2κ1) q5 − γ2 (κ2 − γ1κ1) q7 + κ5q5
+ BF̄cx = 0

α1q
′′
6 − γ2ζ1q

′
2 − γ2ζ2q

′
3 + γ2 (ζ2 + γ2ζ1) q

′
6

− γ2 (ζ2 − γ1ζ1) q
′
8 + ζ5q

′
6 − γ2κ1q2 − γ2κ2q3

+ γ2 (κ2 + γ2κ1) q6 − γ2 (κ2 − γ1κ1) q8 + κ5q6
+ BF̄cy = 0

α2q
′′
7 − γ1ζ1q

′
1 + γ1ζ2q

′
4 + γ1 (ζ2 + γ2ζ1) q

′
5

− γ1 (ζ2 − ζ1γ1) q
′
7 + ζ6q

′
7 − γ1κ1q1 + γ1κ2q4

+ γ1 (κ2 + γ2κ1) q5 − γ1 (κ2 − κ1γ1) q7
+ κ6q7 = 0

α2q
′′
8 − γ1ζ1q

′
2 − γ1ζ2q

′
3 + γ1 (ζ2 + γ2ζ1) q

′
6

− γ1 (ζ2 − ζ1γ1) q
′
8 + ζ6q

′
8 − γ1κ1q2 − γ1κ2q3

+ γ1 (κ2+γ2κ1) q6−γ1 (κ2−κ1γ1) q8+κ6q8=0

(2)

in which, the other dimensionless parameters are
defined as: ζ1 = c1

mo�1
, ζ2 = c2

mol�1
, ζ3 = c3

mol�1
,
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Fig. 1 Simplified model of
low-pressure rotor
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1
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κ2 = krϕ
mol�2

1
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1
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mol2�2
1
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mo�
2
1
,

κ6 = kb
mo�

2
1
, η = Jp

Jd
, α0 = Jd

mol2
, α1 = ma

mo
, α2 = mb

mo
,

U1 = δ1
cmo

, U2 = δ2
cmo

, U3 = δ2l3
molc

, ξ = �2
�1

, ε = r
c ,

B = μRL3

moc3�1
, F̄cx = F̄r

q5
ε

− F̄τ
q6
ε
, F̄cy = F̄r

q6
ε

+ F̄τ
q5
ε
,

F̄r = I 023 ε′ + I 113 εψ ′, F̄τ = I 113 ε′ + I 203 εψ ′.

3 Method of solution and stability analysis

3.1 Multiple harmonic balance method

Equation (2) describes a nonlinear system with exter-
nal two-frequency excitations, in which the responses
may contain two incommensurable frequencies and a
series of combination frequencies of them. To analyze
the systemwith multiple-frequency excitation, a multi-
ple harmonic balance method proposed by Kim [25] in
a study on internal resonance problem of incommensu-
rable frequencies is chosen. The discrete time solution
of Eq. (2) can be assumed as:

q j (m, n) =
M∑

k=−M

M∑

l=−M

a j,k,l cos
2π

N
(mk + nl)

+ b j,k,l sin
2π

N
(mk + nl)

=
M∑

k=−M

M∑

l=−M

a j,k,l cos (kτ1 + lτ2)

+ b j,k,l sin (kτ1 + lτ2) (3)

The substitution variables τ1 = τ, τ2 = ξτ repre-
sent independent time dimension, both of them vary
from 0 to 2π , and m, n varying from 0 to N − 1.

Correspondingly, the nonlinear forces are expressed
as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F̄cx
(
q5, q6, q ′

5, q
′
6

)
(m, n) = ∑M

k=−M
∑M

l=−M

×(
c5,k,l cos 2π

N (mk + nl)+d5,k,l sin 2π
N (mk+nl)

)

F̄cy
(
q5, q6, q ′

5, q
′
6

)
(m, n) = ∑M

k=−M
∑M

l=−M

×(
c6,k,l cos 2π

N (mk + nl)+d6,k,l sin 2π
N (mk+nl)

)

(4)

Substituting Eqs. (3) and (4) into Eq. (2), and con-
sidering the differential operator d

dτ
= ∂

∂τ1
+ ξ ∂

∂τ2
,

rearranging the terms with the same trigonometric ele-
ments leads to the following equations:

g1,k,l = [
κ1 − (k + lξ)2

]
a1kl + ζ1 (k + lξ) b1kl

− κ2a4kl − ζ2 (k + lξ) b4kl − (κ2 + γ2κ1) a5kl
− (ζ2 + γ2ζ1) (k + lξ) b5kl + (κ2 − γ1κ1) a7kl

+ (ζ2−γ1ζ1) (k+lξ) b7kl−U1φ1−ξ2U2φ2=0

g2,k,l = −ζ1 (k + lξ) a1kl + [
κ1 − (k + lξ)2

]
b1kl

+ ζ2 (k + lξ) a4kl − κ2b4kl + (ζ2 + γ2ζ1)

(k + lξ) a5kl − (κ2 + γ2κ1) b5kl − (ζ2 − γ1ζ1)

(k + lξ) a7kl + (κ2 − γ1κ1) b7kl = 0
...

