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Abstract In this paper, a barrier Lyapunov function-
based adaptive neural dynamic surface control
approach is proposed for morphing aircraft subject
to unknown parameters and input–output constraints.
Based on the functional decomposition, the longitudi-
nal dynamics can be divided into altitude and veloc-
ity subsystems. Minimal learning parameter (MLP)
technique-based neural networks are used to estimate
the model uncertainties; thus, the amount of online-
updated parameters is largely reduced. To overcome
the problem of ‘explosion of complexity’ in the back-
stepping method, the first-order sliding mode differen-
tiator (FOSD) is introduced to compute the derivative of
virtual control laws. Combining MLP and FOSD tech-
nique, a composite adaptive neural control scheme is
proposed by utilizing an auxiliary system to deal with
the input saturation and a barrier Lyapunov function
to counteract the output constraints. The highlight is
that the proposed neural controller not only owns less
online-updated neural parameters, but also has the abil-
ity of handling input–output constraints. The stability
of the proposed control scheme is established using the
Lyapunov theory. Simulation results show that the pro-
posed controller can ensure good tracing performance
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1 Introduction

A growing number of researchers focus on the morph-
ing aircraft field due to its superior flight performance
on altering aerodynamic configuration and adapting to
different flight environments based on the development
of aerotechnology [1]. The wing transition process is
complicated and very important for morphing aircraft.
During the morphing process, significant variations in
mass distribution, aerodynamic forces and moments
lead to a complicated time-varying nonlinear dynami-
calmodelwith internal and external uncertainties [2,3].
Those uncertainties and time-varying characteristics of
themorphing aircraft lead to the difficulty in the control
system design.

In the existing literatures,most of the control scheme
designs of morphing aircraft mainly focus on the lon-
gitudinal dynamic model. Based on such model, a
pair of linear controllers has been formulated to pro-
vide disturbance rejection for a morphing aircraft [4],
while the similar idea can also be found in [5]. Sub-
sequently, a finite-time boundness controller is intro-
duced to guarantee the steady flight during the mor-
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phing process [6]. In addition, some advanced dis-
turbance rejection control [1] and linear parameter-
varying technique [7] have been applied to the con-
trol problems of morphing aircraft. However, almost
all of the controllers discussed above are built on the
basis of linear model and highly depend on the pre-
cise prior knowledge of the aerodynamic parameters.
Actually, the precise prior knowledge of the aero-
dynamic parameters is hard to be obtained in the
complex atmospheric environment. Nor has morph-
ing aircraft paid the nonlinear dynamics much atten-
tion. Therefore, a model-free nonlinear control scheme
of morphing aircraft needs to be further investigated.
Among numerous control methods including sliding
mode control, disturbance observer-based control [8],
fractional domain-based technique [9–13] and so on,
the approximation-based adaptive back-stepping con-
trol scheme via fuzzy logic system (FLS) or neural net-
works (NN) has received much attention for uncertain
nonlinear systems [14,15]. Significant works on adap-
tive neural/fuzzy control for nonlinear systems with
unknown functions are presented in [16–21]. In [16], a
self-constructing robust adaptive fuzzy control scheme
is proposed for tracking surface vehicles in the pres-
ence of uncertainties and disturbances. To overcome
the well-known problem of ‘explosion of the complex-
ity’ in back-stepping method, an improved dynamic
surface control (DSC) design has been investigated by
introducing first-order low-pass filter or commandfilter
at each step of the adaptive neural back-stepping design
procedure [22–28]. Despite the significant progress of
the adaptive neural control design for nonlinear sys-
tems, studies with input and output constraints on pure-
feedback systems are few.

Input saturation caused by the constraints of the
magnitude and rate of actuators can degrade the perfor-
mance of the control system or even lead to instability,
if these constraints are neglected in the control design
[29]. For dealing with input saturation problem, several
auxiliary compensation system-based adaptive control
approaches are developed for a class of nonlinear sys-
tems [30–32], and those schemes have been also suc-
cessfully implemented in the flight control [2,33,34].
The effect of input constraints can be properly avoided
by introducing an auxiliary design system; unfortu-
nately these schemes cannot be applied to handle the
control problem with output constraints which have a
significant impact on the system performance. Until
now, the design based on barrier Lyapunov function

(BLF) to solve nonlinear control problems with output
constraints has attracted many scholars’ attention [35–
46]. TheBLF technique has been used to design control
methods for output-constrained systems in the strict-
feedback form [35–38] and pure-feedback form [39–
41]. Moreover, several adaptive neural/fuzzy control
schemes are investigated for a multiple-input multiple-
output nonlinear system subject to output constraints
[42–44]. However, input constraints are not taken into
consideration in those control schemes. In [47,48],
indirect and direct adaptive fuzzy back-stepping con-
trollers are proposed for uncertain nonlinear systems
with input and output constrains. Unfortunately, the
control scheme developed in [48] still suffers from
the problem of ‘explosion of the complexity.’ What
is more, those schemes only focus on the nonlinear
system in strict-feedback form and cannot be directly
utilized to the control of morphing aircraft belonging
to pure-feedback form.Aforementioned pure-feedback
systems in [39–41] have no affine appearance of vari-
ables to be used as virtual and actual controllers. Thus,
implicit function theorem and the mean value theorem
are required to determine each control gain. However,
signs and bounds of the derivatives of the nonlinear
functions for all the variables are assumed to be known.
Therefore, a priori knowledge of the plant dynamics is
required to determine these bounds, whichmay be very
difficult to acquire in practical applications [19,21].
Meanwhile, there also exists another restriction in the
works [40,41]—too many updated neural parameters
are necessary for the control design. To the best of the
authors’ knowledge, in the existing literatures, this is no
result of low computational adaptive neural control for
uncertain pure-feedback nonlinear systems with both
input and output constraints based on BLF.

