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Abstract In this paper, through the generalized Ric-
cati equation mapping method, we investigate soliton
solutions in the upper and lower forbidden band gab
of the Salerno equation describing nonlinear discrete
electrical lattice. As a result, we obtain various hyper-
bolic and trigonometric functions solutions and for
some appropriated parameters we obtain exact solu-
tions including kink, antikink, breathers, and dark and
bright solitons. The obtained solutions are useful for
the signal transmission through the electrical lattice.
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1 Introduction

Nonlinearity is a fascinating feature of nature whose
importance has been thought of for many years when
considering large-amplitude wave motions observed in
various fields ranging from fluids and plasmas to solid-
state, biological and chemical systems. In that respect,
solitons represent one of the most striking aspects of
nonlinear phenomena [1].

The concept of soliton was introduced to science,
in the first time, by John Scoot Russell in 1834. After
its discovery, soliton has become an important item of
research in diverse fields of Physics andEngineering. In
fact, Solitons are a special class of pulse-shaped waves
that propagate without changing their shape in non-
linear dispersive media. They retain their form after
mutual interactions [2–5]. Thus, solitons are investi-
gated in various nonlinear evolutions equations such
as the generalized Zakharov–Kuznetsov equation [6],
the coupled Korteweg-de-Vries equations [7], the cou-
pled discrete nonlinear Schrödinger equations [8], the
Fornberg–Whitham equation [9], just to cite a few.
These nonlinear evolution equations described several
nonlinear phenomena, among these nonlinear phenom-
ena, the nonlinear electrical transmission lines is the
specifically one which attracts our attention.
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Moreover, many scientists around the world have
been studied the nonlinear electrical lattice. For exam-
ple, Hirota and Suzuki were the first who built the first
nonlinear and dispersive line [10]. Further, Nagashima
and Amagishi were the first to simulate the propaga-
tion of solitons in this medium [11]. Many studies have
been undertaken in nonlinear electrical transmission
lines [12–18]. Furthermore, Patrick [19] studied obser-
vation of nonlinear localizedmodes in electrical lattice.
Recently, Togueu et al. [2,4] studied a supratransmis-
sion phenomenon in a discrete electrical lattice with
nonlinear dispersion and shown that in upper and lower
forbidden band gab, the nonlinear Salerno equation can
be derived and solutions were found under some con-
ditions.

Therefore, in order to obtain solitons in the nonlin-
ear lattice with nonlinear dispersion, many direct and
effective methods were presented such as the auxil-
iary equations methods [20], The sine–cosine Method
[21,22], the extended tanh method [23], the (G/G)-
expansion method [24–27], the homogeneous balance
method [28,29], and many other methods are used for
constructing solitons solutions [30–32]. Thus, further
research has been carried out by a considerable num-
ber of researchers by means of the generalized Ric-
cati equation mapping method [33–36]. For example,
Boudoue et al. in [35] investigated traveling wave and
solitons solutions in nonlinear electrical transmission
lines. To pursue the same idea but with different model,
we also investigate solitons in the forbidden band gab
of a nonlinear discrete electrical lattice by means of
the generalized Riccati equation mapping method. To
reach such a goal, we present the paper as follows: In
Sect. 2, we will give description of the generalized Ric-
cati equation mapping method. In Sect. 3, we describe
the model and the circuit equation. In Sect. 4, we apply
the generalized Riccati equation mapping method to
the equation found in Sect. 3 and the last section is
devoted to concluding remarks.