g15,k,l = −γ1ζ1 (k + lξ) b2kl − γ1κ2a3kl

− γ1ζ2 (k + lξ) b3kl + γ1 (κ2 + γ2κ1) a6kl

+ γ1 (ζ2 + γ2ζ1) (k + lξ) b6kl − γ1κ1a2kl

+ [(
κ6 − γ1κ2 + γ 2

1 κ1
) − α2 (k + lξ)2

]
a8kl

+ [
γ1 (γ1ζ1 − ζ2) + ζ6

]
(k + lξ) b8kl = 0
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g16,k,l = γ1 (κ2 + γ2κ1) b6kl

+ [(
κ6 − γ1κ2 + γ 2

1 κ1
) − α2 (k + lξ)2

]
b8kl

− [
γ1 (γ1ζ1 − ζ2) + ζ6

]
(k + lξ) a8kl

γ1ζ1 (k+lξ) a2kl−γ1κ1b2kl+γ1ζ2 (k+lξ) a3kl

− γ1κ2b3kl − γ1 (ζ2 + γ2ζ1) (k + lξ) a6kl = 0

(5)

inwhich,φ1=
{
1 (k=1, l=0)
0 others

,φ2=
{
1 (k=0, l=1)
0 others

,

the other terms are shown in Appendix 2. Equation (5)
can be expressed as:

G (P, Q)= [
g1,k,l (P, Q) , g2,k,l (P, Q) ,

. . . , g16,k,l (P, Q)
]T=0 (6)

[
P
Q

]T

=
[
a1,k,l b1,k,l a2,k,l b2,k,l . . . a8,k,l b8,k,l
c1,k,l d1,k,l c2,k,l d2,k,l . . . c8,k,l d8,k,l

]T

(7)

Equation (6) contains a series of algebraic equations
about unknown coefficients P and Q. The coefficients
Q can be expressed by using the coefficients P by
Eq. (3) and the relationships as follows:

[
c5,k,l
c6,k,l

]

= 2

N 2

N−1∑

m=0

N−1∑

n=0

[
F̄cx

(
q5, q6, q ′

5, q
′
6

)
(m, n)

F̄cy
(
q5, q6, q ′

5, q
′
6

)
(m, n)

]

× cos
2π

N
(mk + nl)

[
d5,k,l
d6,k,l

]

= 2

N 2

N−1∑

m=0

N−1∑

n=0

[
F̄cx

(
q5, q6, q ′

5, q
′
6

)
(m, n)

F̄cy
(
q5, q6, q ′

5, q
′
6

)
(m, n)

]

× sin
2π

N
(mk + nl) (8)

Finally, Eq. (6) only contains unknown coefficients
P which can be solved by iterative method such as
Newton-Rapson algorithm:

Table 1 Parameters of rotor and squeeze film damper system

Mass (kg) Stiffness (N/m) Damping (Ns/m) SFD parameters Other parameters

mo = 120 krr = 2.66 × 107 c1 = 266 c = 0.20 mm l1 = 0.8 m

ma = 12 krϕ = kϕr = 9.96 × 106 c2 = c3 = 99.6 L = 15 mm l2 = 1.25 m

mb = 18 krr = 2.21 × 107 c4 = 221 R = 39.5 mm l3 = 0.5 m

ka = 3.6 × 106 c5 = 36 μ = 1.562 × 10−2 Ns/m2 Jd = 2.5 kgm2

kb = 7.2 × 106 c6 = 72 Jp = 5.0 kgm2

δ1 = 170 × 10−5 kgm

δ2 = 140 × 10−5 kgm

(a) (b) 
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A
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0
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A
5

HB
R-K

Fig. 2 Frequency–Amplitude results of two numerical algorithms (ξ = 1.30). a center of disk q1, b journal of SFD q5

123



2468 H. Chen et al.

J (i)
(
P(i+1) − P(i)

)
+ G(i) = 0 (9)

The Jacobian matrix is expressed as:

J = dG (P, Q)

dP
= ∂G (P, Q)

∂P
+ ∂G (P, Q)

∂Q
· dQ
dP
(10)

Based on the relationships of P and Q which
revealed in Eqs. (3) and (8), term dQ

dP can be derived.
Therefore, by giving an proper initial value P(0), the
convergence solution can be obtained.

3.2 Pseudo-arc-length continuation

Generally, the convergence of Newton-Rapson algo-
rithm depends on the selection of initial value, the
improper initial value will lead to faults of the algo-
rithm, especially at the neighborhood of some bifurca-
tion points such as saddle-node bifurcation points [26].
To overcome the limitation of the algorithm, a pseudo-
arc-length continuation is embedded in the Newton-
Rapson algorithm as follows:

⎧
⎪⎨

⎪⎩

∂G
∂P

dP
ds + ∂G

∂λ
dλ

ds = 0

dPT

ds
dP
ds +

(
dλ

ds

)2 = 1
(11)

in which, λ = �1
�0

is a variable of frequency, �0 is a
constant selected for convenience. The new initial value
can be estimated by:

[
P(1) λ(1)

]T = [
P(0) λ(0)

]T + δ
[
dP
ds

dλ
ds

]T
(12)

where
⎧
⎨

⎩

dPi
ds = (−1)i C (P, λ) · det [DH[−i] (P, λ)

]

dλ
ds = (−1)N+1 C (P, λ) · det [DH[−(N+1)] (P, λ)

]

(13)

DH (P, λ) = [
∂G
∂P

∂G
∂λ

]
(14)

Fig. 4 Bifurcation diagram of center of disk q1
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Fig. 3 Time responses of q1 in different resonance region. a λ = 0.762, b λ = 4.013
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C (P, λ) = (−1)N+1 sgn
[
GP

(
P(0), λ(0)

)]

√
∑N+1

i=1

(
det

[
DH[−i]

])2
(15)

in which, the operator notation DH[−i] means matrix
DH subtract by the i throw.