This paper investigates a BLF-based adaptive neural
DSC approach for the longitudinal dynamics of sweep-
back wings morphing aircraft subject to input–output
constraints and uncertain parameters. The longitudinal
dynamics are decomposed into altitude subsystems and
velocity subsystems based on the functional decom-
position. In the control design, NNs are employed to
approximate unknown nonlinear functions; thus, a pri-
ori knowledge of the aerodynamic parameters is no
longer required. To overcome the problem of ‘explo-
sion of complexity’ inherent in the conventional back-
stepping method, the first-order sliding mode differen-
tiator (FOSD) is applied to compute the derivatives of
virtual control laws. In order to deal with the explosion
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of NN’ learning parameters, theminimal learning para-
meter (MLP) technique is used to regulate the norm of
NN’s weight vector rather than its elements. Conse-
quently, a low computational adaptive neural control
scheme is obtained. Meanwhile, filtered signals are
applied to avoid the algebraic loop problem encoun-
tered in the controller design. Smooth robust compen-
sators are utilized in the virtual and actual controllers to
counteract the lumped approximation errors. With the
utilization of an auxiliary compensation system and
BLF technique, the problems of input saturation and
output constraints are eliminated, simultaneously. It is
proved that the proposed control scheme can guaran-
tee that all the signals in the closed loop are bounded.
Compared with the existed literatures, the main contri-
butions of this paper are shown as follows.

1. Unlike the studies in [35,36,47,48] which only
focus on the strict-feedback system with output
constraints, this paper further explores the control
problem of longitudinal dynamics of morphing air-
craft with both input and output constraints, which
belongs to a more general class of nonlinear pure-
feedback system. Note that, this is also the first
application of low computational adaptive neural
control of pure-feedback nonlinear systems with
input and output constraints in the BLF scope.

2. Different from previous works in [39–41] which
need restrictive assumptions and mean value theo-
rem to construct the nonlinear controller, by using
Butterworth filter signals, the proposed controller
not only avoids the algebraic loop problem in the
implementation of the controllers, but also relaxes
restrictive assumptions in [39–41].

3. In contrast to the approach in [19,39,40], a bar-
rier Lyapunov technique-based composite adaptive
neural method, which is capable of dealing with
input–output constraints and the problemof ‘explo-
sion of complexity’ as well as ‘explosion of NN’s
learning parameters,’ is presented and a new type
of adaptive laws is constructed by synthesizing the
FOSD and MLP in the back-stepping design. This
control scheme not only can be used for flight con-
trol design, but can also be further extended to
the control of a class of nonlinear system in pure-
feedback form as [19].

The layout of this paper is as follows. The problem
formulation is addressed in Sect. 2. Section 3 describes
the control design. Comparative simulation studies are

presented in Sect. 4. Conclusions and future works are
given in Sect. 5.

2 Problem formulation and preliminaries

2.1 Morphing aircraft model

The control-oriented model of the longitudinal dynam-
ics of a morphing aircraft considered in this study is
based on [2]. This model comprises of five state vari-
ables (V , h, α, γ , q) and two control inputs (δe, T ),
where V is the velocity, h is the altitude, α is angle
of attack, γ is the flight path angle (FPA), q is the
pitch rate, δe and T denote elevator deflection and thrust
force, respectively.

V̇ = −D + T cosα − mg sin γ + FI x

m
(1)

ḣ = V sin γ (2)

γ̇ = L + T sin α − mg cos γ − FIkz
mV

(3)

α̇ = − L + T sin α − mg cos γ − FI z

mV
+ q (4)

q̇ = − İyq − Sx g cos θ + MA + TZT + MIy

Iy
(5)

FI x = Sx
(
q̇ sin α + q2 cosα

)

+ 2Ṡxq sin α − S̈x cosα

FI z = FIkz = Sx
(
q̇ cosα − q2 sin α

)
+ 2Ṡxq cosα

+ S̈x sin α

MIy = Sx
(
V̇ sin α + V α̇ cosα − Vq cosα

)
(6)

where D, L and MA denote drag force, lift force and
pitch moment, respectively.m, Iy and g are the mass of
aircraft, moment of inertia about pitch axis and grav-
ity constant. FI x , FI z , FIkz and MIy represent inertial
force and moment caused by morphing process. ZT

is the position of engine in the body axis. Sx denotes
the static moment distributed in the body x axis. The
related definitions are given as follows:

CD(ζ ) = CD0(ζ ) + CDα(ζ )α + CDα2 (ζ )α2,

Sx (ζ ) ≈ [2m1r1x + m3r3x ], L = CL (ζ )QSw(ζ ),

D = CD(ζ )QSw(ζ ),Cm(ζ ) = Cm0(ζ ) + Cmα(ζ )α

+Cmδe(ζ )δe + CmqqcA(ζ )

2V
, Q = 1

2
ρhV

2;
CL (ζ ) = CL0(ζ ) + CLα(ζ )α + CLδe(ζ )δe ≈ CL0(ζ )

+CLα(ζ )α, MA = Cm(ζ )QSw(ζ )cA(ζ )
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where ζ is the sweep angle and the other definitions
can be found in [2].

2.2 Model transformation

According to [2,33,34], we know that the dynamic
model (1)–(5) can be decomposed into altitude sub-
system and velocity subsystem since the velocity V is
mainly related to T and the altitude h is mainly affected
by δe.

(a) Altitude subsystem

Define that x1 = h, x2 = γ , x3 = θ , x4 = q where
θ = α + γ , x̄ = (x2, x3, x4). The altitude subsystem
can be converted into the following formulation.

ẋ1 = V x2

ẋ2 = f2(x2, x3) + x3

ẋ3 = x4

ẋ4 = f4(x2, x3, x4, u) + u

y = x1, u = −δe (7)

where y is the output signal of the altitude subsystem
(7), f2(x2, x3) and f4(x2, x3, x4, u) are unknown func-
tions with the formulation f2(x2, x3) = [L+T sin(θ −
γ ) − mg cos γ ]/(mV ) − θ ,

f4(x2, x3, x4, u) = [− İyq + (−Sx g cos θ

+MA + TZT + MIy)
]
/Iy + δe.

(b) Velocity subsystem

For the sake of the controller design, velocity sub-
system is transformed into the following formulation.

V̇ = fV (x̄V , T ) + T (8)

where fV (x̄V ) = (−D + T cosα − mg sin γ +
FI x )/m − T is an unknown nonlinear function.