2 Description of the generalized Riccati equation
mapping method

We consider a given nonlinear partial differential equa-
tion for u(x, t) to be in the form

K (u, ut , ux , uxt , uxx , utt ) = 0. (1)

Step 1 By means of traveling wave transformations
u(x, t) = U (ξ), ξ = kx − ct , Eq. (1) is transformed
to the following ordinary differential equation:

G(U,U ′,U ′′, . . .) = 0, (2)

where primes denote the derivative with respect to ξ .
Step 2We seek the solutionU (ξ) of Eq. (2) in the finite
series form

U (ξ) =
m∑

i=0

aiψ
i (ξ), (3)

where the parameter m is determined by balancing the
linear derivative term(s) of highest order with the high-
est order nonlinear term(s) in Eq. (2) and ai , am �= 0
are real constants to be determined. The function ψ(ξ)

expresses the solution of the following generalizedRic-
cati equation:

dψ(ξ)

dξ
= r + pψ(ξ) + qψ2(ξ). (4)

Step 3 Substituting Eq. (3) together with Eq. (4) into
Eq. (2) yields an algebraic equation involving powers
of ψ(ξ) and equating the coefficients of each power of
ψ(ξ) to zero gives a system of algebraic equations for
ai , r , p, and q.

Step 4 Solving the resulting system of algebraic
equations with the aid of a computer algebra system,
such asMathematica orMaple, to determine these con-
stants, we can get exact solutions depending on the sign
of the discriminant � = p2 − 4qr .

3 Model description and circuit equation

We consider the discrete electrical lattice as illustrated
inFig. 1. Forn ≥ 1, the line can be considered as a set of
elementary cells where each cell contains a series linear
inductance L1 and a linear inductance L2 in parallel
with the nonlinear capacitor C(Vn). Previous works
have been done in the above electrical lattice in which
the capacitance of the nonlinear capacitor is assuming
to be a logarithmic nonlinearity for capacitance C(Vn)
as [2]

C(Vn) = AC0
ln(1 + Vn

A )

Vn
, (5)

where A and C0 take constant values.
Applying Kirchhoff’s laws leads to the system of

nonlinear equations

A
∂2

∂t2
ln(1+ Vn

A
) = u20(Vn+1 + Vn−1 − 2Vn) − ω2

0Vn,

(6)

with u20 = 1
L1C0

and ω2
0 = 1

L2C0
.
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Fig. 1 Schematic
representations of the
electrical lattice

Fig. 2 The linear relation of two forbidden band gabs corre-
sponding to the shaded areas for u0 = 1.768 × 106 rad/s and
w0 = 2.127 × 106 rad/s

Linearizing Eq. (6) with respect to Vn and assum-
ing that a sinusoidal wave of Vn is proportional to
exp[i(kn − wt)] where k and w are respectively the
angular frequency and wave number, the following lin-
ear dispersion law is derived [2]

ω2 = ω2
0 + 4u20 sin

2
(
k

2

)
. (7)

The above relation admits the lower cutoff mode fre-
quency when k = 0 and upper cutoff frequency when
k = π . Graphical representation of the forbidden band
gabs is shown in Fig. 2. Now, we restrict our analysis
to slow temporal variations of the envelope and look
for a solution of Eq. (6) in the form

Vn(t) = ψne
i(wt−kn) + c.c. (8)

where c.c. stand for complex conjugate.
Consider the above relations, the nonlinear Salerno

equation is derived [2]

i
dφn

dτ
+ (1 + μ | φn |2)

×(φn+1e
ik + φn−1e

−ik)) − ν | φn |2 φn = 0, (9)

with ψn = φn exp[iτ(ω2 − ω2
0 − 2u20)/u

2
0], τ =

u20t/2ω, μ = 1/A2, ν = 2ω2+ω2
0+2u20

u20A
2 , and n ≥ 1. ν

and μ are respectively the nonlinear cubic and non-
linear dispersion coefficients. From this equation, in
the upper forbidden band gab, we insert the following
ansatz of stationary solutions in the formφn = χne−iντ

and the following set of nonlinear coupled algebraic
equations is obtained [2]

un+1 + un−1 = −ν1

μ
un + (ν + ν1

μ
)

un
1 + u2n

, (10)

with ν1= 2ω2
max+ω2

0+2u20
u20A

2 . Applying the continuum app-

roximation by assuming that un varies slowly from the
unit section to another and replace the discrete index n
by a continuous variable x and use theTaylor expansion
for the un+1 under conditions un � 1, it leads to [2]

d2u

dx2
− (ν − 2)u − (ν + ν1

μ
)(−u3 + u5) = 0. (11)