According to the new initial value
[
P(1) λ(1)

]T
,

the solution can be obtained by the iterative formula
derived from Eq. (11) as follows:

[
P(i+1)

λ(i+1)

]

=
[
P(i)

λ(i)

]

−
[
GP

(
P(i), λ(i)

)
Gλ

(
P(i), λ(i)

)

dPT

ds
dλ
ds

]−1

·
[

G
(
P(i), λ(i)

)

dPT

ds

(
P(i) − P(1)

) + dλ
ds

(
λ(i) − λ(1)

)

]

.

(16)

3.3 Floquet stability analysis and Hsu’s method

The Floquet multipliers are useful indexes to reflect the
stability of the system. If all the Floquet multipliers are
within the unit circle in the complex plane, the period
solution is stable, or else the period solution is unsta-
ble. There are three ways that a periodic solution loses
stability [13]:
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(1) One of the multipliers cross the unit circle through
(+1, 0), the period solution loses stability by
saddle-node bifurcation, or pitchfork bifurcation
or symmetry-breaking bifurcation.

(2) One of the multipliers cross the unit circle through
(−1, 0), the period solution loses stability by
period-doubling bifurcation.

(3) A pair of conjugate multipliers cross the unit cir-
cle, the period solution loses stability by secondary
Hopf bifurcation.

Hsu [27] proposed a numerical scheme to obtain
Floquetmultipliers, which is carried out by discretizing
one period into a number of intervals and multiplying
constant coefficient matrices over each interval one by
one. This scheme is used here, and its procedures are
list as follows:

Firstly, rewrite themotion Eq. (2) into the state equa-
tion:

U = [
q1 q ′

1 · · · q8 q ′
8

]T
(17)

U ′ (τ̂
) = F (U ) (18)

Then, deduce the perturbation equation about �U :
(
U∗ (

τ̂
) + �U

)′ = F
(
τ̂ ,U∗ (

τ̂
) + �U

)
(19)

�U ′ = ∂F
(
τ̂ ,U

(
τ̂
))

∂U
(
τ̂
)

∣
∣
∣
∣
∣
U=U∗

·�U = A
(
τ̂ ,U∗ (

τ̂
))

�U (20)

where U∗ (
τ̂
)
is the period solution, thus matrix A is a

period matrix.
Finally, compute monodromy matrix D:

D =
1∏

n=N

exp
(
�T · A (

U∗ (
τ̂n

)
, τ̂n

))

≈
1∏

n=N

⎛

⎝I +
N j∑

j

(
�T · A (

U∗ (
τ̂n

)
, τ̂n

)) j

j !

⎞

⎠ (21)

in which �T = T/N represents the time interval, τ̂n
represents the end time of n th interval.

The eigenvalues of monodromy matrix D are the
Floquet multipliers of the corresponding periodic solu-
tion.

4 Results and discussions

The numerical analysis is carried out by using both har-
monic balance method and fourth order Runge-Kutta
method. The physical parameters of the system are
listed in Table 1.

4.1 Period solution and quasi-periodic solution

Choosing themaximal harmonic parameterM = 5 and
constant frequency Ω0 = 300 rad/s, the relationships
between dimensionless amplitude and dimensionless
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Fig. 6 Frequency–Amplitude curves of resonance region of the
rigid body translation

Table 2 Floquet multipliers nearby bifurcation point

Point λ Floquet multiplier

A 0.7690 → 0.7691 0.9564 → 1.0476

B 0.7508 → 0.7509 1.0683 → 0.7311

C 0.5728 → 0.5729 0.9404 → 1.0162

D 0.5690 → 0.5691 1.1690 → 0.9805
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frequency are shown in Fig. 2. It is clear that there are
three pairs of resonant peaks in Fig. 2b from low fre-
quency to high frequency, which are, respectively, cor-
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Fig. 8 Amplitude curves for different response frequency com-
ponents

responding to the vibrationmodes of rigid body transla-
tion and rigid body rotation, and the first bendingmode.
Eachpair of peaks represents the resonant peaks excited
by low-frequencyω1 and high-frequencyω2. The influ-
ence on the rigid body rotation is not obvious in Fig. 2a.
Thus, the nonlinear characteristics of system are con-
centrated on the rigid body translation mode and the
first bending mode. Moreover, the solutions from the
harmonic balance method agree well with that from the
Runge-Kutta method in most of the frequency region.
The displacement responses ofq1 on two frequencies of
resonant peaks λ = 0.762 and λ = 4.013 are shown in
Fig. 3, which means the choice of harmonic parameter
is applicable.