Remark 1 Since only the cruise phase is considered in
this paper, γ is quite small and we can take sin γ ≈ γ

in (2) to simplify the system. In order to transform the
altitude system into pure-feedback system, FIkz in (3)
is regarded as an un-modeled term.

2.3 Neural networks

Radial basis function neural networks (RBFNN) are
adopted to approximate the continuous function
f (X in): Rm → R which can be expressed as follows
[31]:

f̂ (X in) = Ŵ TΦ(X in) + ε (9)

where X in is the input vector of the NN, Ŵ is a weight
vector of the NN and ε denote the approximation error
of the NN. Φ(X in) = [φ1(X in) . . . φl(X in)] is the basis
function vector,withφi (X in)beingGaussian functions,
i.e., φi (X in) = exp(−(X in − ci )T (X in − ci )/b2i ) with
ci and bi denote the centers and widths of the Gaussian
functions. The optimal weight value is obtained as

W ∗ = arg min
Ŵ∈Ω f

[
sup

X in∈ΩXin

∣∣∣ f̂ (X in|Ŵ ) − f (Xn)

∣∣∣
]

(10)

where Ω f = {Ŵ : ||Ŵ || ≤ M̄} is a valid convex set of
the estimated parameter Ŵ . M̄ is a design parameter,
and ΩX in is an allowable set of the state vectors. Using
the optimal weight value yields

f (X in) = W ∗TΦ(X in) + ε∗ (11)

where ε∗ is the optimal approximation errorwith |ε∗| ≤
εM .

2.4 Barrier Lyapunov function

In this paper, the following BLF is used [36]

N̄1 = 1

2
log

(
k2b

k2b − z2

)
(12)

where log(·) denotes the natural logarithm and kb is
the constraint on z, i.e., |z| < kb. If |z| = kb, the BLF
escapes to infinity. It can be shown that N̄1 is positive
definite, and C1 is continuous in the set |z| < kb, and
thus, a valid Lyapunov function candidate is in the set
|z| < kb.

To process with the design control scheme, the fol-
lowing lemmas are required.

Lemma 1 The first-order sliding mode differentiator
(FSMD) is designed as

ς̇0 = −μ0|ς0 − l(t)|0.5 sign(ς0 − l(t)) + ς1

ς̇1 = −μ1sign(ς1 − ς0) (13)

where ς0 and ς1 are the states of the system (13), μ0

and μ1 are the designed parameters of the first-order
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sliding mode differentiator, and l(t) is any known func-
tion. ς̇0 can approximate the differential term l̇(t) to an
arbitrary accuracy if the initial deviations ς0 − l(t0)
and ς̇0 − l̇(t0) are bounded [49].

Lemma 2 [36] For any positive constant kb, the fol-
lowing inequality holds for all z in the interval |z| < kb

log

(
k2b

k2b − z2

)
<

z2

k2b − z2
(14)

Lemma 3 The following inequality holds for any
w0 > 0 and x ∈ R [27].

0 ≤ |x | − x tanh

(
x

w0

)
≤ κ0w0 (15)

where κ0 is a constant satisfying κ0 = e−(κ0+1), i.e.,
κ0 = 0.2785.

3 Controller design and stability analysis

In this section, adaptive neural DSC and adaptive
laws are designed for the altitude and velocity sub-
system, respectively. The control scheme is shown in
Fig. 1.

Assumption 1 Throughout this work, it is assumed
that all of the system states can be measured.

In this paper, f2(x2, x3), f4(x2, x3, x4, u) and
fV (x̄V , T ) are unknown functions. In order to process
the derivation in the following, we define

� f2 = f2(x2, x3) − f2(x2, x3 f ) (16)

� f4 = f4(x2, x3, x4, u) − f4(x2, x3, x4, u f ) (17)

� fV = fV (x̄V , T ) − fV (x̄V , T f ) (18)

where x3 f , u f , T f are the filtered signals defined by
[32]

x3 f = HL(s)x3 ≈ x3, u f = HL(s)u ≈ u,

T f = HL(s)T ≈ T (19)

where HL(s) is a Butterworth low-pass filter. The
corresponding parameters of Butterworth filters can be
obtained as in [19].

Remark 2 The use of this signal is motivated by [19,
21]. If x3, u in system (7) and T in system (8) were used
as the virtual control, this expression would lead to an
algebraic loop and could not be implemented directly.
The filtered signals are to avoid the algebraic problem.
Meanwhile, it is assumed that the filtered errors � fi
are bounded.

It is easy to conclude that there exist ideal weight
vectors W ∗

2 , W
∗
4 , W

∗
V such that

⎧
⎨
⎩

f2(x2, x3 f ) = W ∗T
2 Φ2(x2, x3 f ) + ε2 |ε2| ≤ ε2M

f4(x2, x3, x4, u f ) = W ∗T
4 Φ4(x2, x3, x4, u f ) + ε4 |ε4| ≤ ε4M

fV (x̄V , T f ) = W ∗T
V ΦV (x̄V , T f ) + εV |εV | ≤ εVM

(20)

where εi and εiM (i = 2, 4, V ) denote the approxima-
tion errors and their upper bounds, respectively.

Obviously, the ideal weightsW ∗
2 ,W

∗
4 ,W

∗
V are com-

pletely unknown. Therefore, adaptive laws based on
Lyapunov function are deduced to update their ele-
ments. In order to reduce the computation burden, the
MLP technique is employed to estimate the maximum
norm of ideal weight vectors; thus, only one parame-
ter needs to be updated online. Those parameters are
defined as ϕi = ||W ∗

i ||2 (i = 2, 4, V ).

3.1 Velocity controller design

The controller for the velocity subsystem is derived
from dynamic inversion method using neural network
to approximate the unknown nonlinear function.