4 Application of the generalized Riccati equation
mapping method to the electrical lattice

To obtainmore exact solutions by using the generalized
Riccati equation mapping method presented in [3], we
use the traveling wave transformations

ξ = √
k(x − ct), u(x, t) = U (ξ),

U (ξ) = ±W 1/2(ξ), (12)

and Eq. (11) becomes

− k

4W
(
dW

dξ
)2 + k

2

d2W

dξ2

−(ν − 2)W − (ν + ν1

μ
)(−W 2 + W 3) = 0. (13)
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We determine the parameter m by balancing the high-
est derivative term and the highest nonlinear term in
Eq. (13), it leads tom = 1. Substituting Eqs. (3) and (4)
into Eq. (13) and equating all the coefficients of power
of ψ(ξ) to be zero, we obtain the algebraic system

ψ0 : −k

4
a21r

2 + k

2
a0a1 pr − (ν − 2)a20

−(ν + ν1

μ
)(−a20 + a40) = 0, (14)

ψ1 : −2(ν − 2)a0a1 + k

2
a0a1 p

2

+1

2
(2ka0a1q + ka21 p)r − k

2
a21rp

−(ν + ν1

μ
)(−3a20a1 + 4a30a1) = 0, (15)

ψ2 : −(ν − 2)a21 + k

2
a0a1 pq

+1

2
(2ka0a1q + ka21 p)p + ka21qr

−(ν + ν1

μ
)(−3a0a

2
1 + 6a0a

2
1)

−k

4
a21(2rq + p2) = 0, (16)

ψ3 : 1
2
(2ka0a1q + ka21 p) + 1

2
ka21 pq

−(ν + ν1

μ
)(−a31 + 4a0a

3
1) = 0, (17)

ψ4 : 3
4
ka21q

2 − (ν + ν1

μ
)a41 = 0, (18)

where a0, a1, k are unknown parameters.
Solving the system of algebraic Eqs. (14–18) and

using the computer programs such as Maple or MAT-
LAB under condition ν + ν1

μ
= 16

3 (ν − 2), we obtain
the following constraint relations:

a0 = 3

8
+ 3

8

√
p2

p2 − 4qr
, a1 = 3

4

√
q2

p2 − 4qr
,

k = 4(ν − 2)

p2 − 4qr
. (19)

Based on this case and on solutions given in [12], one
can easily obtain new type of solutions shown as fol-
lows:

Type 1When p2−4pr > 0 and pq �= 0 (or qr �= 0),
the solutions of Eq. (11) are

u1(x, t) = ±
{
a0 − a1

2q

[
p +

√
p2 − 4qr tanh

×
(√

p2 − 4qr

2

√
k(x − ct)

)]} 1
2

, (20)

Graphical representation of Eq. (21) is given in Fig. 3.
We obtain kink solutions for different values of con-
stants.

u2(x, t) = ±
{
a0 − a1

2q

[
p +

√
p2 − 4qr

× coth

(√
p2−4qr

2

√
k(x−ct)

)]} 1
2

,(21)

u3(x, t) = ±
{
a0 − a1

4q

[
2p +

√
p2 − 4qr

×
(
tanh

(√
p2 − 4qr

4

√
k(x − ct)

)

± cosh

(√
p2 − 4qr

4

√
k(x−ct)

))]} 1
2

,

(22)

u4(x, t) = ±

⎧
⎪⎪⎨

⎪⎪⎩
a0 + a1

2q

⎡

⎢⎢⎣−p +
√

(B2 − A2)(p2 − 4qr)+A
√
p2 − 4qr cosh

(√
p2 − 4qr

√
k(x−ct)

)

A sinh

(√
p2 − 4qr

√
k(x − ct)

)
+ B

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

1
2

,

(23)

u5(x, t) = ±

⎡

⎢⎢⎣a0 +
2ra1 cosh

(√
p2−4qr
2

√
k(x − ct)