Besides, there is a region that two results are not fit
nearby λ = 4.2. To explain the difference, the bifur-
cation diagram between λ = 3.95 and λ = 4.30 is
shown in Fig. 4. Since there are two periods 2π and
2π/ξ in this two-frequency excited system, the period
2νπ is chosen as the period of Poincare mapping to
ensure the correctness of calculation. The integer ν

Fig. 9 Frequency–
amplitude curves of
resonance region of first
bending mode (ξ = 1.3)
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Table 3 Floquet multipliers
nearby bifurcation point

Point λ Floquet multiplier

A 4.0386 → 4.0476 0.0743±0.9944 i → 0.0638±1.0031 i

B 4.1470 → 4.1512 −0.3296 ± 0.9475 i → −0.3662 ± 0.9253 i

C 4.1823 → 4.1821 0.9827 → 1.0414

D 4.1776 → 4.1775 1.0633 → 0.9779
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should satisfy the condition that ξν is an integer, thus
the period 2νπ can be a common period of the two
excitations. Based on this definition, the meaning of
Poincare section needs to be redefined: a single point
means the periodic solutions contain all kω1 + lω2

frequencies, some independent points mean the solu-
tions contain fractional ratio of kω1 + lω2 frequen-
cies, and a closed circle means that there is a quasi-
periodic solution which belongs to neither kω1 + lω2

nor their fractional ratio. It is clear to see the system
gets into aperiodic motion at λ = 4.02, and the ampli-
tude of the motion increase dramatically at λ = 4.089,
finally at λ = 4.27, the motion returns back to peri-
odic solution. The frequency spectrogram, Poincare
section and phase diagram corresponding to the three
motions are given in Fig. 5. In the case of λ = 4.01,
the motion of the system is periodic, and the major
response frequencies are dimensionless excitation fre-
quencies ω1 = 1.00, ω2 = 1.30 and their combined
frequencies 2ω1 − ω2 = 0.70, 3ω1 − 2ω2 = 0.40. In
the case of λ = 4.053, besides the frequencies ω1, ω2

and their combined frequencies, there is a frequency
ωa = 0.275, which cannot be expressed as integral

multiple combination of ω1 and ω2. The amplitude
of ωa is lower than that of ω1 and ω2, and the sys-
tem motion is quasi-periodic motion with a low ampli-
tude. Different from the former two, in the case of
λ = 4.147, the dominating frequencies are no longer
ω1 and ω2, but a new frequency ωb = 0.195, which
differs from ωa and also cannot be expressed as inte-
gral multiple combination of excitation frequencies.
And, the motion of system is a quasi-periodic motion
with high amplitude, and a jump phenomenon, harm-
ful to the safety of the system, occurs when the fre-
quency λ increases. The difference of results obtained
by harmonic balancemethod andRunge–Kuttamethod
reflects the limitation of the harmonic balance method:
since the frequency of quasi-periodic solution cannot
be expressed by the assumptive frequencies kω1+ lω2,
the difference of magnitude is caused by the ampli-
tude value of quasi-periodic frequency component ωa

in Fig. 5(b-1) and ωb in Fig. 5(c-1). More discussions
about the relationship between periodic solution and
quasi-periodic solution will be given in Sect. 4.3 in this
paper.
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Fig. 10 Poincare sections and phase diagrams of two periodic solutions and a quasi-periodic solution at λ = 4.179 (ξ = 1.3)
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4.2 Resonance region of rigid body translation mode

As mentioned before, the resonance of the rigid body
translation is a region where the response amplitude is
large and the nonlinear characteristic is outstanding. In
Fig. 6, the two resonant peaks from left to right are cor-
responding to the primary resonant peaks caused by
the high excitation frequency ω2 and the low excita-
tion frequency ω1 respectively. The dotted line repre-
sents the unstable solution, and points A, B, C, D are
saddle–node bifurcation points judged by Floquet mul-
tiplier, as listed in Table 2. The jump phenomenon will

occur when the rotor speed goes up through point A,
C or goes down through point B, D. The result is sim-
ilar to that of rotor-SFD system with single excitation
frequency [12]. Besides this nonlinear characteristic,
the responses of the system also contain components
of the two excitation frequencies and their combined
frequencies, as shown in Fig. 7. It is clear to see that
there are two dominating frequenciesω1 andω2, corre-
sponding to the two resonant peaks. When λ runs near
0.55, the resonant peak is aroused by the excitation of
higher-frequency ω2, and with the increase in the fre-
quency ω2, the amplitude of frequency component ω1
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Fig. 11 Frequency–amplitude curves of resonance region with
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decreases; meanwhile, the amplitude of combined fre-
quency 2ω2 − ω1 ascends sharply to reach the magni-
tude of amplitude of frequency ω1. When λ goes near
0.75, the resonant peak is motivated by excitation of
lower-frequency ω1, and with the increase in the fre-
quency ω1, the amplitude of fundamental frequencies
ω1, ω2 and combined frequency 2ω1 −ω2 all increase.
Out of the resonance region, the combined frequencies
are all inconspicuous.

