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Abstract This paper investigates the control of a 5-
DOF upper-limb exoskeleton robot used for passive
rehabilitation therapy. The robot is subject to uncer-
tain dynamics, disturbance torques, unavailable full-
state measurement, and different types of actuation
faults. An adaptive nonlinear control scheme, which
uses a new reaching law-based sliding mode control
strategy, is proposed. This scheme incorporates a high-
gain state observer with dynamic high-gain matrix
and a fuzzy neural network (FNN) for state vector
and nonlinear dynamics estimation, respectively.Using
dynamic parameters, the scheme provides an efficient
mean for simultaneously tackling the effects of FNN
approximation errors, disturbance torques and actua-
tion faults without any prior bounds knowledge and
fault detection and diagnosis components. Using sim-
ulation results, it is shown that with the presented
scheme, faster response, fewer oscillations during tran-
sient phase, good tracking accuracy, and chattering-free
control torques with lower amplitudes are obtained.
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1 Introduction

Thanks to some important advances in the research for
efficient and safe control strategies of electromechan-
ical and robotic devices, upper-limb exoskeletons are
used for assisted rehabilitation therapy to provide pas-
sive arm movements such as the subject’s limb can be
moved following a given trajectory [1–9]. In particu-
lar, the 5-DOF upper-limb exoskeleton robot is able to
assist with the shoulder, elbow and wrist joint move-
ments [1,2]. Applied for assisted rehabilitation tasks,
the repeatability, precision, control, and accuracy in
the movements of an exoskeleton are very important
for offering thorough and safe rehabilitation routines
[10]. Therefore, controller design for such system is an
important task.

Controller design can be problematic because of
challenges related to real-world applications such as
uncertain dynamics, external disturbances and unavail-
able full-state measurement. Knowing that these issues
can affect the closed-loop system stability and/or per-
formances, many approaches have been proposed for
tackling them. For instance, for tackling the uncer-
tainty problem, it has been proved that using adap-
tive controllers incorporating fuzzy logic systems for
nonlinear dynamics approximation can provide very
satisfactory results (see, for instance, in [11–15] and
references therein). In order to deal with the actu-
ation fault issue, a particular class of adaptive con-
trollers known as fault-tolerant controllers (FTC) has
been studied and successfully applied (see, for instance,
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in [11,14,16–18] and references therein). These FTCs
can use either some robust control approaches (pas-
sive FTC) [11,14] or some fault detection and diag-
nosis (FDD) components (active FTC) [16–19] for
dealing with actuation faults. For dealing with the
unavailable full-state issue, especially when the sys-
tem’s dynamics is unknown, some model-free state
observers such as fuzzy state observers [12,14] or fuzzy
sliding mode state observers [20] or high-gain linear
state observers [13,21,22] are generally incorporated
in the adaptive control scheme. These adaptive con-
trollers are generally designed using some well-known
nonlinear control techniques or strategies such as the
sliding mode control (SMC) [23–28], feedback control
[13,21], the backstepping technique [11,12,14,29,30],
and dynamic surface control [15]. Particularly for
upper-limb exoskeleton robot control for passive reha-
bilitation, several works have been published showing
good results obtained by applying different nonlinear
control strategies such as the SMC [20,23,24,31–34],
feedback control [1,2], fuzzy logic control [35,36],
impedance control [37], and passivity-based control
[9]. For instance, an output feedback controller for a
5-DOF upper-limb exoskeleton robot was proposed
in [1]. The proposed controller was designed such
that it can provide good tracking performances despite
uncertainties and disturbance torques. This controller
uses an adaptive nonlinear state observer that provides
estimation of velocity having only position informa-
tion from sensors. An adaptive logic-based switching
algorithm was proposed for the controller’s parame-
ters online adjustment. A robot system able to guide
patient’s wrist to move along planned linear or circu-
lar trajectories has been proposed in [35]. A hybrid
position/force controller incorporating fuzzy logic was
developed for that robot. The position controller was
obtained as the fuzzy logic system output using the
center-of-gravitymethod. The force controllerwas pro-
posed as a combination of a conventional PI controller
and a fuzzy PI tuner. The purpose of this late is the
compensation of the joint friction of the robot and
the unknown disturbing force from the subject/patient.
A control system for a 3-DOF upper-limb rehabilita-
tion and training robot was proposed in [36]. The pre-
sented systemwas based on a hierarchical structure that
allows the execution of sequence of switching control
laws for position, force, and impedance, corresponding
to a given required training configuration. This sys-
tem is a model-based nonlinear controller that requires