Define

zV = V − Vd − ψV (21)

where ψV is a signal to deal with the saturation effect,
and the additional auxiliary system is constructed as
follows

ψ̇V = −kVψV + �T (22)

where kV is a positive design constant, and �T = T −
Td is the error between the actual control input T and
the desired control input Td.
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Fig. 1 Control scheme

The time derivative of zV can be described as

żV = V̇ − V̇d − ψ̇V = fV (x̄V , T ) + T − V̇d

+ kVψV − �T

= fV (x̄V , T f ) + Td − V̇d + kVψV + � fV

= W ∗T
V ΦV (x̄V , T f ) + Td − V̇d + kVψV + dV

(23)

where dV = � fV + εV , |dV | ≤ dVM .
On the basis of MLP technique, the desired con-

troller Td is designed as

Td = −kV zV − zV ϕ̂VΦT
V (x̄V , T f )ΦV (x̄V , T f )

4(k2b2 − z2V )k22

− d̂V tanh

[
zV

k2b2 − z2V

1

wV

]
+ V̇d − kVψV

(24)

where kV , k22 and wV are positive design parameters.
d̂V tanh(zV /(k2b2 − z2V )/wV ) is a robust compensator.

ϕ̂V and d̂V denote the estimationofϕV anddVM , respec-
tively.

Consider the following adaptive laws for ϕ̂V and d̂V ,
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˙̂ϕV = ρV 1z
2
VΦT

V (x̄V , T f )ΦV (x̄V , T f )

4(k2b2 − z2V )2k22
− σV 1ϕ̂V (25)

˙̂dV = ρV 2

[
zV

k2b2 − z2V
tanh

(
zV

k2b2 − z2V

1

wV

)
− σV 2d̂V

]

(26)

where σV 1, σV 2 are positive design parameters.
Invoking (23) and (24) yields

żV = −kV zV + zV W
∗T
V ΦV (x̄V , T f )

− zV ϕ̂VΦT
V (x̄V , T f )ΦV (x̄V , T f )

4(k2b2 − z2V )

+ dV − d̂V tanh

[
zV

k2b2 − z2V

1

wV

]
(27)

Theorem 1 Consider the velocity subsystem (8) under
assumption 1 and initial condition |zV (0)| < kb2, con-
trol law (24), updating laws (25), (26), then the closed-
loop signals zV , ϕ̃V , d̃V are semi-globally bounded.
Furthermore, the tracking error zV and the weights
ϕ̃V , d̃V converge to the compact set ΩZV , Ωϕ̃V , Ωd̃V

,
respectively, defined by
⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ΩZV :=
{
zV ∈ Rn, |zV | ≤ kb2

√(
1 − e−2(LV (0)+CV 2/CV 1)

)}

Ωϕ̃V := {
ϕ̃V ∈ Rn, |ϕ̃V | ≤ √

2ρV 1(LV (0) + CV 2/CV 1)
}

Ωd̃V
:=
{
d̃V ∈ Rn,

∣∣∣d̃V
∣∣∣ ≤ √

2ρV 2(LV (0) + CV 2/CV 1)
}

(28)

where CV 1 andCV 2 are defined in “Appendix.”Mean-
while, the proof of Theorem 1 is also shown in “Appen-
dix.”

3.2 Altitude controller design

In order to proceed the design process, the following
auxiliary system is constructed to generate ψ1.

ψ̇1 = �u − k4ψ1 (29)

where k4 is a positive design parameter, �u = u − ud,
u is the actual control input to the system and ud is the
control input to be designed. The relationship of ud and
u can be expressed as follows:

u = sat(ud) =
{
sign(ud)u

+
d , if |ud| > u+

d
ud, else

(30)

where u+
d is a positive constant that quantizes the bound

of input saturation.
The following coordinate change is constructed to

facilitate the control design:

⎧⎪⎪⎨
⎪⎪⎩

z1 = x1 − yd
z2 = x2 − r1
z3 = x3 − r2
z4 = x4 − r3 − ψ1

(31)

where r1, r2 and r3 are the virtual controllers to be
designed at step 1, 2 and 3, respectively. yd = hd is the
reference signal.

The control scheme for the altitude subsystem is
developed in the framework of back-stepping tech-
nique, which contains four-step recursive design pro-
cedure.
Step 1 The time derivative of z1 = x1− yd is expressed
as

ż1 = ẋ1 − ẏd = V x2 − ẏd = V (z2 + r1) − ẏd (32)

The virtual controller r1 is designed as

r1 = −k1z1− z1
2(k2b1 − z21)

+ ẏd
V

−z1d̂1 tanh

(
z21

k2b1 − z21

1

w1

)

(33)

where k1 and w1 are positive parameters; d̂1z1
tanh(z21/(k

2
b1 − z21)/w1) is a robust compensator; d̂1

denotes the estimation of d1M . d1 = −V̇ /(2V 2) is the
lump error with upper bound d1M , that is |d1| ≤ d1M .

Now we consider the adaptive law given as follows

˙̂d1 = ρ12

[
z21

k2b1 − z21
tanh

(
z21

k2b1 − z21

1

w1

)
− σ12d̂1

]

(34)

where ρ12 and σ12 are positive design parameters.
Invoking (32) and (33), one has

ż1 = V

(
z2 − k1z1 − z1

2(k2b1 − z21)
− z1d̂1 tanh

(
z21

k2b1 − z21

1

w1

))

(35)

In order to avoid the tedious analytical computations
involved in the control law of step 2, using Lemma 1,
the following first-order sliding mode differentiator is
adopted to estimate ṙ1.
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ς̇10 = −μ10|ς10 − r1|0.5sign(ς10 − r1) + ς11

ς̇11 = −μ11sign (ς11 − ς10) (36)

where ς10, ς11 are the states of the system (36), and
μ10, μ11 are the positive design constants.

According to (36) and Lemma 1, we have

ṙ1 = ς̇10 + τ1 (37)

where τ1 is the estimation error with |τ1| ≤ τ̄1.
Step 2 The differentiation of z2 is obtained as follows:

ż2 = ẋ2 − ṙ1 = f2(x2, x3) + x3 − ṙ1

= z3 + r2 − ṙ1 + f2(x2, x3) − f2(x2, x3 f )

+W ∗T
2 Φ2(x2, x3 f ) + ε2

= z3 + r2 − ṙ1 + W ∗T
2 Φ2(x2, x3 f ) + d2 (38)

where d2 = � f2 + ε2. d2 is bounded, and there exists
an unknown constant d2M > 0 such that |d2| ≤ d2M .