4.3 Resonance region of first bending mode

According to Fig. 2, the resonance region of first bend-
ing mode is another region which is worth analyzing
the nonlinear characteristic. The response frequencies
are shown in Fig. 8, it is obvious that the fundamental
frequencies ω1 and ω2 are dominated and others com-
bined frequencies are inconspicuous except frequen-
cies 2ω1 − ω2 and 3ω1 − 2ω2.

As mentioned in Sect. 4.1, there exists quasi-
periodic solutions in the resonance region, and Fig. 9
shows the solutions obtained by harmonic balance
method and Runge-Kutta method. The points A, B are
second Hopf bifurcation points, and the points C, D are
saddle-node bifurcation points which are judged by the
Floquet multipliers listed in Table 3, thus there are two
unstable regions A-B and C-D on the periodic solu-
tion branch. The independent quasi-periodic solution

E-F exists in region from λ = 4.040 to λ = 4.265,
coexisting with periodic solution, while quasi-periodic
solution A-G comes from the unstable periodic solu-
tion. In the region between point C and point D, there
are three solutions corresponded to one value of λ, for
instance, Fig. 10 shows the comparison of the three
solutions at λ = 4.179, ordered by amplitude from low
to high, the first two solutions are periodic solutions,
but the third one is a quasi-periodic solution.

The unstable solutions may lead to three different
kinds of jump phenomena with the rotor speed going
up or going down: between one quasi-periodic solution
and another quasi-periodic solution, between quasi-
periodic solution and periodic solution, and between
two periodic solutions. When the rotor speed goes up
through point A, the periodic solution loses stabil-
ity entering the quasi-periodic motion, and with the
increasing speed, the quasi-periodic motion on sec-
tion A-G will jump up to the quasi-periodic section
E-F, then jump down to the periodic solution. If the
rotor speed goes up from point B, the periodic motion
will go from point B to point C, and then jump up to
another stable periodic solution with a small ampli-
tude. When the rotor speed goes down, the periodic
motion will jump down form point D and lose stabil-
ity on point B resulting into periodic section E-F, the
amplitudewill become higher and higher until the com-
putational divergence as the speed goes down. In this
system, the resonant peak has the ‘soft stiffness’ char-

Fig. 12 Frequency–
amplitude curves of
resonance region with ratio
ξ = 1.36
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Fig. 13 Frequency spectrogram, Poincare section and phase diagram of two kinds of quasi-periodic solution at λ = 4.25 ( ξ = 1.36)
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acteristic, moreover, the multiple stable state solutions
cause the large amplitude jump. The unstable section
A-B is a main reason for the jump phenomenon, and
the quasi-periodic solution E-F is an essential condi-
tion.

The unstable solution near the resonant peak of first
bendingmodewas early reported byMcLean andHahn
[28] in their study about a symmetry flexible rotor sup-
ported by squeeze film dampers under single excita-
tion, and then Zhao [10] explained that the periodic
solution loses stability through second Hopf bifurca-
tion. In the study of single excitation system, Hussain
[29] andZhu [12], respectively, obtained the low ampli-
tude quasi-periodic solution and the high amplitude
quasi-periodic solution near the resonant peak of first
bending mode, which are corresponding to the section
AG and the section EF in this paper. Moreover, in this
paper the resonant peak in the local figure of Fig. 9
forms a cross structure, and this characteristic was also
reported in Zhu’s work [12], thus it is a basic character-
istic of nonlinear system consisted of SFD and flexible
rotor.

The nonlinear characteristic such as second Hopf
bifurcation, quasi-periodic solution and cross structure
in this paper also can be obtained in flexible rotor-
squeeze film dampers system with single excitation
system, and the bifurcation mechanism and the region
of quasi-periodic solution are agreed with the other
researchers’ results mentioned above.

4.4 Effect of parameters

The amplitude jump is a harmful effect on the system,
and the unstable solution is an important factor of this
phenomenon, so the effect of parameters on the unsta-
ble region should be analyzed.

Figure 11 shows the effect of ratio of excitation
frequencies on unstable region and resonant peak. It
is obvious that the quasi-periodic solution and unsta-
ble region are not distinct with the increase of the
frequency ratio ξ , but the resonant peak shows the
irregular change between ‘soft spring characteristic’
(ξ = 1.25, ξ = 1.30, ξ = 1.33) and a kind of ‘cross
characteristic’ (ξ = 1.28).

Moreover, as shown in Fig. 12, when ξ = 1.36,
besides the unstable region A-B and quasi-periodic
solution G-H mentioned above, there is another unsta-
ble region E-F with quasi-periodic solution J-K. The
pointsA, B, E, F are secondaryHopf bifurcation points,
and points C, D are saddle-node bifurcation points. The
jump phenomenon can occur from periodic solution to
quasi-periodic solution or from quasi-periodic solution
to quasi-periodic solution. Figure 13 shows the com-
parison of the two kinds of quasi-periodic solutions
at λ = 4.25, it is clear to see the differences in the
frequency spectrograms (ωm = 0.195, ωn = 0.177),
Poincare sections and phase diagrams.

