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Abstract Nonlinear dynamic behaviors of an
aeroelastic airfoil with free-play in transonic air flow
are studied. The aeroelastic response is obtained by
using time-marching approach with computational
fluid dynamics (CFD) and reduced order model (ROM)
techniques. Several standardized tests of transonic flut-
ter are presented to validate numerical approaches. It is
found that in time-marching approach with CFD tech-
nique, the time-step size has a significant effect on
the calculated aeroelastic response, especially for cases
consideringboth structural and aerodynamicnonlinear-
ities. The nonlinear dynamic behavior for the present
model in transonic air flow is greatly different from that
in subsonic regime where only simple harmonic oscil-
lations are observed. Major features of the responses in
transonic air flow at different flow speeds can be sum-
marized as follows. The aeroelastic responses with the
amplitude near the free-play are dominated by single
degree of freedom flutter mechanism, and snap-though
phenomenon can be observedwhen the air speed is low.
The bifurcation diagramcan be captured by usingROM
technique, and it is observed that the route to chaos
for the present model is via period-doubling, which is
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essentially caused by the free-play nonlinearity. When
the flow speed approaches the linear flutter speed, the
aeroelastic systemvibrateswith large amplitude,which
is dominated by the aerodynamic nonlinearity. Effects
of boundary layer and airfoil profile on the nonlinear
responses of the aeroelastic system are also discussed.

Keywords Transonic flow · Aerodynamic nonlin-
earity · Free-play · Limit cycle oscillation · Chaos ·
Reduced order model

1 Introduction

The dynamic behavior of an aeroelastic airfoil, or
typical wing section, with a free-play nonlinearity
attracts interests of both aircraft engineers and dynam-
ics researchers due to its substantial various nonlinear
phenomenon. It is convenient to use either the Theodor-
son function [31] or the Wagner function [9] to calcu-
late the unsteady aerodynamic loads in incompressible
flow. And the piston theory [1] is suitable to obtain the
unsteady loads in supersonic regime. Numerous inves-
tigations on such a nonlinear aeroelastic system are
conducted in low subsonic or supersonic air flow. How-
ever, because of the challenging of modeling the tran-
sonic unsteady aerodynamics, only a few researches
on nonlinear dynamic behavior of an aeroelastic airfoil
with free-play in transonic air flow have been investi-
gated before.
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Generally speaking, the major feature of the tran-
sonic air flow is the mixed subsonic-supersonic flow
and the appearance of shock wave, which may lead
to aerodynamic nonlinearity in the aeroelastic sys-
tem. As a high-fidelity technique to capture the shock
wave in transonic air flow, the time-marching approach
with computational fluid dynamics (CFD) technique
is usually used to simulate the transonic limit cycle
oscillation (LCO) considering structural nonlinearities.
Kousen and Bendiksen [22] investigated the transonic
LCO of an aeroelastic airfoil with a free-play nonlin-
earity in the pitching degree of freedom (DOF) and
the bifurcation diagram was obtained by using time-
marching approach. The transonic aeroelastic behavior
of an airfoil with free-play nonlinearities in both of the
pitching and plunging DOFs was analyzed by Kim and
Lee [21], andLCOs and chaoticmotionswere observed
in specific ranges of Mach numbers.

To reduce the computational costs in CFD simula-
tions, the reduced order model (ROM) method based
on CFD is also adopted in this problem. A three-DOF
aeroelastic wingmodel with free-play in its control sur-
face deflection was used to study the transonic LCO
behavior by Dowell et al. [14] using ROMmethod, and
the so-called chimney phenomenon was shown in their
results. The LCOs for an aeroelastic airfoil with struc-
tural nonlinearity in subsonic and transonic air flow
were obtained byMunteanu et al. [23] usingROM tech-
nique, and their results showed that the ROM approach
can estimate the LCOs accurately and efficiently. An
airfoil with piecewise nonlinearity was investigated by
Jones et al. [19] in both low speed incompressible flow
and transonic air flow, and the LCOswere rapidly iden-
tified with good accuracy in their study.

All of the research activities mentioned above
focused on predicting the response of the nonlinear
aeroelastic systems. However, the nonlinear dynamic
behavior, e.g., LCO, bifurcation or chaos, in transonic
air flow were not demonstrated systematically. In the
current study, an aeroelastic airfoil with free-play in
its pitching DOF is used to explore how the nonlinear
system behaves in the transonic regime.

In this paper, the aeroelastic response is obtained
by using time-marching approach with CFD and ROM
techniques. For the present aeroelastic model, the non-
linear dynamic behavior in transonic air flow is greatly
different from that in subsonic regime. In subsonic air
flow, only simple harmonic oscillations are observed.
However, in transonic air flow the aeroelastic system

displays responses dominated by single degree of free-
dom (SDOF) flutter, simple LCO, complex LCO, non-
periodic motion or chaos motion at different dynamic
pressures. These results demonstrate that our investiga-
tion considering the nonlinear effect of transonic aero-
dynamics may provide a new insight into the nonlin-
ear dynamic behavior of a traditional aeroelastic airfoil
model.

The paper is organized as follows. In Sect. 2, the
governing equations and analytical method are formu-
lated. Several standard transonic flutter problems are
analyzed in Sect. 3 to verify the feasibility of numer-
ical approaches used in the present study. To have a
better understanding of the nonlinear dynamic behav-
ior of the aeroelastic system, Sect. 4 presents prelim-
inary analysis and shows the basic aeroelastic charac-
teristics of the model. In Sect. 5, numerical results and
discussions on the major features of the responses with
different oscillation amplitudes are provided. Effects
of boundary layer and airfoil profile on the nonlinear
responses of the aeroelastic system are extendedly dis-
cussed in Sect. 6. Finally, the main conclusions are
drawn in Sect. 7.