)

√
p2 − 4qr sinh

(√
p2−4qr
2

√
k(x − ct)

)
− p cosh

(√
p2−4qr
2

√
k(x − ct)

)

⎤

⎥⎥⎦

1
2

, (24)

Graphical representation of the corresponding solu-
tions is given in Fig. 4a, b for precise values of para-
meters. The obtained solutions are breathers.
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Fig. 3 Kink solutions of Eq. (21) for p = 3, q = 2, r = 1, ν = 3 , a Kink-like solution for c = 1, b Antikink solution for c = 1 for
the negative form, c Kink for c = 0.1, d Antikink for c = 0.1 with negative value

u6(x, t) = ±

⎡

⎢⎢⎣a0 −
2ra1 sinh

(√
p2−4qr
2

√
k(x − ct)

)

p sinh

(√
p2−4qr
2

√
k(x − ct)

)
− √

p2 − 4qr cosh

(√
p2−4qr
2

√
k(x − ct)

)

⎤

⎥⎥⎦

1
2

, (25)

u7(x, t)

= ±

⎡

⎢⎢⎣a0+
2ra1 cosh

(√
p2−4qr
2

√
k(x−ct)

)

√
p2 − 4qr sinh

(√
p2 − 4qr

√
k(x − ct)

)
−p cosh

(√
p2 − 4qr

√
k(x − ct)

)
± i

√
p2 − 4qr

⎤

⎥⎥⎦

1
2

,

(26)

u8(x, t)

= ±

⎡

⎢⎢⎣a0+
2ra1 sinh

(√
p2−4qr
2

√
k(x − ct)

)

−p sinh

(√
p2 − 4qr

√
k(x−ct)

)
+√

p2 − 4qr cosh

(√
p2 − 4qr

√
k(x−ct)

)
± √

p2 − 4qr

⎤

⎥⎥⎦

1
2

,

(27)
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Fig. 4 Breathers solutions of Eq. (24) for p = 2, q = 0.5, r = 1.5, ν = 3.5, B = 2, A = 1, a Breather for c = 1, b Antibreather for
c=1 for negative form one, c Breather for c = 0.1, d Antibreather for c=0.1 in the negative form

Graphical representation of the corresponding solu-
tions is given in Fig. 5a–d. The obtained solutions are
dark and bright.

u9(x, t) = ±

⎡

⎢⎢⎣a0 +
4ra1 sinh

(√
p2−4qr
4

√
k(x − ct)

)
cosh

(√
p2−4qr
4

√
k(x − ct)

)

−2p� + 2
√
p2 − 4qr cosh2

(√
p2−4qr
4

√
k(x − ct)

)
− √

p2 − 4qr

⎤

⎥⎥⎦

1
2

, (28)

where� = sinh

(√
p2−4qr
4

√
k(x−ct)

)
cosh

(√
p2−4qr
4

√
k(x − ct)

)
. A and B are two nonzero real constants

with B2 − A2 > 0.

Type 2When p2−4pr < 0 and pq �= 0 (or qr �= 0),
the solutions of Eq. (11) are given by:

u10(x, t) = ±
[
a0 + a1

2q

(
−p +

√
4qr − p2 tan

×
(√

4qr − p2

2

√
k(x − ct)

))] 1
2

, (29)
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Fig. 5 Dark and bright solutions of Eq. (27) for p = 3, q = 0.2, r = 1.2, ν = 3.5, a Dark for c = 1, b Dark for c = 1, c Other form
of Dark for c = 0.1, d Bright for c = 0.1

u11(x, t) = ±
[
a0 − a1

2q

(
p +

√
4qr − p2 cot

(√
4qr − p2

2

√
k(x − ct)

))] 1
2

, (30)

u12(x, t) = ±
{
a0 + a1

4q

[
−2p +

√
4qr − p2

(
tan

(√
4qr − p2

4

√
k(x − ct)

)
− coth

(√
4qr − p2

4

√
k(x − ct)