the knowledge of the robot’s kinematics and dynam-
ics for ensuring haptic transparency and patient safety.
Therefore, identification of robot dynamics was per-
formed using a maximum-likelihood type estimation
[38].Manyworks addressing the control of exoskeleton
robots have used the SMC strategy for its robustness
with respect to uncertainty and external disturbances
(see, for instance, in [23,24,33,39,40]). However, it is
known that the main drawback of SMC is the chatter-
ing phenomenon [20,23,24,31–34,40–42]. This phe-
nomenon generates vibrations to the mechanical struc-
ture that could cause premature wear, or breaking of
mechanical components. Thus, it is practically impos-
sible to use conventional SMCwith exoskeleton robots
for the patients’ safety. An approach for dealing with
this issue was proposed in [40] for a 7-DOF exoskele-
ton robot arm. In this work, a chattering-free reaching
law-based SMC combining the concept of the satura-
tion function [43] and an exponential reaching law [44]
was presented.However, to the best of our knowledge, a
few has been done to propose approaches for nonlinear
fault-tolerant adaptive control for upper-limb exoskele-
ton robotic systems, while these late can be subject to
actuators faults. In fact, it has been reported that robot
can be exposed to different types of faults such as total
failure, partial fault, and bias fault [2,16,17,45,46].
Thus, designing controllers able to efficiently tackle
actuators’ faults may considerably increase patients’
safety. However, such controller for a 5-DOF upper-
limb exoskeleton robot has been studied in [2] but with
only the actuators’ loss of effective fault considered.
Furthermore, actuation torque generated by this con-
troller for meeting the control objective seems rela-
tively too high,which is not energy efficient. Therefore,
for a safe and efficient control of upper-limb exoskele-
ton robots, there is still a need for some improvements
in terms of control energy, tracking performances, and
robustness with respect to different types of faults.

Motivated by the above discussion and observa-
tions, this paper proposes a new adaptive nonlinear
FTC scheme for the 5-DOF upper-limb exoskele-
ton robot presented in [1,2,47]. The study consid-
ers multiple challenges such as unavailable full sys-
tem state information, uncertain nonlinear dynamics,
disturbance torques, actuation faults (especially loss
of effectiveness or gain faults, bias faults or the two
considered simultaneously), and the need for faster
response and improved tracking accuracy with rela-
tively low amplitude control torques. For dealing with
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the unavailability of full-state measurement and exact
system’s dynamics, the scheme incorporates a model-
free high-gain state observer with a dynamic high-gain
matrix for obtaining information about links’ veloci-
ties, and a fuzzy neural network (FNN) for approx-
imating the robot’s unknown dynamics. To address
the problem of control performance improvement and
energy efficiency, a modified reaching law-based SMC
is proposed, which has the particularity of providing a
chattering-free control signal that ensures good track-
ing performances. The main advantages of the scheme
introduced in this paper are as follows:

(a) ability to efficiently and simultaneously tackle
issues such as uncertain dynamics, torque distur-
bances, unavailable full state measurement and
actuation faults of different types (unlike other
schemes for exoskeletons robot control [1,2,9,23,
24,31–33,35–37,39,40]);

(b) chattering-free control signals without using some
chattering avoidancemethods that havebeen repor-
ted to alter the controllers’ robustness feature [48]
and that may involve some additional design para-
meters [20,34,40,41,43,48–54];

(c) alleviated online computation burden thanks to the
use of the linear high-gain observer and to the fact
that the FNN is used for approximating only one
nonlinear vector function, unlike in [21,55] where
two nonlinear matrix functions have to be approx-
imated;

(d) unlike in other works involving FNN for robot con-
trol (see, for instance, in [20,21,24,34,41,56,57]),
FNN approximation errors are compensated using
dynamic parameters such that no prior error bound
knowledge is required;

(e) compensation of torque disturbances and actuation
fault effects without any prior knowledge of any
bound or any use of FDD devices as it is withmany
adaptive and FTC schemes [2,16–19,34,44,46];

(f) convergence of the state observer and asymptotic
stability of the closed-loop system are achieved
using the proposed scheme and the update rules
for the controller’s dynamic parameters;

(g) continuous and lower amplitudes control torques,
shorter settling time, fewer oscillations, better
tracking accuracy, or improved robustness.