Based onMLP technique, the virtual controller r2 is
designed as

r2 = −k2z2 − 1

2
ϕ̂2z2Φ

T
2 (x2, x3 f )Φ2(x2, x3 f ) + ς̇10

−d̂2 tanh

(
z2
w2

)
(39)

where k2 and w2 are positive design parameters.
d̂2 tanh(z2/w2) is a robust compensator. ϕ̂2 and d̂2
denote the estimations of ϕ2 and d2M , respectively.

The structure of adaptive control laws is expressed
as follows

˙̂ϕ2 = ρ21

2
z22Φ

T
2 (x2, x3 f )Φ2(x2, x3 f ) − σ21ϕ̂2 (40)

˙̂d2 = ρ22

[
z2 tanh

(
z2
w2

)
− σ22d̂2

]
(41)

Substituting (39) into (38), (38) can be rewritten as

ż2 = z3 − k2z2 + W ∗T
2 Φ2(x2, x3 f )

− 1

2
ϕ̂2z2Φ

T
2 (x2, x3 f )Φ2(x2, x3 f )

+ d2 − d̂2 tanh

(
z2
w2

)
+ ς̇10 − ṙ1 (42)

The following first-order slidingmode differentiator
is adopted to estimate ṙ2.

ς̇20 = −μ20|ς20 − r2|0.5sign(ς20 − r2) + ς21

ς̇21 = −μ21sign(ς21 − ς20) (43)

where ς20, ς21 are the states of the system (36), and
μ20, μ21 are positive design constants.

From (43) and Lemma 1, we have

ṙ2 = ς̇20 + τ2 (44)

where τ2 is the estimation error with |τ2| ≤ τ̄2.
Step 3 The differentiation of z3 is obtained as follows:

ż3 = ẋ3−ṙ2 = (x4 − r3) + r3 − ṙ2 = z4+r3 − ṙ2 + �1

(45)

The virtual control law r3 is designed as

r3 = −k3z3 + ς̇20 − ψ1 − z2 (46)

where k3 > 0 is a design constant. ψ1 is an auxiliary
compensation signal.

Substituting (46) into (45) yields

ż3 = z4 − z2 − k3z3 + ς̇20 − ṙ2 = z4 − z2 − k3z3 − τ2

(47)

Consider the following inequality

−τ2z3 ≤ 1

2k11
z23 + k11

2
τ̄ 22 (48)

where k11 > 0. Note that the constants k11 in (48) is
not used in the implementation of the control law, but
rather, it is only used to analytically show the stability of
the control system. Therefore, the constant k11 is only
required to exist, but may remain unknown. Moreover,
it does not need to be estimated in the implement of the
controller.

As done previously, the following first-order sliding
mode differentiator is employed to estimate ṙ3:

ς̇30 = −μ30|ς30 − r3|0.5sign(ς30 − r3) + ς31

ς̇31 = −μ31sign(ς31 − ς30) (49)

where ς30, ς31 are the states of the system, and μ30,
μ31 are the positive design constants.

Thus, we have

ṙ3 = ς̇30 + τ3 (50)

where τ3 is an estimation error with |τ3| ≤ τ̄3.
Step 4 In this step, the actual controller u will be devel-
oped. The differentiation of z4 can be obtained as fol-
lows:
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ż4 = f4(x2, x3, x4, u) + u − ṙ3 − �u + k4ψ1

= f4(x̄, u f ) + ud − ṙ3 + k4ψ1 + � f4

= W ∗T
4 Φ(x̄, u f ) + ud − ṙ3 + k4ψ1 + d4 (51)

where d4 = � f4 + ε4 and |d4| ≤ d4M .
Based on MLP technique, the controller ud is

designed as

ud = −k4z4 − 1

2
z4ϕ̂4Φ

T
4 (x̄, u f )Φ4(x̄, u f )

−d̂4 tanh

(
z4
w4

)
+ ς̇30 − z3 − k4ψ1 (52)

where k4 and w4 are positive design constants. d̂4
tanh(z4/w4) is a robust compensator; ϕ̂4 and d̂4 denote
the estimations of ϕ4 and d4M , respectively. ϕ̂4 and d̂4
are updated as

˙̂ϕ4 = ρ41

2
z24Φ

T
4 (x̄, u f )Φ4(x̄, u f ) − σ41ϕ̂4 (53)

˙̂d4 = ρ42

[
z4 tanh

(
z4
w4

)
− σ42d̂4

]
(54)

By substituting (52) into (51), (51) can be rewritten as

ż4 = −k4z4 − z3 + W ∗T
4 Φ4(x̄, u f )

− 1

2
z4ϕ̂4Φ

T
4 (x̄, u f )Φ4(x̄, u f ) + d4 − d̂4 tanh

(
z4
w4

)
− τ3

(55)

The following theorem shows the design procedure
and analysis of themodifiedBLF-based adaptive neural
DSC for system (7) using back-stepping technique.

Theorem 2 Consider the altitude subsystem (7), under
Assumption 1, control laws (33), (39), (46), (52), updat-
ing laws (34), (40), (41), (53), (54), and initial error
condition |z1(0)| < kb1, then the closed-loop signals
zi=1,2,3,4, ϕ̃i=2,4, d̃i=1,2,4 are semi-globally bounded
and the tracking error z1 will remain in the compact
set |z1| < kb1.

Proof Please see “Appendix.”

Remark 3 It should be mentioned that the MLP tech-
nique is used to estimate the maximum norm of the
ideal weight vectors of RBFNN instead of their ele-
ments. Thus, the number of the online learning parame-
ters is greatly reduced in the closed-loop system.On the
basis of modified DSC andMLP technique, the control
scheme can solve the problems of ‘explosion of learn-
ing parameters’ and ‘explosion of complexity’ simulta-
neously. Consequently, a much simpler controller with

less computational load is obtained, which is better to
be implemented in real applications. Additionally, it
must be pointed out that the problems of the input satu-
ration and output constraints are solved by employing
an auxiliary system and the BLF, respectively.