))]} 1
2

,

(31)

u13(x, t) = ±

⎧
⎪⎪⎨

⎪⎪⎩
a0 + a1

2q

⎡

⎢⎢⎣−p −
±√

(A2 − B2)(4qr − p2) − A
√
4qr − p2 cos

(√
4qr − p2

√
k(x − ct)

)

A sin

(√
4qr − p2

√
k(x − ct)

)
+ B

⎤

⎥⎥⎦

⎫
⎪⎪⎬

⎪⎪⎭

1
2

, (32)

u14(x, t) = ±

⎡

⎢⎢⎣a0 −
2ra1 cos

(√
4qr−p2

2

√
k(x − ct)

)

√
4qr − p2 sin

(√
4qr−p2

2

√
k(x − ct)

)
+ p cos

(√
4qr−p2

2

√
k(x − ct)

)

⎤

⎥⎥⎦

1
2

, (33)
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u15(x, t) = ±

⎡

⎢⎢⎣a0 −
2ra1 sin

(√
4qr−p2

2

√
k(x − ct)

)

p sin

(√
4qr−p2

2

√
k(x − ct)

)
− √

4qr − p2 cos

(√
4qr−p2

2

√
k(x − ct)

)

⎤

⎥⎥⎦

1
2

, (34)

u16(x, t) = ±

⎡

⎢⎢⎣a0 −
2ra1 cos

(√
4qr−p2

2

√
k(x − ct)

)

√
4qr − p2 sin

(√
4qr − p2

√
k(x − ct)

)
+ p cos

(√
4qr − p2

√
k(x − ct)

)
± √

4qr − p2

⎤

⎥⎥⎦

1
2

,

(35)

u17(x, t) = ±

⎡

⎢⎢⎣a0 +
2ra1 sin

(√
4qr−p2

2

√
k(x − ct)

)

−p sin

(√
4qr − p2

√
k(x − ct)

)
+ √

4qr − p2 cos

(√
4qr − p2

√
k(x − ct)

)
± √

4qr − p2

⎤

⎥⎥⎦

1
2

,

(36)

u18(x, t) = ±

⎡

⎢⎢⎣a0 +
4ra1 sin

(√
4qr−p2

4

√
k(x − ct)

)
cos

(√
4qr−p2

4

√
k(x − ct)

)

−2pϒ + 2
√
4qr − p2 cos2

(√
4qr−p2

4

√
k(x − ct)

)
− √

4qr − p2

⎤

⎥⎥⎦

1
2

, (37)

where ϒ = sin

(√
4qr−p2

4

√
k(x−ct)

)
cos

(√
4qr−p2

4

√
k(x−ct)

)
andA andB are twononzero real constants

and satisfying B2 − A2 < 0.
Type 3 When r = 0 and pq �= 0, the solutions of

Eq. (11) are

u19(x, t) = ±

⎡

⎢⎢⎣a0 − a1 pd

q

(
d + cosh

(
p
√
k(x − ct)

) − sinh
(
p
√
k(x − ct)

))

⎤

⎥⎥⎦

1
2

, (38)

u20(x, t) = ±

⎡

⎢⎢⎣a0 +
a1 p

(
cosh

(
p
√
k(x − ct)

) + sinh
(
p
√
k(x − ct)

))

q

(
d + cosh

(
p
√
k(x − ct)

) + sinh
(
p
√
k(x − ct)

))

⎤

⎥⎥⎦

1
2

, (39)

where d is an arbitrary constant.

5 Conclusion

Through this paper, using the generalized Riccati equa-
tion mapping method, various solutions are obtained
for the nonlinear Salerno equation describing the non-
linear discrete electrical lattice in the forbidden band
gabs. Some of these solutions are hyperbolic func-
tion solutions, other are trigonometric function solu-

tions. Particularly, for some values of parameters, the
obtained solutions are kink, anti-kink, dark, bright and
breather solutions. These solutions are used for the
information transmission through the electrical lattice.
In the future work, we intend to apply another interest-
ing method which can give more and new solutions.
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