Figure 14 shows an interesting result in the case of
ξ = 1.37, there are still two kinds of quasi-periodic

Fig. 14 Frequency–
amplitude curves of
resonance region with ratio
ξ = 1.37
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solutions, but unlike the results for ξ = 1.36, there
are only two secondary Hopf bifurcation points C and
D, and the unstable region at the left of resonant peak
vanish. The resonant peak has the ‘hard spring charac-
teristic’, but the periodic solution will jump from point
A to the quasi-periodic solution E-F when the rotor
speed goes up. Since the jump point A is beyond the
unstable region C-D, the points B, C are saddle-node
bifurcation points

The effects of the different ratios of excitation fre-
quencies show abundant nonlinear phenomenon and

multiple-solution conditions, and the system nonlinear
characteristics are sensitive to the frequency ratio. The
unstable solution caused by saddle-node bifurcation
makes the cross structure of solution express the ‘soft’
or ‘cross’ characteristic: If the cross point is crossed
by a unstable solution and a stable solution, the res-
onant peak has ‘soft’ characteristic; if the cross point
is crossed by two stable solutions, the resonant peak
has ‘cross’ characteristic. Moreover, the system also
can express ‘hard’ characteristic in some other condi-
tions.
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Fig. 15 Frequency–amplitude curves of resonance region with
different parameters combination. a c = 0.19 mm,μ = 1.562×
10−2 N s/m2, b c = 0.18 mm, μ = 1.562 × 10−2 Ns/m2, c
c = 0.20 mm, μ = 1.708 × 10−2 Ns/m2, d c = 0.20 mm,

μ = 1.855× 10−2 Ns/m2. Straight line Harmonic balance (sta-
ble solution), Dashed line Harmonic balance (unstable solu-
tion), opencircle Runge-Kutta (periodic solution), +Runge-
Kutta (quasi-periodic solution)
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The effects of clearance c and kinetic viscosity coef-
ficient μ under the same ratio ξ = 1.3 are shown in
Fig. 15. Compared with Figs. 9 and 15a, b describe
the effects of varying clearances on the system. The
decrease of the clearancemakes the cross structure van-
ish, makes the unstable region gradually disappear and
leads to the periodic solutions of the region all be sta-
ble. Meanwhile, the quasi-periodic motions still exist,
which may cause the jump phenomenon when the sys-
tem receives some disturbance. Similarly, the increase
in the viscosity can also attenuate the nonlinear char-
acteristic as shown in Fig. 15c, d.

Summing up the above analysis, the basic nonlinear
characteristic of flexible rotor combined with squeeze
film damper under two-frequency excitations is sim-
ilar to the system under single-frequency excitation,
for instance, the jump phenomena and hard stiffness
effect on the resonant peak of rigid body translation
mode caused by saddle-node bifurcation, the jump phe-
nomena nearby the resonant peak of the first bending
mode caused by second Hopf bifurcation and indepen-
dent quasi-periodic solution, and the cross structure on
the resonant peak of the first bending mode caused by
saddle-node bifurcation. The influence of SFD para-
meter is also similar to the single-frequency excitation
system. However, the system with two-frequency exci-
tations has its particular characteristic: The jump phe-
nomena can exhibit different stiffness characteristics,
i.e., ‘soft’, ‘cross’ and ‘hard’ due to different frequency
ratio, and another unstable region and quasi-periodic
solution could appear in certain frequency ratios; there-
fore, the frequency ratio is an important parameter in
a two-frequency excited nonlinear system. Finally, the
response of the combination frequencies is also a char-
acteristic of two-frequency excited nonlinear system.

5 Conclusions

In this paper, the nonlinear characteristics of a flex-
ible rotor with squeeze film damper excited by two-
frequency excitation have been investigated via har-
monic balance method and Runge-Kutta method. The
nonlinear characteristics have been focused mainly
on two resonance regions corresponding to the rigid
body translation and first bending mode, respectively.
It has been concluded that the responses in resonance
region of rigid body translation perform jump phenom-
enon and show ‘hard spring’ nonlinear characteristic.

Besides the excitation frequencies, the response con-
tains primary combination frequencies of 2ω2 − ω1

and 2ω1 − ω2. The response in resonance region of
first bending mode has abundant nonlinear character-
istic, for instance, jump phenomena caused by saddle-
node bifurcation, second Hopf bifurcation and quasi-
periodic solution, and the response contains primary
combination frequencies of 2ω1 − ω2 and 3ω1 − 2ω2.
The unstable solution caused by saddle-node bifurca-
tion on the cross structure makes the resonant peak
show ‘soft’ or ‘cross’ characteristics under different
ratios of frequencies; moreover, the resonant peak
also shows ‘hard’ characteristic in the case of ξ =
1.37. The unstable solution caused by secondary Hopf
bifurcation makes the system perform quasi-periodic
motions and jump up to other independent quasi-
periodic motions with large amplitudes. In some con-
ditions (ξ = 1.36, ξ = 1.37), there are two indepen-
dent quasi-periodic solutions, the system shows more
complex jump phenomenon. The number of unstable
regions and the nonlinear characteristics are sensitive
to the ratio of excitation frequencies. The decrease in
clearance or increase in viscosity could attenuate the
nonlinear characteristics of resonant peak. The results
in the paper will contribute to a better understanding
of the nonlinear dynamic behaviors of the SFD-rotor
systems with two excitations and provide a theoretical
foundation for optimization of the system parameters.
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Appendix 1: List of symbols

a j,k,l , b j,k,l Harmonic coefficients of dimensionless
displacements, dimensionless