Remark 4 Altitude subsystem (7) belongs to the sys-
tem in pure-feedback form. Thus, the control designs
and main conclusions could be naturally extended to
the following pure-feedback system as given in [19]:

{
ẋi = fi (x̄i , xi+1) + xi+1, i = 1, 2 . . . n − 1
ẋn = fn(x̄i , u) + u

(56)

where x̄i = [x1, x2 . . . xi ].

4 Simulations

In this section, simulation results are presented to
illustrate the effectiveness of the modified adaptive
neural control for longitudinal model of the morph-
ing aircraft based on BLF. The aerodynamic coef-
ficients and model parameters are the same as [2].
The scope of the input variables of NNs is defined as
V ∈ [0, 50m/s], γ ∈ [−10◦, 10◦], α ∈ [−10◦, 10◦]
and q ∈ [−15◦/s, 15◦/s]. The centers such as c2,
c4 and cV including 50 nodes are evenly spaced in
their bounds. The widths of Gaussian functions are
chosen as bi2 = 2, bi4 = 5, biV = 4. The ini-
tial conditions are set as X0 = [γ0, α0, q0, h0, V0] =
[0◦, 0.99512◦, 0◦/s, 1000m, 30m/s]. Tracking error
limits are set as kb1 = 0.6 and kb2 = 0.2. The control
parameters and auxiliary compensation parameters are
selected as k1 = 0.01, k2 = 1.1, k3 = 0.1, k4 = 1.5,
kV = 10. Gains for the adaptive laws are selected as
ρ12 = 1, σ12 = 0.1, ρ21 = 100, σ21 = 0.1, ρ22 = 10,
σ22 = 0.1, ρ41 = 100, σ41 = 0.1, ρ42 = 100,
σ42 = 0.1, ρV 1 = 2.5, σV 1 = 0.1, ρV 2 = 100,
σV 2 = 0.1, wi=1,2,4,V = 1, k22 = 1. Reference com-
mands are smoothened via several second-order filters
which are given in (57).

hd
hd0

= 0.04

s2 + 0.4s + 0.04
,

Vd
Vd0

= 0.04

s2 + 0.4s + 0.04
,

ζd

ζd0
= 1

s2 + 2s + 1
(57)

The following two scenarios are simulated to test the
performance of the proposed controller in the presence
of system uncertainty and input–output constraints.
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Fig. 2 Altitude tracking

Scenario 1 Anadaptive back-stepping controller based
on quadratic Lyapunov function (QLF) in [33] is com-
pared to verify the proposed controller. We assume
that the actuator saturation of control inputs is set as
δe ∈ [−2◦, 2◦] and T ∈ [0, 67]N, respectively. The
simulation results are depicted inFigs. 2, 3, 4, 5, 6 and7.
Figures 2 and 3 reveal that theBLF andQLF controllers
achieve different tracking performance. The altitude
and velocity tracking errors are within the compact set
|z1| ≤ 0.6 and |zV | ≤ 0.2 when the BLF technique is
used in the controller design. However, when the QLF
controller is employed under the same initial condi-
tions and control gains with BLF-based controller, the
output constraints are violated. The response of control
inputs and auxiliary variables is shown in Figs. 4 and 5.
It is obvious to observe that the system inputs δe and T
are both saturated and recover to normal with the com-
pensation of auxiliary systems. Figures 6 and 7 show
that the system states and ϕ̂2, ϕ̂4 and ϕ̂V are bounded.
Simulation results demonstrate that the system could
achieve better tracking performance as compared to
QLF-based controller.

Scenario 2 In this scenario,BLF-based adaptive neural
controller is applied to the morphing aircraft’s wing
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Fig. 3 Velocity tracking
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Fig. 5 Thrust and ψV

shape transition phase, while the actuator saturation of
control inputs δe is released. The simulation results are
shown in Figs. 8, 9, 10 and 11. From Fig. 10, it can
be seen that the output velocity is nearly constant and
altitude tracking error decreases about 0.2m during the
sweep process. The altitude and velocity tracking errors
of BLF-based controller are not violated their bound-
aries kb1 and kb2. After the wing finishes sweeping, the
velocity and altitude errors converge within 20s. How-
ever, the bound of velocity and altitude tracking errors
for QLF controller are overstepped. From the curves of
sweep reference signal ζ and system states (angle of
attack, FPA and pitch rate) in Figs. 8 and 9, it can be
observed that the angle of attack tends to reach a new
equilibrium since the wing area decreases; meanwhile,
other system states are bounded. In addition, as shown
in Fig. 11, the changes in elevator defection and thrust
are both within acceptable ranges. From the simulation
results, it can be concluded that the BLF-based control
scheme can accommodate different wing shapes and
guarantee the steady flight.
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5 Conclusions and future work

A modified adaptive neural dynamic surface con-
trol scheme is developed for morphing aircraft with
unknown dynamics and input–output constraints. Min-
imal learning parameter technique-based neural net-
works are used to approximate the unknown system
dynamics, thus solving the problem of ‘explosion of

learning parameter.’ To overcome the inherent problem
of ‘explosion of complexity’ in back-stepping design,
the first-order sliding mode differentiator is applied
to avoid the tedious analytic computation. Therefore,
a barrier Lyapunov technique-based composite adap-
tive neural method, which is capable of dealing with
input–output constraints and the problem of ‘explosion
of complexity’ as well as ‘explosion of NN’s learn-
ing parameters,’ is presented and a new type of adap-
tive laws is constructed by synthesizing the FOSD,
MLP and auxiliary compensation system in the back-
stepping design. Meanwhile, this control scheme can
be further extended to control a class of nonlinear sys-
tem in pure-feedback form. Comparative results verify
the superiority of the proposed controller.

In the futurework, the authorswill focus on the prob-
lem of the unmeasured states and disturbance observer
[50] in the control design based on adaptive neural DSC
scheme.
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Appendix

Proof of Theorem 1

Proof Considering the following candidate Lyapunov
function

LV = 1

2
log

(
k2b2

k2b2 − z2V

)
+ 1

2ρV 1
ϕ̃2
V + 1

2ρV 2
d̃2V

(58)

where ρV 1 and ρV 2 are positive design parameters,
ϕ̃V = ϕV − ϕ̂V and d̃V = dVM − d̂V .