2 Theoretical analysis

Figure 1 shows a sketch of a typical aeroelastic airfoil
with plunging (h) and pitching (α) DOFs. The elas-
tic axis of the airfoil (E point) is located at a distance
of ab after the mid-chord point, and the gravity center
(G point) is located at xab after the elastic axis, where
b is the half-chord length. The mass per unit span is
m, the first moment of inertia about the elastic axis is
Sα = mxαb, and themoment of inertia about the elastic
axis is Iα = mr2αb

2. The bending stiffness and torsion
stiffness are modeled by springs attached to the elas-
tic axis, respectively. A linear spring is considered in
plunging DOF, and the plunging stiffness coefficient is
Kh = mω2

h . While a free-play nonlinearity is assumed
in the pitchingDOF, and the nonlinear structural restor-
ing moment can be described as

M(α) =
⎧
⎨

⎩

Kα(α − δ) α ≥ δ

0 −δ < α < δ

Kα(α + δ) α ≤ −δ

(1)

where δ denotes the measurement of free-play, Kα =
Iαω2

α is the torsion stiffness coefficient. To express the
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Fig. 1 An aeroelastic airfoil in transonic air flow

equations in matrix form in the following parts of this
section, Eq. (1) can also be rewritten as

M(α) = Kαα·
⎧
⎨

⎩

1 − δ/α α ≥ δ

0 −δ < α < δ

1 + δ/α α ≤ −δ

= Kα M̄(α)α

(2)

Note that when δ = 0, the airfoil is degenerated to a
linear structural model and consequently M̄(α) = 1.

The governing equations ofmotion for linear springs
have been derived from the Lagrange equations accord-
ing toDowell et al. [13]. In addition, the nonlinear struc-
tural restoringmoment from the springwith free-play in
pitching DOF has been considered in the present study.
The nonlinear governing equations can be expressed as

{
mḧ + Sαα̈ + Khh = −L
Sα ḧ + Iαα̈ + M(α) = Meα

(3)

where L = ρV 2bcl and Meα = 2ρV 2b2cm are the
aerodynamic lift and moment about the elastic axis,
respectively. cl is the lift coefficient, cm is the aerody-
namic moment coefficient, and ρ is the air density.

Introducing nondimensional time τ = ωαt andmass
ratio μ = m/πρb2, Eq. (3) can be written as

[
1 xα

xα r2α

]{
h′′
b

α′′
}

+
[(

ωh
ωα

)2
0

0 r2α M̄(α)

] { h
b
α

}

= U 2

πμ

{ −cl
2cm

}

(4)

or

Mξ ′′ + Knonξ = U 2

πμ
fa (5)

where ()′′ = d2()/dτ 2, U = V/bωα , M =
[
1 xα

xα r2α

]

and Knon =
[

(
ωh
ωα

)2 0
0 r2α M̄(α)

]

. M is the mass matrix,

Knon is the nonlinear stiffness matrix, and U is the
non-dimensional air speed. For this aeroelastic system,
ξ = {h/b α}T and fa = {−cl 2cm}T are served
as the generalized displacements and the generalized
aerodynamic forces, respectively.

Bydefining the structural state vector xs = {
ξ ξ ′}T ,

the motion equation in state space can be written as

{
x′
s(t) = Asxs(t) + U2

πμ
Bs fa(t)

ξ(t) = Csxs(t) + Ds fa(t)
(6)

where ()′ = d()/dτ , As =
[

0 I
−M−1Knon 0

]

, Bs =
[

0
M−1

]

, Cs =
[
I
0

]

and Ds = [
0
]
.

Before solving the above equations numerically, two
important concepts dealing with the transonic unsteady
aerodynamics should be summarized briefly.When the
shockwave is generated in transonic air flow, the steady
air flowparameters varywith spatial position in theflow
field around the wing. So the behaviors of the unsteady
aerodynamic forces induced by the airfoil motion will
be nonlinear in the transonic region. Nevertheless, it
can be assumed that the parameters of flow field and
the motion of shock wave vary in a linear fashion with
the wing motion when considering a small perturba-
tion about the transonic steady air flow. And this is
usually called dynamically linear, but statically nonlin-
ear, aerodynamics according to Dowell et al. [13].With
the dynamically linear aerodynamics, the ROM aero-
dynamics can be used to replace the full-order model
like CFD, and the computational cost can be signifi-
cantly reduced. It should be noted that at some special
conditions the dynamically linear aerodynamicswill be
accurate even though the airfoil oscillates with moder-
ate amplitudes.

2.1 Time-marching approach with CFD

As mentioned in Sect. 1, the time-marching approach
based on CFD technique is a high-fidelity tool to
obtain the aeroelastic response in transonic air flow.
And nowadays some commercial software packages
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are capable of running fluid-structure interaction simu-
lationswithoutmuch difficulty. In this study,we choose
Ansys-CFX solver to obtain the aeroelastic response,
which was also used by Cui and Han [8] to predict the
flutter characteristics of a transport wing in transonic
air flow.

CFX is a general purpose CFD program, which
solves the Euler models by using a cell-vertex version
of finite volumemethod [4]. The upwind scheme is pro-
vided to evaluate the advection fluxes inCFX. The tran-
sient term is discretized by implicit dual time-stepping
method with a modified Second Order Backward Euler
scheme for real time advancement. A multi-grid accel-
erated incomplete lower upper factorization technique
is used to solve the discrete system of linearized equa-
tions in pseudo-time. Mesh deformation also plays an
important rule in the present study. When the motion
of nodes on boundary is specified, CFX uses a mesh
model called Displacement Diffusion to determine the
motion of all remaining nodes.

Ansys is a general purpose finite element analysis
(FEA) program, which can be employed as a nonlinear
structural solver. The nonlinear spring element (COM-
BIN 39) in Ansys is particular propitious to model
the free-play nonlinearity. The nonlinear response is
obtained by marching in time using an implicit New-
mark integration scheme with Newton-Raphson proce-
dure in this FEA program.

2.2 ARMA ROM for transonic aerodynamics

Among the numerous methods to build ROM aerody-
namics, the system identificationmethod is an effective
and efficient technique. Herewe choose the autoregres-
sivemoving average (ARMA)model [7,33] to build the
ROM of aerodynamics, which is described as

fa(k) = Σna
i=1Ai fa(k − i) + Σnb−1

i=0 Biξ(k − i) (7)

One advantage of ARMA model is that the system
response at any time step fa(k) is a linear combination
of past inputs ξ(k−i) and outputs fa(k−i), so that this
model is easy to employ to build the ROM mathemat-
ically. With an assumed model order consisting of na
past outputs and nb inputs, the only task is to identify
the constant coefficient matrices Ai and Bi .

In the present study, a so-called 3211 signal devel-
oped by Cowan et al. [7] is employed as the input of the

CFD solve due to its ease of implementation and broad
frequency spectra. The least squares method is adopted
to fit the time history of the output of the CFD solver,
i.e., fa, to estimate the unknown coefficient matrices.