A Periodic matrix, dimensionless
B Dimensionless bearing parameter of

squeeze film damper, dimensionless
c Clearance of squeeze film damper, m
c j,k,l , d j,k,l Harmonic coefficients of dimensionless

nonlinear forces, dimensionless
c1 Damping coefficient corresponding to

transverse deformation of the shaft, N
s/m
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c2, c3 Damping coefficients corresponding to
coupling deformation of the shaft, N s

c4 Damping coefficient corresponding to
angular deformation of the shaft, N m s

c5, c6 Damping coefficients of the supports, N
s/m

D Monodromy matrix, dimensionless
Fcx, Fcy Oil film forces in the Cartesian coordi-

nate system, N
F̄cx, F̄cy Dimensionless oil film forces in the

Cartesian coordinate system, dimen-
sionless

Fr, Fτ Oil film forces in the polar coordinate
system, N

F̄r, F̄τ Dimensionless oil film forces in the
polar coordinate system, dimensionless

G Vector of harmonic balance terms, di-
mensionless

J Jacobi matrix, dimensionless
Jd Equivalent equatorial moment of inertia

of the disk, kg m2

Jp Equivalent polar moment of inertia of
the disk, kg m2

k, l Harmonic parameters, dimensionless
krr Stiffness coefficient corresponding to

transverse deformation of the shaft,
N/m

krϕ, kϕr Stiffness coefficients corresponding to
coupling deformation of the shaft, N

kϕϕ Stiffness coefficient corresponding to
angular deformation of the shaft, N m

ka, kb Stiffness coefficient of the supports,
N/m

l Length of the shaft, m
l1 Distance from the disk to the left sup-

port, m
l2 Distance from the disk to the right sup-

port, m
l3 Distance from the disk to the intershaft

bearing, m
L Length of squeeze film damper, m
m, n Parameters of discrete points in time

domain, dimensionless
mo Equivalent mass of the rotor, kg
ma Equivalent mass of the left journal, kg
mb Equivalent mass of the right journal, kg
M Maximal harmonic parameter, dimen-

sionless

N Number of discrete points in time do-
main, dimensionless

P Vector of harmonic coefficients of di-
mensionless displacements, dimension-
less

qj Dimensionless displacement (j=1∼8),
dimensionless

Q Vector of harmonic coefficients of di-
mensionless nonlinear forces, dimen-
sionless

r Radial displacement of journal, m
R Radius of the journal, m
s Dimensionless arc length, dimension-

less
t Time, s
U Vector of state variables, dimensionless
U1, U2, U3 Dimensionless unbalance value, dimen-

sionless
x , y Displacements of center of disk, m
xa, ya Displacements of center of left journal,

m
xb, yb Displacements of center of right jour-

nal, m
α0, α1, α2 Dimensionless mass, dimensionless
γ1, γ2 Ratio of distance l1, l2 to length l,

dimensionless
δ1, δ2 Unbalance value, kg m
ε Dimensionless radial displacement of

journal, dimensionless
ζj Dimensionless damping coefficients

(j=1∼6), dimensionless
η Ratio ofmoment of inertia Jp tomoment

of inertia Jd, dimensionless
θ Journal position angle measured from

line of journal centers, dimensionless
θ1, θ2 Angles from line of journal centers to

start and end of positive pressure region,
dimensionless

θx, θy Angles of disk rotate along x axis and y
axis, dimensionless

κj Dimensionless stiffness coefficients
(j=1∼6), dimensionless

λ Bifurcation parameter, dimensionless
μ Viscosity coefficient of oil, N s/m2

ξ Ratio of high excitation frequency Ω2

to low excitation frequency Ω1, dimen-
sionless

τ , τ1, τ2 Dimensionless time, dimensionless
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ψ angular displacement of journal, dimen-
sionless

ω1, ω2 Dimensionless lowexcitation frequency
and dimensionless high excitation fre-
quency, dimensionless

Ω0 Reference rotational speed
Ω1, Ω2 Low-pressure rotor rotational speed and

high-pressure rotor rotational speed,
rad/s

Appendix 2

g3,k,l =
[
κ1 − (k + lξ)2

]
a2kl + ζ1 (k + lξ) b2kl

+ κ2a3kl + ζ2 (k + lξ) b3kl − (κ2 + γ2κ1) a6kl
− (ζ2 + γ2ζ1) (k + lξ) b6kl + (κ2 − γ1κ1) a8kl
+ (ζ2 − γ1ζ1) (k + lξ) b8kl = 0

g4,k,l = −ζ1 (k + lξ) a2kl +
[
κ1 − (k + lξ)2

]
b2kl

−ζ2 (k + lξ) a3kl + κ2b3kl + (ζ2 + γ2ζ1) (k + lξ) a6kl
− (κ2 + γ2κ1) b6kl − (ζ2 − γ1ζ1) (k + lξ) a8kl
+ (κ2 − γ1κ1) b8kl −U1φ1 − ξ2U2φ2 = 0