Based on (25), (26) and (27), the time derivative of
LV is given by

L̇V = zV żV
k2b2 − z2V

− 1

ρV 1
ϕ̃V

˙̂ϕV − 1

ρV 2
d̃V

˙̂dV = zV
k2b2 − z2V

⎡
⎢⎣

−kV zV − zV ϕ̂V ΦT
V (x̄V ,T f )ΦV (x̄V ,T f )

4(k2b2−z2V )k22
+ dV + W ∗T

V ΦV (x̄V , T f )

−d̂V tanh

[
zV

k2b2−z2V

1
wV

]
⎤
⎥⎦

− ϕ̃V

[
z2VΦT

V (x̄V , T f )ΦV (x̄V , T f )

4(k2b2 − z2V )2k22
− σV 1

ρV 1
ϕ̂V

]
− d̃V

[
zV

k2b2 − z2V
tanh

(
zV

k2b2 − z2V

1

wV

)
− σV 2d̂V

]
(59)

Note that the following inequalities hold

zV
k2b2 − z2V

W∗T
V ΦT

V (x̄V , T f )

≤ ϕV z
2
VΦT

V (x̄V , T f )ΦV (x̄V , T f )

4(k2b2 − z2V )2k22
+ k22 (60)

∣∣∣∣∣
zV

k2b2 − z2V

∣∣∣∣∣ dVM − zV
k2b2 − z2V

dVM tanh

(
zV

k2b2 − z2V

1

wV

)

≤ κ0dVMwV = w̄V (61)

where k22 > 0.
Invoking ϕ̃V = ϕV − ϕ̂V and d̃V = dVM − d̂V yields

σV 1

ρV 1
ϕ̃V ϕ̂V = σV 1

2ρV 1

(
ϕ2
V − ϕ̃2

V − ϕ̂2
V

)

≤ σV 1

2ρV

(
ϕ2
V − ϕ̃2

V

)
,

σV 2d̃V d̂V ≤ σV 2

2

(
d2VM − d̃2V

)
(62)

Consider that (60), (61), (62) and Lemma 3, (59) can
be re-formulated as

L̇V ≤ − kV z2V
k2b2 − z2V

− σV 1

2ρV 1
ϕ̃2
V − σV 2

2
d̃2V + σV 1

2ρV 1
ϕ2
V

+ σV 2

2
d2VM + w̄V + k22

≤ −kV log
k2b2

k2b2 − z2V
− σV 1

2ρV 1
ϕ̃2
V

− σV 2

2
d̃2V + C2V ≤ −C1V LV + C2V (63)

where C1V = min {2kV , σV 1/ρV 1, σV 2}, CV 2 =
σV 1
2ρV 1

ϕ2
V + σV 2

2 d2VM + w̄V + k22.
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Multiplying (63) by eCV 1t , we have

d

dt
(LV e

CV 1t ) ≤ CV 2e
CV 1t (64)

Integrating the above inequality, we obtain

LV ≤ (LV (0) − CV 2

CV 1
)e−CV 1t + CV 2

CV 1
(65)

Therefore, for zV we obtain

1

2
log

(
k2b2

k2b2 − z2V

)
≤ LV (0) + CV 2

CV 1
,

|zV | ≤ kb2

√
(1 − e−2(LV (0)+CV 2/CV 1)) < kb2

(66)

Similarly,wehave |ϕ̃V | ≤ √
2ρV 1(LV (0) + CV 2/CV 1),∣∣∣d̃V

∣∣∣ ≤ √
2ρV 2(LV (0) + CV 2/CV 1).

Proof of Theorem 2

Proof Choose the following candidate Lyapunov func-
tion

L = L1 + L2 + L3 + L4 (67)

where L1 = 1
2V log

(
k2b1

k2b1−z21

)
+ 1

2ρ12
d̃21 , L2 = 1

2 z
2
2 +

ϕ̃2
2

2ρ21
+ d̃22

2ρ22
, L3 = 1

2 z
2
3, L4 = 1

2 z
2
4 + ϕ̃2

4
2ρ41

+ d̃24
2ρ42

,

and d̃1 = d1M − d̂1, ϕ̃2 = ϕ2 − ϕ̂2, d̃2 = d2M − d̂2,
ϕ̃4 = ϕ4 − ϕ̂4, d̃4 = d4M − d̂4.

According to (34), (35) andLemma2, the timederiv-
ative of L1 is given by

L̇1 = 1

V

z1 ż1
k2b1 − z21

− V̇

2V 2 log
k2b1

k2b1 − z21
− 1

ρ12
d̃1

˙̂d1

= z1
k2b1 − z21

(
z2 − k1z1 − z1

2(k2b1 − z21)

−z1d̂1 tanh

(
z21

k2b1 − z21

1

w1

))

+ d1 log
k2b1

k2b1 − z21
− 1

ρ12
d̃1

˙̂d1

≤ − k1z21
k2b1 − z21

+ z1z2
k2b1 − z21

− z21
2(k2b1 − z21)

2

+
∣∣∣∣∣d1M

z21
k2b1 − z21

∣∣∣∣∣− d1M
z21

k2b1 − z21
tanh

(
z21

k2b1 − z21

1

w1

)

+ σ12d̃1d̂1 (68)

By invoking (40), (41), (42), the time derivative of
L2 is given by

L̇2 = z2 ż2 − 1

ρ21
ϕ̃2

˙̂ϕ2 − 1

ρ22
d̃2

˙̂d2
≤ z2z3 − k2z

2
2 + z2W

∗T
2 Φ2(x2, x3 f )

− 1

2
ϕ2z

2
2Φ

T
2 (x2, x3 f )Φ2(x2, x3 f )

+ |z2| d2M − z2d2M tanh

(
z2
w2

)
− z2τ1

+ σ21

ρ21
ϕ̃2ϕ̂2 + σ22d̃2d̂2 (69)