A state vector xa(k) consisting of (na + nb + 1)
vector states is defined as,

xa(k) = [ fa(k − 1) · · · fa(k − na) ξ(k − 1) · · ·
ξ(k − nb + 1)]T (8)

Then the discrete-time aerodynamic model in state-
space form can be written as,

{
xa(k + 1) = Ãaxa(k) + B̃aξ(k)
fa(k) = C̃axa(k) + D̃aξ(k)

(9)

where

Ãa

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A1 A2 · · · Ana−1 Ana B1 B2 · · · Bnb−2 Bnb−1
I 0 · · · 0 0 0 0 · · · 0 0
... I · · · 0 0 0 0 · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · I 0 0 0 · · · 0 0
0 0 · · · 0 0 0 0 · · · 0 0
0 0 · · · 0 0 I 0 · · · 0 0
0 0 · · · 0 0 0 I · · · 0 0
...

...
. . .

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 0 · · · I 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B̃a = [
B0 0 0 · · · 0 I 0 0 · · · 0 ]T

C̃a = [
A1 · · · Ana−1 Ana B1 · · · Bnb−2 Bnb−1

]T

D̃a = [
B0

]

To couple the structural equations, the discrete-time
state-space formof the aerodynamicROMcan be trans-
formed into the continuous-time form, which can be
written as

{
x′
a(t) = Aaxa(t) + Baξ(t)
fa(t) = Caxa(t) + Daξ(t)

(10)

Introducing x = {
xTs xTa

}T
and coupling the struc-

tural motion Eq. (6) and the aerodynamic ROM Eq.
(10), the governing equation for the aeroelastic system
in state-space form can be obtained,

x′ = Ax =
[
As + U2

πμ
Bs DaCs

U2

πμ
BsCa

BaCs Aa

]

x (11)
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(a)

(b)

Fig. 2 Computational grids forNACA64A010 airfoil: a overall.
b close-up

It should be noted that the above equation is actu-
ally nonlinear, since M̄(α) is included in the expres-
sion of As. However, if the linear structural model is
adopted, i.e., M̄(α) = 1, the linear flutter speedUl can
be obtained by solving the eigenvalue of A in Eq. (11).

2.3 RK4 with Henon’s method

Since the free-play nonlinearity is a type of discontin-
uous (or non-smooth) nonlinearity, the application of
the classical fourth-order Runge–Kutta (RK4) method
is limited due to the numerical inaccuracy induced by
the crossover of the integration step according to Dai et
al. [10]. Dai et al. [10] also pointed out that one effec-
tive method for accurately detecting the crossover is

Time (s)

c l

0 0.1 0.2 0.3 0.4 0.5 0.6
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2 Mesh 1
Mesh 2
Mesh 3

(a)

Time (s)

c m

0 0.1 0.2 0.3 0.4 0.5 0.6
-0.03

-0.02

-0.01

0

0.01

0.02

0.03
Mesh 1
Mesh 2
Mesh 3

(b)

Fig. 3 Comparison of aerodynamic coefficients of NACA
64A010 airfoil for different meshes (Mach 0.8, α0 = 1◦, k = 0.1
and a = −0.6): a lift coefficient, b aerodynamic moment coef-
ficient

proposed by Henon [17], here called Henon’s method,
originally applied to construct Poincaré maps.

Themain idea ofHenon’smethod is described as fol-
lows [10,17]. As shown in Eq. (1), the curve of elastic
moment (M) and displacement (α) for free-play non-
linearity can be divided into three linear sub-domains
by ±δ according to the location α(tn). The classical
RK4 is applied to integrate the systemmarching in time
until a change in linear sub-domains is detected. At that
time, the distance between previous location α(tn−1)

and crossover (δ or −δ) is known. By exchanging the
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Fig. 4 Flutter characteristic of Isogaiwingmodel: aflutter speed
(U/bωα

√
μ) versusMach number fromdifferentmethods,b root

locus at Mach 0.85

dependent variable α and independent variable τ , the
response of the aeroelastic system can be integrated
from its previous location forward to the exact point of
discontinuity within one step with the initial conditions
already known, which will be shown below in details.
Then, time is reverted to τ and the classical RK4 is then
adopted to integrate in the new linear sub-domain, until
a next discontinuity is detected.

The aeroelastic system of Eq. (11) can be rewritten
as
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Fig. 5 Comparison of LCObehavior ofNACA64A010 airfoil at
Mach 0.8: a LCO amplitude of α versus non-dimensional speed,
b LCO amplitude of h/b versus non-dimensional speed

d

dτ

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1
x2
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f1(x)

f2(x)
...

fn(x)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(12)

where x1 stands for the pitching motion α. Henon’s
method involves exchanging the dependent variable α

and independent variable τ via first dividing each of
the equation of Eq. (12) by dx1/dτ = f1(x), and then
replacing the first equation by dτ/dx1 = 1/ f1(x). Con-
sequently, a new system with x1 as the independent
variable is
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Fig. 6 Root locus for linear flutter case at Mach 0.87

d

dx1

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

τ

x2
...

xn

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1/ f1(x)

f2(x)/ f1(x)
...

fn(x)/ f1(x)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(13)

Note that the new system is used only for one integra-
tion step immediately before α crosses δ or −δ.

It should bementioned that in the following sections,
RK4 with Henon method is used to obtain the nonlin-
ear aeroelastic responsewhen considering the free-play
nonlinearity.

2.4 Describing function method

In our previous study [31], the harmonic balance
analysis, which can also be called describing function
method, was used to examine the LCO behavior of an
aeroelastic airfoil with nonlinear pitching stiffness.

According to Conner et al. [6], one advantage of
using the describing function for aeroelastic analysis is
that the magnitude of the LCO can be predicted well
at least for the LCO motion is predominantly period-
1. So the describing function method will be used to
obtain the fundamental nonlinear characteristics for the
present model in preliminary analysis section.

A fundamental harmonic solution for the pitching
motion is firstly assumed as

α(t) = α0 sin(ωt) (14)
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Fig. 7 Comparison of time history of pitching motion using
different time-step sizes at U = 4.2 (Mach 0.87)

Then fromEq. (1) and thedescribing function approach,
the linearized equivalent stiffness can be expressed as

Keq = feqKα (15)

In this expression, feq is the so-called describing func-
tion, which depends on the amplitude of pitching oscil-
lation. And according to Gelb and Vander Velde [16],
the structural describing function for the free-play non-
linearity can be described as
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Fig. 8 Time histories of pitching and plunging at different non-
dimensional speeds without free-play at Mach 0.87 at: a U =
3.94, b U = 3.95

feq =

⎧
⎪⎨

⎪⎩

0 α0 < δ

1 − 2
π

{

arcsin
(

δ
α0

)
+ δ

α0

√

1 −
(

δ
α0

)2
}

α0 ≥ δ

(16)

So the equivalent structural restoring moment corre-
sponding to the oscillation of airfoil is obtained,

M(α) = feqKαα (17)

For each prescribed LCO amplitude, feq is a con-
stant, so the nonlinear aeroelastic system of Eq. (11)
is reduced to an equivalent linear aeroelastic system.
For such a linear aeroelastic system, the flutter speed
and flutter frequency can be obtained straightforwardly

Table 1 Comparison of linear flutter speed and flutter frequency
at Mach 0.87

U ω/ωα

Ansys-CFX solver 3.95 0.861

ARMA ROM 3.78 0.831

Kousen and Bendiksen [22] Nearly 4 –
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Fig. 9 LCO amplitude versus non-dimensional speed only con-
sidering aerodynamic nonlinearity at Mach 0.87

from the eigenvalue analysis of matrix A in Eq. (11),
which is similar to the approach presented by Yang and
Zhao [31].