g5,k,l =κ3a2kl+ζ3 (k + lξ) b2kl+
[
κ4 − α0 (k + lξ)2

]
a3kl

+ζ4 (k + lξ) b3kl + α0η (k + lξ) b4kl
− (κ4 + γ2κ3) a6kl
− (ζ4 + γ2ζ3) (k + lξ) b6kl + (κ4 − γ1κ3) a8kl
+ (ζ4 − γ1ζ3) (k + lξ) b8kl = 0

g6,k,l = −ζ3 (k + lξ) a2kl + κ3b2kl − ζ4 (k + lξ) a3kl

+
[
κ4 − α0 (k + lξ)2

]
b3kl − α0η (k + lξ) a4kl

+ (ζ4 + γ2ζ3) (k + lξ) a6kl − (κ4 + γ2κ3) b6kl
− (ζ4 − γ1ζ3) (k + lξ) a8kl + (κ4 − γ1κ3) b8kl
−ξ2U3φ2 = 0

g7,k,l = −κ3a1kl − ζ3 (k + lξ) b1kl − α0η (k + lξ) b3kl

+
[
κ4 − (k + lξ)2

]
a4kl + ζ4 (k + lξ) b4kl

+ (κ4 + γ2κ3) a5kl + (ζ4 + γ2ζ3) (k + lξ) b5kl
− (κ4 − γ1κ3) a7kl − (ζ4 − γ1ζ3) (k + lξ) b7kl
+ξ2U3φ2 = 0

g8,k,l = ζ3 (k + lξ) a1kl − κ3b1kl + α0η (k + lξ) a3kl

−ζ4 (k + lξ) a4kl +
[
κ4 − (k + lξ)2

]
b4kl

− (ζ4 + γ2ζ3) (k + lξ) a5kl + (κ4 + γ2κ3) b5kl
+ (ζ4 − γ1ζ3) (k + lξ) a7kl − (κ4 − γ1κ3) b7kl = 0

g9,k,l = −γ2κ1a1kl−γ2ζ1 (k + lξ) b1kl+γ2κ2a4kl + γ2ζ2

(k + lξ) b4kl+
[(

κ5+γ2κ2+γ 2
2 κ1

)
− α1 (k + lξ)2

]
a5kl

+ [
ζ5 + γ2 (ζ2 + γ2ζ1)

]
(k + lξ) b5kl − γ2 (κ2 − γ1κ1)

a7kl − γ2 (ζ2 − γ1ζ1) (k + lξ) b7kl + Bc5kl = 0

g10,k,l =γ2ζ1 (k + lξ) a1kl−γ2κ1b1kl − γ2ζ2 (k + lξ) a4kl
+ γ2κ2b4kl − [

γ2 (ζ2 + γ2ζ1) + ζ5
]
(k + lξ) a5kl

+
[(

κ5 + γ2κ2 + γ 2
2 κ1

)
− α1 (k + lξ)2

]
b5kl

− γ2 (κ2 − γ1κ1) b7kl + γ2 (ζ2 − γ1ζ1) (k + lξ) a7kl
+ Bd5kl = 0

g11,k,l = −γ2κ1a2kl − γ2ζ1 (k + lξ) b2kl

−γ2κ2a3kl − γ2ζ2 (k + lξ) b3kl

+
[(

κ5 + γ2κ2 + γ 2
2 κ1

)
− α1 (k + lξ)2

]
a6kl

+ [
ζ5 + γ2 (ζ2 + γ2ζ1)

]
(k + lξ) b6kl

−γ2 (κ2 − γ1κ1) a8kl − γ2 (ζ2 − γ1ζ1) (k + lξ) b8kl

+Bc6kl = 0

g12,k,l = γ2ζ1 (k + lξ) a2kl − γ2κ1b2kl

+ γ2ζ2 (k + lξ) a3kl

−γ2κ2b3kl − [
γ2 (ζ2 + γ2ζ1) + ζ5

]
(k + lξ) a6kl

+
[(

κ5 + γ2κ2 + γ 2
2 κ1

)
− α1 (k + lξ)2

]
b6kl

+γ2 (ζ2 − γ1ζ1) (k + lξ) a8kl − γ2 (κ2 − γ1κ1) b8kl

+Bd6kl = 0

g13,k,l = −γ1κ1a1kl − γ1ζ1 (k + lξ) b1kl

+γ1κ2a4kl+γ1ζ2 (k + lξ) b4kl+γ1 (κ2 + γ2κ1) a5kl

+γ1 (ζ2 + γ2ζ1) (k + lξ) b5kl

+
[(

κ6 − γ1κ2 + γ 2
1 κ1

)
− α2 (k + lξ)2

]
a7kl

+ [
γ1 (−ζ2 + γ1ζ1) + ζ6

]
(k + lξ) b7kl = 0

g14,k,l = γ1ζ1 (k + lξ) a1kl − γ1κ1b1kl

−γ1ζ2 (k + lξ) a4kl

+γ1κ2b4kl − γ1 (ζ2 + γ2ζ1) (k + lξ) a5kl

+γ1 (κ2 + γ2κ1) b5kl

+
[(

κ6 − γ1κ2 + γ 2
1 κ1

)
− α2 (k + lξ)2

]
b7kl

− [
γ1 (−ζ2 + γ1ζ1) + ζ6

]
(k + lξ) a7kl = 0
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