Considering (47) and (48), the time derivative of L3 is
obtained as

L̇3 = z3 ż3 = z3 (z4 − z2 − k3z3 − τ2)

≤ −
(
k3 − 1

2k11

)
z23 − z2z3 + z3z4 + k11

2
τ̄ 22

(70)

Using (53), (54) and (55) results in the time derivative
of L4

L̇4 = z4 ż4 − 1

ρ41
ϕ̃4

˙̂ϕ4 − 1

ρ42
d̃4

˙̂d4
= z4

(
−k4z4 − z3 + W∗T

4 Φ4(x̄, u f )

− 1

2
z4ϕ̂4Φ

T
4 (x̄, u f )Φ4(x̄, u f ) + d4

− d̂4 tanh

(
z4
w4

)
− τ3

)

− 1

ρ41
ϕ̃4

˙̂ϕ4 − 1

ρ42
d̃4

˙̂d4
≤ −k4z

2
4 − z3z4 + z4W

∗T
4 Φ4(x̄, u f )

− 1

2
z24ϕ4Φ

T
4 (x̄, u f )Φ4(x̄, u f ) + |z4| d4M

− z4d4M tanh

(
z4
w4

)
− z4τ3 + 1

ρ41
ϕ̃4ϕ̂4 + 1

ρ42
d̃4d̂4

(71)
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Consider the following facts

σ12d̃1d̂1 ≤ σ12

2

(
d21M − d̃21

)
,

z1z2
k2b1 − z21

≤ z21
2(k2b1 − z21)

2
+ 1

2
z22, −z2τ1 ≤ 1

2
z22 + 1

2
τ̄ 21

(72)

d1M

∣∣∣∣∣
z21

k2b1 − z21

∣∣∣∣∣− d1M
z21

k2b1 − z21
tanh

(
z21

k2b1 − z21

1

w1

)

≤ κ0d1Mw1 = w̄1,

σ21

ρ21
ϕ̃2ϕ̂2 ≤ σ21

2ρ21
ϕ2
2 − σ21

2ρ21
ϕ̃2
2 (73)

|z2| d2M − z2d2M tanh

(
z2
w2

)
≤ κ0d2Mw2 = w̄2,

σ22d̃2d̂2 ≤ 1

2
σ22d

2
2M − 1

2
σ22d̃

2
2 (74)

z2W
∗T
2 Φ(x̄, u f ) ≤ 1

2
z22ϕ2Φ

T
2 (x̄, u f )Φ2(x̄, u f ) + 1

2
,

σ41

ρ41
ϕ̃4ϕ̂4 ≤ σ41

2ρ41

(
ϕ2
4 − ϕ̃2

4

)
(75)

− z4τ3 ≤ 1

2

(
z24 + τ̄ 23

)
,

|z4| d4M − z4d4M tanh

(
z4
w4

)
≤ κ0d4Mw4 = w̄4

(76)

σ42d̃4d̂4 ≤ 1

2
σ42

(
d24M − d̃24

)
,

z4W
∗T
4 Φ(x̄, u f ) ≤ 1

2
z24ϕ4Φ

T
4 (x̄, u f )Φ4(x̄, u f ) + 1

2
(77)

The derivative of L is obtained as

L̇ = L̇1 + L̇2 + L̇3 + L̇4

≤ −k1 log
k2b1

k2b1 − z21
− (k2 − 1) z22 −

(
k3 − 1

2k11

)
z23

− (k4 − 0.5)z24 − σ12

2
d̃21 − σ21

2ρ21
ϕ̃2
2

− σ22

2
d̃22 − σ41

2ρ41
ϕ̃2
4 − σ42

2
d̃24 + σ12

2
d21M + σ22

2
d22M

+ σ42

2
d24M + σ21

2ρ21
ϕ2
2

+ σ41

2ρ41
ϕ2
4 + w̄1 + w̄2 + w̄4 + 1

2
τ̄21 + k11

2
τ̄22

+1

2
τ̄23 + 1 ≤ −C1L + C2 (78)

where C1 :=
(
2k1, 2k2 − 2, 2k3 − 1

k11
, 2k4 − 1,

σ12,
σ21
ρ21

, σ22,
σ41
ρ41

, σ42

)
,

C2 :=
(
0.5σ12d21M + 0.5σ22d22M + 0.5σ42d24M + 0.5σ21/ρ21ϕ2

2 + 0.5σ41/ρ41ϕ2
4 + w̄1 + w̄2 + w̄4

+0.5τ̄ 21 + 0.5k11τ̄ 22 + 0.5τ̄ 23 + 1

)
.

To ensure C1 > 0, the corresponding design para-
meters ki=1,2,3,4, σi j,i=1,2,4, j=1,2 and ρi j,i=1,2,3, j=1,2

should be chosen such that k1 > 0, k2 − 1 > 0,
k3 − 0.5/k11 > 0, k4 − 0.5 > 0, σi j,i=1,2,3, j=1,2 > 0
and ρi j,i=1,2,4, j=1, > 0. Multiplying (78) by eC1t , we
can get d

dt (Le
C1t ) ≤ C2eC1t . Integrating inequality

d
dt (Le

C1t ) ≤ C2eC1t , we obtain

L ≤ (L(0) − C2

C1
)e−C1t + C2

C1
(79)

Therefore, we have

1

2
log

(
k2b1

k2b1 − z21

)
≤ L(0) + C2

C1
,

|z1| ≤ kb1

√
(1 − e−2(L(0)+C2/C1)) < kb1

(80)

Similarly, we obtain

|z2| ≤ √
2(L(0) + C2/C1),

|z3| ≤ √
2(L(0) + C2/C1),

|z4| ≤ √
2(L(0) + C2/C1),∣∣∣d̃1

∣∣∣ ≤ √
2ρ12(L(0) + C2/C1),

|ϕ̃2| ≤ √
2ρ21(L(0) + C2/C1),∣∣∣d̃2

∣∣∣ ≤ √
2ρ22(L(0) + C2/C1),

|ϕ̃4| ≤ √
2ρ41(L(0) + C2/C1),∣∣∣d̃4

∣∣∣ ≤ √
2ρ42(L(0) + C2/C1).
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