3 Validation and testing

3.1 Grid convergence study

Since a NACA 64A010 airfoil is used in the following
numerical examples, firstly we conduct a grid conver-
gence study for this airfoil. Three computational grids
with different spatial resolutions (Mesh 1, Mesh 2 and
Mesh 3) are generated to assess the mesh convergence,
where the C-type structured mesh topology is adopted
for each grid. All these three computational meshes
are composed of 51 mesh points radially and the outer
boundary for computational domain extends to a dis-
tance of 50 chord length from the airfoil, as shown in
Fig. 2. However, the number of the mesh points sur-
rounding the airfoil surface is different, for instance,
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111 mesh points in Mesh 1, 221 in Mesh 2 and 331 in
Mesh 3. So there are totally 211, 321 and 431 mesh
points circumferentially in Mesh 1, Mesh 2 and Mesh
3, respectively.

CFD simulations of a NACA 64A010 airfoil with a
sinusoid oscillating motion for α0 = 1◦ and k = 0.1
at Mach 0.8 are conducted, where k = ωb/V stands
for the reduced frequency. The time histories of the
unsteady aerodynamic coefficient for different meshes
are shown in Fig. 3. It can be seen that the amplitude
of cl obtained by using Mesh 1 is a little smaller than
those obtained by using Mesh 2 and Mesh 3, respec-
tively, and the amplitude of cm obtained by usingMesh
1 is a little larger than those obtained by using Mesh 2
and Mesh 3, respectively, but results obtained by using
Mesh 2 and Mesh 3 are nearly the same. Thus both
Mesh 2 and Mesh 3 are appropriate to calculate the
unsteady aerodynamic forces. Considering the com-
putational costs, Mesh 2 is adopted in the following
sections.

3.2 Tests for ARMA ROM

Anaeroelastic airfoilmodel from Isogai [18] is a bench-
mark case for predicting transonicflutter. Its parameters
are a = −2.0, xα = 1.8, r2α = 3.48, ωh/ωα = 1.0,
μ = 60.

Depicting the flutter speed versusMach number, the
flutter boundary is illustrated in Fig. 4a. These results

obtained by usingARMAmodel are in good agreement
with those obtained by using time-marching solutions
with CFD technique [2,30]. From Fig. 4a, it can be
seen that flutter speed in the transonic regime is obvi-
ously lower than those in the subsonic regime, which is
usually termed a “transonic dip”. Moreover, there are
multiple values of flutter speed betweenMach 0.85 and
0.9, which forms the so-called S shape flutter boundary
[5].

It should be noted that the S shape flutter boundary
was also seen in other literature for the Isogai wing.
It is basically the result of a weakly amplified mode,
which crosses zero damping twice in a row and hence
gets damped again, and existence of a second mode
instability, as shown in Fig. 4b. The weakly amplified
mode is sometimes referred as “hump mode” behavior
in aircraft applications.

3.3 Tests for time-marching approach with CFD

The aeroelastic system used to test the Ansys-CFX
solver is from Thomas et al. [27], which is a well
documented test case for aerodynamic nonlinear LCO
analysis. In this case, the Mach number is 0.8, and
the structural parameters are a = −0.6, xα = 0.25,
r2α = 0.75, ωh/ωα = 0.5, μ = 75.

Figure 5 shows the computed LCO amplitudes by
using Ansys-CFX solver with successively smaller
time-step sizes. It can be observed from Fig. 5, the
time-step size will affect the computed linear flutter
speed or the Hopf bifurcation point. These results are
further compared with those obtained by harmonic bal-
ance method [27] and time-marching approach with
CFD technique [32], demonstrating the feasibility of
using the Ansys-CFX solver for a transonic LCO solu-
tion.

4 Preliminary analysis

The basic aeroelastic airfoil model studied in Sect. 4
and 5 is taken from the work of Kousen and Bendiksen
[22], in which a free-play nonlinearity is assumed in
the pitching DOF. The airfoil of this model is NACA
64A010, and the relevant parameters are a = −0.2,
xα = 0.2, r2α = 0.29, ωh/ωα = 0.34335, μ = 60,
δ = 1◦. The computed Mach number is 0.87 as a
typical transonic Mach number. The Euler equations
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Fig. 11 Comparison of phase plot from time-marching approach with CFD at U = 1.8 using different time-step sizes (Mach 0.87): a
Δτ = 0.2, b Δτ = 0.1, c Δτ = 0.02, d Δτ = 0.01

are employed to calculate the unsteady aerodynamic
forces, which is also adopted byKousen andBendiksen
[22]. It should be mentioned that the reduced velocity
used in Ref. [22] is multiplied by 2 to obtain the non-
dimensional air speed U defined in the present study.

4.1 Linear flutter analysis

To achieve the linear flutter characteristic, the free-play
nonlinearity is removed from the aeroelastic model and
the aeroelastic response with small amplitudes are con-

sidered in this section. The assumption of linear struc-
ture and dynamically linear aerodynamics means that
the ARMA aerodynamic model can be used to predict
the linear flutter speed.

Figure 6 shows the root loci computed by using the
ARMA aerodynamic model. It can be seen that the real
part of the root loci of the aeroelastic system transits
from negative to positive as the air speed increases,
indicating the occurrence of flutter.

Time-marching approach with CFD technique can
also be used to obtain the linear flutter characteristic.
As mentioned in Sect. 3.3, we are aware that the time-
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step size will affect the computations of linear flutter
speed and LCO behavior remarkably. Thus, a time-step
convergence study is carried out with a series of time-
step sizes at U = 4.2 as shown in Fig. 7. As expected,
the amplitude of pitching convergeswith the decreasing
time-step size. Considering the computational cost, the
time-step size ofΔτ = 0.02 is adopted in the following
calculations.