The aforementioned effectiveness of the proposed
approach is illustrated by simulating the controlled 5-
DOF upper-limb exoskeleton robot in MATLAB. The

obtained results are compared to those obtained using
the adaptive nonlinear FTCproposed in [2] for the same
system.

The rest of this paper is organized as follows: In
Sect. 2, we present the model of a 5-DOF upper-limb
exoskeleton robot and state the control problem along
with some preliminaries. In Sect. 3, the main results
of this paper are developed, specifically the design
of a high-gain state observer and a FNN-based adap-
tive fault-tolerant nonlinear controller for the robot. In
Sect. 4, the 5-DOF upper-limb exoskeleton robot con-
trolled by the designed adaptive fault-tolerant nonlin-
ear controller is simulated in MATLAB. Section 5 is
devoted to some concluding remarks.

2 Preliminaries and problem statement

In the mathematical developments presented through-
out this paper, standard notations are used.R represents
the set of real numbers; R+ represents the set of pos-
itive real numbers; Rn stands for the n-dimensional
real vector space; Rn×n denotes the n × n real matrix
space. Let In be the column vector of n ones. The
norm of vector x ∈ R

n and that of matrix A ∈ R
n

are defined as ‖x‖ = √
xT x and ‖A‖2 = tr

[
ATA

]
,

respectively. If y is scalar, then |y| denotes its absolute
value.

This section presents the dynamic equation of the
5-DOF upper-limb exoskeleton robot and its control
problem. Some preliminaries are provided for a better
understanding of the design of the controller proposed
in this work, which involves the following steps:

Step 1 Design of a state observer by specifying its
parameters for good convergence properties;
Step 2 Design of a nonlinear dynamics approxima-
tor: a FNN with its membership function, inputs,
update rules and design parameters;
Step 3 Design of a sliding function and a reaching
law defining its dynamics;
Step 4 Design of the fault-tolerant adaptive nonlin-
ear controller and its parameters.

These preliminaries are provided through the presen-
tation of the controller design for an ideal case cor-
responding to known system dynamics and available
full-state measurement.
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2.1 Exoskeleton control problem

The system to be controlled in this paper is the upper-
limb exoskeleton robot that can simulate the most
important 5-DOF in the human upper-limb movements
that are: shoulder abduction/adduction, shoulder flex-
ion/extension, the elbow flexion/extension, wrist flex-
ion/extension, and internal/external rotation. This robot
is modeled as a set of highly nonlinear coupled differ-
ential equations given as follows (the independent vari-
able t is omitted for simplicity in notations) [1,2,47]:

M(q)q̈ + C(q, q̇)q̇ + G(q) + τd(q̇) = τ (1)

where q, q̇, q̈ ∈ R
5 are the position, velocity, and accel-

eration vectors, respectively; τd(q̇) ∈ R
5 is the distur-

bance torque vector, and τ ∈ R
5 is the joints actuation

torque vector. M(q) ∈ R
5×5 is the generalized inertia

matrix given by

M(q) =

⎡

⎢⎢⎢⎢
⎣

M11 M12 M13 0 0
M21 M22 M23 0 0
M31 M32 M33 0 M35

0 0 0 M44 0
0 0 M53 0 M55

⎤

⎥⎥⎥⎥
⎦

where

M11 = I6 sin(q2) cos(q2) + I4 sin
2(q2 + q3)

+ I5 sin(q2 + q3) cos(q2 + q3) + 2

+ I7 sin
2(q2 + q3) + I8 cos(q2) sin(q2 + q3)

+ I9 cos(q2) cos(q2 + q3) + I10 sin
2(q2 + q3)

+ I11 cos(q2) sin(q2 + q3) + I3 cos
2(q2)

+ I2+ I19+ I12 sin(q2+q3) cos(q2+q3) (2)

M12 = M21 = I13 sin(q2) + (I14 − I17) cos(q2 + q3)

+ I16 sin(q2 + q3) + I15 cos(q2) (3)

M13 = M31 = I14 cos(q2 + q3) + I16 sin(q2 + q3)

− I17 cos(q2 + q3) (4)

M22 = I18 + I19 + I20 + I9 cos(q2)

+ I10 + (I11 + 2I8) sin(q3) (5)