Figure 8 shows the transient response of plunging
and pitching at different non-dimensional speed by
usingAnsys-CFX solver. It can be seen fromFig. 8 that,
as the air speed increases, the response of the aeroelas-

tic system shows damped motion at U = 3.94, and
then neutrally stable motion at U = 3.95. So the non-
dimensional linear flutter speed is about 3.95, which
can also be inferred from the bifurcation diagram in
the next section.

Table 1 lists the non-dimensional flutter speed and
flutter frequency ratio obtained by using differentmeth-
ods. The results from Ansys-CFX solver agree well
with those obtained by Kousen and Bendiksen [22],
also implying the feasibility of using the Ansys-CFX
solver for transonic flutter analysis. There is a lit-
tle difference of the non-dimensional flutter speed
obtained by usingARMAROMand the time-marching
method with CFD technique, and the flutter frequency
ratios obtained by usingARMAmodel andAnsys-CFX
solver are almost the same.

4.2 LCOs without free-play

To assess the effect of the aerodynamic nonlinearity,
we remove the free-play nonlinearity from the system.
Figure 9 shows the calculated LCO amplitude versus
the non-dimensional speed atMach 0.87 using different
time-step sizes. It is found that the time-step size has
obvious effects on the computed linear flutter speed.
But the bifurcation curve moves left along the speed
axis with the decreasing of time-step size, which is dif-
ferent from the situation in Sect. 3.3. Furthermore, the
curve of LCO amplitude versus air speed is nearly per-
pendicular to the air speed axis when the LCO ampli-
tude of pitching is less than nearly 5◦, which can be
regarded as a so-called linear LCO behavior trend as
mentioned by Thomas et al. [28]. When the flow speed
is increased further beyond the flutter speed, the LCO
amplitude increases.

Our results demonstrate an important feature of the
present aeroelastic system that the aerodynamic non-
linearity is weak ranging from very small amplitude
to moderate amplitude. It means that the dynamically
linear aerodynamics is feasible for time-domain simu-
lation even if the free-play nonlinearity is included in
the aeroelastic model.

In addition, the effect of aerodynamic nonlinearity
on the aeroelastic system can also be assessed from
Fig. 9. According to Kholodar et al. [20], the aerody-
namic nonlinear effect can be either harmful or ben-
eficial depending on the structural parameters of the
model and Mach number. For the present model, the

123



2110 S. He et al.

τ

α
or

h/
b

0 500 1000 1500 2000 2500 3000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03 Plunging
Pitching

(a)
α or h/b

α’
or

h/
b’

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004
Plunging
Pitching

(b)

τ

α
or

h/
b

0 200 400 600 800 1000
-0.03

-0.02

-0.01

0

0.01

0.02

0.03 Plunging
Pitching

(c)
α or h/b

α’
or

h/
b’

-0.03 -0.02 -0.01 0 0.01 0.02 0.03
-0.005

-0.004

-0.003

-0.002

-0.001

0

0.001

0.002

0.003

0.004

0.005 Plunging
Pitching

(d)

τ

α
or

h/
b

0 200 400 600 800 1000
-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04 Plunging
Pitching

(e)
α or h/b

α’
or

h/
b’

-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.0
-0.015

-0.01

-0.005

0

0.005

0.01

0.015 Plunging
Pitching

(f)

Fig. 13 Time histories and phase plots at different air speeds from time-marching approach with CFD at Mach 0.87: a time history and
b phase plot at U = 0.4, c time history and d phase plot at U = 0.8, e time history and f phase plot at U = 1
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Fig. 14 Time histories of displacement of SDOF system at Mach 0.87: plunging motion at aU = 0.4 and bU = 0.8, pitching motion
at c U = 0.4 and d U = 0.8

LCO appears when the flow speed is greater than the
linear flutter speed, implying that the aerodynamic non-
linearity exhibits a (modest) beneficial effect.

4.3 Single degree of freedom flutter

In this section, the describing functionmethod is used to
deal with free-play nonlinearity, and the ARMA aero-
dynamics is adopted to model the transonic aerody-
namics. Though the nonlinearity caused by the effect

ofmotion amplitude is not taken into account inARMA
aerodynamics, the LCOs with small amplitude are still
meaningful, and an interesting phenomenon related to
SDOF flutter is discovered.

To show this phenomenon, we build a single equa-
tion of SDOF flutter system by retaining the pitching
DOF in Eq. (4). Then the LCOs of the SDOF sys-
tem only considering pitching DOF and the original
two-DOF aeroelastic system considering both pitching
and plunging DOFs are compared, as shown in Fig.
10. From this figure, we can see that when the LCO
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Fig. 15 Comparison of phase plots from two-DOF and SDOF
aeroelastic system at Mach 0.87 at: a U = 0.4 and b U = 0.8

amplitude is around 1.1◦, the SDOF system response
is almost the same as to that of the two-DOFs aeroelas-
tic system. Such results reveal that the LCO with small
amplitude is dominated by the SDOF flutter mecha-
nism.

5 Results and discussions

In Sect. 3.3, it was noted that the time-step size has
an important influence on the calculated aeroelastic
response when using time-marching approach based
on CFD technique. Figure 11 shows the comparison

of calculated phase plots at U = 1.8 using succes-
sively time-step sizes. It is apparent that the calculated
response behaves differentlywhenusing different time-
step sizes, and the aeroelastic response converges to
the same LCOwith the decreasing of time-step size, as
shown in Fig. 11. Thus, the time-step size ofΔτ = 0.02
is chosen to obtain the aeroelastic responses at different
non-dimensional speeds in this section.

Figure 12a shows the evolution of the phase plotwith
increasing speed. In thework of Kousen andBendiksen
[22], only simple harmonic motions, i.e., the so-called
simple LCOs, are reported. However, our results show
that in the range of U/Ul > 0.5528 (U > 2.2) sim-
ple LCOs are observed, but the aeroelastic system dis-
plays simple LCOs, complex LCOs and non-periodic
motions when U/Ul < 0.5528. In order to show the
comparison of results fromAnsys-CFX solver and Ref.
[22], the LCO amplitudes (U > 2.2) and the maximal
displacements of pitching (U < 2.2) from Ansys-CFX
solver are plotted against the non-dimensional speed
in Fig. 12b. From Fig. 12b, it is clear that the LCO
amplitudes from Ansys-CFX solver agree very well
with those fromRef. [22] based on the solution of Euler
equations at large LCO amplitudes.

From the preliminary analysis in Sect. 4, it is found
that the oscillation amplitude plays an important role in
the nonlinear aeroelastic behavior.When the amplitude
is near free-play angle δ, e.g., around 1.1◦, aeroelas-
tic response will be dominated by SDOF flutter. When
the LCO amplitude is very large, greater than 5◦, the
influence of aerodynamic nonlinearity is more signifi-
cant. As for themoderate LCO amplitudes, e.g., 1.1◦ <

α0 < 5◦, the free-play nonlinearity should dominate
the behavior of the nonlinear aeroelastic system. Con-
sequently, the bifurcation diagram can be divided into
three regions according to the oscillation amplitude,
i.e., small amplitude region,moderate amplitude region
and large amplitude region, as discussed below.

5.1 Small amplitude region

From Sect. 4.3, we know that the flutter type of the
aeroelastic system in this region should be SDOF flut-
ter. Figure 13a, c show the time histories atU = 0.4 and
0.8, as representations in the small amplitude region.
Figure 13e shows the time histories at U = 1 as a typ-
ical example in the moderate amplitude region. Figure
13b, d, f show the phase plot at U = 0.4, 0.8 and 1,
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Fig. 16 Comparison of phase plots from time-marching approach with CFD and ARMA ROM at Mach 0.87 at: a U/Ul = 0.3038, b
U/Ul = 0.3544, c U/Ul = 0.4557, d U/Ul = 0.5570

respectively. Compared with the response in moder-
ate amplitude region, it is found that the magnitude of
plunging motion in the small amplitude region is very
small, indicating SDOF flutter.

In addition, from Fig. 13a, c, as well as Fig. 12b,
it is apparent that one of the features of the responses
in this region is that the maximum value of pitching
motion is near the free-play angle (δ = 1◦ = 0.0175).
Fig. 13a, b show the aeroelastic response at U = 0.4,
as a representation of cases at small non-dimensional
speeds in this region,where a random-like phenomenon

is observed. When the air speed is increased a little, the
aeroelastic system settles into a LCO, as shown in Fig.
13c, d at U = 0.8.

To understand the responses at U = 0.4 and 0.8,
we first look into the response of SDOF aeroelastic
system. Similar to the analysis in Sect. 4.3, we also
retain single plunging or pitching DOF in the time-
marching approach with CFD technique. When only
considering plunging DOF, the aeroelastic system is
stable as shown in Fig. 14a, b. But the SDOF system
with pitching DOF displays LCOs as shown in Fig.
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Fig. 17 Bifurcation diagrams for pitching motion using ARMA
ROM at Mach 0.87: a with initial condition of α′(0) = 0.001
and the other initial states being zero (0.2 < U/Ul < 0.8 with
�U/Ul = 0.002), b applying parameter-marching procedure
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14c, d, since a free-play nonlinearity is included in the
pitchingDOF.These results demonstrate that theSDOF
flutter governed by pitching motion can happen atU =
0.4 and U = 0.8.

The comparison of the phase plot of the two-DOF
systemwith that of theSDOFsystemconsidering pitch-
ing DOF at U = 0.8 is shown in Fig. 15b. Good
agreement of the amplitude for the pitching motion
is observed, which is consistent with the conclusion
drawn in Sect. 4.3.
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Fig. 19 Nonlinear dynamics of pitching motion at U/Ul = 0.39 using ARMA ROM (Mach 0.87): a time history, b phase plot, c
Poincaré map, d power spectra

At U = 0.4, a non-symmetric phase plot from
SDOFsystem is observed as shown inFig. 15a.Accord-
ing to Fang and Dowell [15], a dual phase plot must
exist symmetric to the original one, which can be
obtained using different initial conditions, since the
system is symmetric. With these two phase plots, the
response of the two-DOFaeroelastic systematU = 0.4
can be easily understood. Similar to the analysis con-
ducted by Dowell [11], the effect of plunging motion
can be treated as a random perturbation to the SDOF

system considering pitching motion. So the two-DOF
aeroelastic system displays snap-though phenomenon,
i.e., jumping from one LCO orbit to the other and then
moving back randomly, as shown in Fig. 15a.

5.2 Moderate amplitudes region

From Fig. 12a obtained by using time-marching
approach with CFD technique, it can be speculated that
bifurcationmay occur in this region.However, there are
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Fig. 20 Evolution of the phase portraits with increasing speed
from: a time-marching approach with CFD at Mach 0.6, b
ARMA ROM at Mach 0.6 and c Wagner’s function at Mach
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Fig. 21 Comparison of LCO amplitude verses non-dimensional
speed from different methods

some requirements to produce a bifurcation diagram:
(1) The time history of the dynamic response at each air
speed should be adequately long to identify the motion
type. (2) The air speed increment should be sufficiently
small to show details of the bifurcation process. There-
fore, it is very difficult, if not impossible, to capture
the bifurcation behavior by using the time-marching
approach with CFD technique.

As we know from Sect. 4.2 the aerodynamic non-
linearity is weak for this model when the oscillation
amplitude is less than 5◦, so the ARMA aerodynam-
ics can be used to obtain the unsteady aerodynamic
forces in the transonic air flow. Several LCOs from
the time-marching approach and the ARMA ROM are
compared in Fig. 16 and a small difference is observed.
Itmust be noted that the structure of the periodic orbit of
the aeroelastic system is preserved when using ARMA
aerodynamics, revealing that the ARMA ROM is able
to capture the nonlinear dynamic properties. These
good agreements also indicate that this bifurcation of
the aeroelastic system is caused by the free-play non-
linearity rather than aerodynamic nonlinearity, because
the aerodynamic dynamic nonlinearity is not taken into
account in the ROM method, but only the static aero-
dynamic nonlinearity is considered.

Since the ARMA ROM has the advantage of saving
computational time, we can obtain the “entire” bifurca-
tion diagram as shown in Fig. 17. Figure 17a shows the
bifurcation diagrams of the pitchingmotionwith a fixed
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Fig. 22 Phase plots from time-marching approach with CFD at
Mach 0.87 at: a U = 4.2, b U = 4.4

initial condition, where the amplitude jumps in pitch-
ing DOF exist. The phenomenon of amplitude jumps in
bifurcation diagramwas also reported by Dai et al. [10]
and Zhao and Hu [34], which is caused by the response
duality for symmetric aeroelastic systems according
to Xie et al. [29]. Figure 17b shows the bifurcation
diagrams produced by applying a parameter-marching
procedure, i.e., using the solution of the previous speed
as the initial conditions for the next speed.

Figure 18 shows the upper, middle and lower branch
of the bifurcation diagram in Fig. 17b with a smaller
increment of�U/Ul = 0.0001 to illustrate the bifurca-
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Fig. 23 Time histories of pitching and plungingmotions consid-
ering boundary layer effects at different non-dimensional speeds
without free-play at Mach 0.87 at: a U = 3.92, b U = 3.9382,
c U = 3.944
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Fig. 24 Root locus for linear flutter case considering boundary
layer effects at Mach 0.87

tion process more clearly. Period-1 LCOs are observed
when U/Ul < 0.3474, and obviously the first bifurca-
tion happens at U/Ul = 0.3474. Then period-2 oscil-
lations occur between 0.3474 < U/Ul < 0.3744. A
second bifurcation takes place atU/Ul = 0.3744, after
which period-4 motions are found between 0.3744 <

U/Ul < 0.3816. It can be seen that with the increasing
of speed, the aeroelastic system oscillates in period-1,
period-2, period-4 responses, etc, and finally goes to
chaos. The time history, phase plot, Poincaré map and
power spectra for pitching motion at U/Ul = 0.39,
as a representation in chaos region, are used to iden-
tify chaotic motion, as shown in Fig. 19. Therefore,
the route to chaos in the current study is via period-
doubling.

At this stage, some important concerns arise, which
include: Whether these complex dynamic responses
are special phenomena occurring only in transonic air
flow? And how does the aeroelastic system behave
in subsonic air flow? Fig. 20a–c show the dynamic
responses for aeroelastic airfoil using time-marching
approach with CFD technique at Mach 0.6, ARMA
ROM at Mach 0.6 and Wagner’s function for Mach 0,
respectively. From the comparisons of the LCO ampli-
tude against air speed obtained by using different meth-
ods as shown in Fig. 21, good agreements are observed.
All those results demonstrate that only simple harmonic
motions are observed in subsonic air flow,which is very
different from the results found in transonic air flow.

As we all know, bifurcation is a typical feature for
a nonlinear aeroelastic system. However, whether the
bifurcation occurs or not depends on the parameters of
the aeroelastic systems. Our results demonstrate that
Mach number is one important parameter that can trig-
ger the bifurcation of the aeroelastic system.

5.3 Large amplitude region

From Eq. (16), it can be seen that when LCO ampli-
tude α0 is large enough, the describing function feq
approaches to 1 leading to very large response as
one approach the linear flutter speed. Moreover, from
the experience of conventional numerical calculations
without aerodynamic nonlinearity, we know that the
LCO amplitude will be very large or nearly exhibit
divergent oscillationswhen the speed approaches linear
flutter speed.

In transonic air flow, the effect of aerodynamic non-
linearity becomes obvious when the oscillation ampli-
tude is very large, and a supercritical bifurcation is
observed without free-play nonlinearity for the present
model as shown in Fig. 9. Therefore, when the flow
speed nearly approaches the linear flutter speed, the
effect of the aerodynamic nonlinearity emerges. As
shown in Fig. 22, when the speed is greater than the lin-
ear flutter speed (Ul = 3.95), simple harmonicmotions
are observed as expected. There is no doubt that the
aeroelastic response is dominated by the aerodynamic
nonlinearity in this region.

6 Extended discussions

In previous sections, several interesting nonlinear
responses of an aeroelastic airfoil considering both
structural and aerodynamic nonlinearities are pre-
sented, e.g., SDOF flutter, bifurcation and chaos. The
aerodynamic nonlinearity is mainly caused by shock
waves, viscous effects and separated flows. Another
airfoil profile, which locates shock waves differently
fromNACA64A010 airfoil, may lead to different aero-
dynamic nonlinear behaviors. We will extendedly dis-
cuss effects of boundary layer and airfoil profile on the
nonlinear responses of the aeroelastic system in this
section. It should be noted that structural parameters
remain the same as those in Sect. 4 and 5.
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Fig. 25 Time histories and phase plots at different air speeds
from time-marching approach with CFD at Mach 0.87 in vis-
cous air flow: a time history and b phase plot atU = 0.7, c time

history and d phase plot at U = 1.2, e time history and f phase
plot at U = 2.4
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6.1 Boundary layer effects

In order to take the effects of boundary layer into
account, the shear stress transport (SST) turbulence
model is adopted in the CFD solver, and a C-type mesh
with fine grid resolution is generated. The first layer
thickness of this grid is 1 × 10−5 chord length.

Removing the free-play nonlinearity from the
aeroelastic model, linear flutter analysis is conducted
by using time-marching approach with CFD and
ARMA ROM. Figure 23 shows the transient response
of plunging and pitching at different non-dimensional
speeds by usingAnsys-CFXsolver considering viscous
effects. It is clear that with the increasing of air speed,
the response of the aeroelastic system shows damped
motion at U = 3.92, neutrally stable motion at U =
3.9382, and divergent motion at U = 3.944. Thus, the
non-dimensional linear flutter speed is 3.9382. Figure
24 shows the root loci of the aeroelastic system com-
puted by using the ARMA aerodynamic model when
considering boundary layer effects. It is observed that
the real part of the root loci transits from negative to
positive at U = 3.9144, implying the linear flutter
speed. Good agreement of the linear flutter between
time-marching approach with CFD and ARMA model
is achieved in the present study. It is also found that the
linear flutter speed considering boundary layer effects
is a little different from that in inviscid air flow, which
is consistent with the conclusion in [24].

Figure 25 shows the representative nonlinear
response in viscous air flow at Mach 0.87 for NACA
64A010. From Fig. 25a, b, it can be seen that the flut-
ter type of the aeroelastic system at U = 0.7 should
be SDOF flutter, since the maximum value of pitch-
ing motion is near the free-play angle δ. Figure 25c, d
present complex nonlinear motion atU = 1.2, indicat-
ing that bifurcation may happen near this flow speed.
And as the air speed increases further, Fig. 25e, f show
single harmonic motions at U = 2.4.

Similar to Sect. 5.2, ARMAmodel is adopted again
to capture the bifurcation process as shown in Fig. 26. It
is clear that the aeroelastic system oscillates in period-
1, period-2, period-4 responses, etc, and finally goes
to chaos. To identify chaotic motion, the time history,
phase plot, Poincarémapandpower spectra for pitching
motion at U/Ul = 0.31, as a representation in chaos
region, are used as shown in Fig. 27. Similar to the
inviscid case, the route to chaos considering viscous
effects is via period-doubling.However, comparedwith
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Fig. 26 Bifurcation diagrams for pitching motion using ARMA
ROM considering boundary layer effects at Mach 0.87: a 0.2 <

U/Ul < 0.8 with �U/Ul = 0.002, b 0.25 < U/Ul < 0.35
with �U/Ul = 0.0001

trajectories in inviscid air flow, the motion considering
boundary layer effects is more complex (see Figs. 19
and 27), and the bifurcation points differ greatly (see
Figs. 18, 26).

6.2 Airfoil profile effects

In this section, a cambered airfoil, NACA 64A109 air-
foil, is used in the aeroelastic system to assess the
effects of airfoil profile in inviscid air flow. This kind
of airfoil was adopted by Gates Learjet 24D airplane
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Fig. 27 Nonlinear dynamics of pitching motion at U/Ul = 0.31 using ARMA ROM considering boundary layer effects (Mach 0.87):
a time history, b phase plot, c Poincaré map, d power spectra

according to [3]. It is obvious that the locations of shock
wave on NACA 64A010 and NACA 64A109 would be
different at the sameMach number and angle of attack.
Furthermore, due to the existence of the camber, the lift
and aerodynamic moment of NACA 64A109 at zero
angle of attack will be nonzero, which is the main dif-
ference from a symmetric airfoil.

Transient responses of plunging and pitching for
NACA 64A109 airfoil at different non-dimensional
speeds are shown in Fig. 28. The non-dimensional
linear flutter speed for NACA 64A109 airfoil is 4.04

obtained by using time-marching approach with CFD.
It should be noted that when the air speed is less than
the linear flutter speed, taking U = 3.6 as an example,
the pitching or plungingmotion converges to a nonzero
equilibrium point, which is conventionally called static
aeroelastic equilibrium in aeroelastic analysis.

Figure 29 shows extrema of pitching motion ver-
sus non-dimensional speed for NACA 64A109 airfoil
obtained by using time-marching approach with CFD.
When U is less than 3.18, the transient responses con-
verge to equilibriums as shown in Fig. 30. As the air
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Fig. 28 Time histories of pitching and plunging motions for
NACA 64A109 airfoil at different non-dimensional speeds with-
out free-play at Mach 0.87 at: a U = 3.6, b U = 4.04

speed increases, only simple LCOs vibrating around
nonzero equilibriums are presented, taking U = 3.3
as a typical example shown in Fig. 31. To our surprise,
no complex nonlinear response is detected after careful
examinations of our calculations, where effects of the
initial conditions are also considered.

Toaddress thenonlinear responses ofNACA64A109
airfoil, aerodynamic characters for a cambered air-
foil and their effects are discussed firstly. Due to the
nonzero aerodynamic moment at zero angle of attack,
the static aeroelastic equilibrium of pitching motion
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speed for NACA 64A109 airfoil using time-marching approach
with CFD at Mach 0.87
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Fig. 30 Time history for NACA64A109 airfoil atU = 1.8 from
time-marching approach with CFD at Mach 0.87

would be nonzero. That is to say, the aeroelastic sys-
tem with a cambered airfoil at zero angle of attack
should oscillate around a nonzero angle. Though these
deformations may have little influence on the linear
flutter speed according to classical aeroelastic theory,
the nonzero static aeroelastic equilibrium of pitching
motion can turn the type of the structural nonlinearity
to free-play with preload, as shown in Fig. 32.

The preload in free-play nonlinearity can be caused
by unbalanced weight [31] or angle of attack [26], and
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Fig. 31 Nonlinear response for NACA 64A109 airfoil at U =
3.3 from time-marching approachwithCFD atMach 0.87: a time
history, b phase plot

in the current work it is induced by a cambered airfoil.
According to experiments and calculations of Dowell
[12], Tang and Dowell [26] and Price et al. [25], suffi-
cient amount of loading could suppress flutter or LCOs.
From Fig. 29, it is found that the preload α f caused by
the moment M0 for the present model is about 0.3◦ at
U = 3.0. It should be noted that the preload increases
with the increasing of air speed. Consequently, only
the motion type of simple LCOs at U/Ul > 0.7871
remains, but the types of bifurcation and chaos motions
are eliminated by the preload.

Fig. 32 Free-play with preload induced by a cambered airfoil

7 Conclusions

Euler equations are employed to calculate the unsteady
aerodynamic forces, and an aeroelastic airfoil with
free-play in pitching DOF is investigated in the cur-
rent study. A commercial software, Ansys-CFX solver,
is adopted to obtain the aeroelastic response in time
domain. To reduce the computational costs, the ARMA
model is employed to build aerodynamic ROM, and
then the RK4 with Henon method is used to obtain the
nonlinear aeroelastic response.

In time-marching approachwith CFD technique, the
time-step size has an important influence on the calcu-
lated aeroelastic response. In particular, for the cases
considering structural nonlinearity in transonic air flow,
the computed topology of the aeroelastic response
shows detectable differences using different time-step
sizes.

For the present aeroelastic model, the nonlinear
dynamic behavior in transonic air flow is greatly dif-
ferent from that in subsonic regime. In subsonic air
flow, only simple harmonic oscillations are observed.
However, in transonic air flow the aeroelastic system
displays responses dominated by SDOF flutter, simple
LCO, complex LCO, non-periodic motion or chaos at
different air speeds. Themajor features of the responses
for the aeroelastic airfoil at different air speeds can be
summarized as follows:

1. For responses with small amplitudes, the flutter
type of aeroelastic airfoil should be single degree
of freedom flutter. Furthermore, snap-though phe-
nomenon can be observed because of the existing
of dual responses and SDOF flutter.

2. For responses with moderate amplitudes, the
aeroelastic system is dominated by the free-play
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nonlinearity while the aerodynamic nonlinearity is
weak. The “entire” bifurcation diagram are cap-
tured by using ARMA aerodynamics, and it is
found that the route to chaos for the present model
is via period-doubling.

3. For responseswith large amplitudes, the aeroelastic
response is dominated by the aerodynamic nonlin-
earity. The aeroelastic system displays simple har-
monic motions when the air speed is greater than
the linear flutter speed of the aeroelastic airfoil.

When considering boundary layer effects, SDOF
flutter, bifurcation and chaos are also observed. How-
ever, the chaotic motion is more complex and the bifur-
cation points differ greatly, compared to those in invis-
cid flow. A cambered airfoil can turn the type of the
structural nonlinearity to free-play with preload, which
suppress bifurcation and chaotic motions in the present
study.
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