M23 = M32 = I8 sin(q3) + I20 + I9 cos(q3)

+ I11 sin(q3) + 2I10 (6)

M33 = I13 + I20 + 2I10 (7)

M35 = M53 = I10 + I21 (8)

M44 = I22 + I23 (9)

M55 = I24 + I21 (10)

and the carioles/centripetal matrix C(q, q̇) ∈ R
5×5 is

given by

C(q, q̇) =

⎡

⎢⎢⎢
⎢
⎣

C1q̇2 C2q̇3 + C3q̇2 C4q̇2 + C5q̇3 0 0
C6q̇1 C7q̇3 C8q̇3 0 0
C5q̇1 C9q̇2 0 0 0
C10q̇2 0 C11q̇1 0 0
0 C12q̇2 0 0 0

⎤

⎥⎥⎥
⎥
⎦

where

C1 = 2 [−I3 sin(q2) cos(q2) + I8 cos(2q2 + q3)

+ I4 sin(q2 + q3) cos(q2) − I9 sin(2q2 + q3)

− 2I10 sin(q2 + q3) + I11 cos(2q2 + q3)

+ I7 sin(q2 + q3)cos(q2q3)

+ I12(1 − 2 sin2(q2 + q3))]
+ I5

(
1−2 sin(q2+q3)+ I6(1−2 sin2(q2))

)

(11)

C2 = 2 [−I14 sin(q2 + q3) + I16 cos(q2 + q3)

+ I17 sin(q2 + q3)] (12)

C3 = I13 cos(q2) − I14 sin(q2 + q3) − I15 sin(q2)

+ I16 cos(q2 + q3) + I17 sin(q2 + q3) (13)

C4 = 2 [I8 cos(q2) cos(q2 + q3)

+ I4 sin(q2 + q3) cos(q2 + q3)

− I9 cos(q2) sin(2q2)

+ 2I10 sin(q2 + q3) cos(q2 + q3)

+ I11 cos(q2) cos(q2 + q3)

+ I7 sin(q2 + q3) cos(q2 + q3)

+ I12(1 − 2 sin2(q2 + q3))]
+ I5(1 − 2 sin2(q2 + q3)) (14)

C5 = 0.5C2 (15)

C6 = −0.5C1 (16)

C7 = 2 [−2I9 sin(q3)+ I8 cos(q3)+ I11 cos(q3)]

(17)

C8 = −0.5C4 (18)

C9 = (1 − 2I10) sin(q2 + q3) cos(q2 + q3)

− I11 cos(q2) cos(q2 + q3)

− I12 cos
2(q2 + q3) (19)

C10 = (−I23 + I19 + I20) sin(q2 + q3) (20)

C11 = (−I20 + I23 + I19) sin(q2 + q3) (21)

C12 = −I11 cos(q3) − I12 (22)

The system gravitational parameters used in Eqs. (2)–
(22) are given in Table 1. Finally, the gravity vector is
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Table 1 5-DOF upper-limb exoskeleton robot parameters [1,2]

Inertial parameters (kgm2)

I1 = 1.14 ± 0.27 I2 = 1.43 ± 0.05

I3 = 1.38 ± 0.05 I4 = 0.298 ± 0.029

I5 = −0.0213 ± 0.0022 I6 = −0.0142 ± 0.0070

I7 = −0.0001 ± 0.0006 I8 = 0.372 ± 0.031

I9 = −0.011 ± 0.0011 I10 = 0.00125 ± 0.0003

I11 = −0.0124 ± 0.0003 I12 = 0.000058 ± 0.00001

I13 = −0.69 ± 0.02 I14 = 0.134 ± 0.014

I15 = 0.238 ± 0.012 I16 = 0.00379 ± 0.0009

I17 = 0.000642 ± 0.0003 I18 = 4.71 ± 0.54

I19 = 1.75 ± 0.07 I20 = 0.333 ± 0.016

I21 = 0.000642 ± 0.0003 I22 = 0.2 ± 0.016

Gravitational parameters (Nm)

g1 = −37.2 ± 0.5 g2 = −8.43 ± 0.20

g3 = 1.02 ± 0.5 g4 = 0.249 ± 0.025

g5 = −0.0292 ± 0.0056

given by G(q)T = [
0 G2 G3 0 G5

]
where

G2 = g1 cos(q2) + g3 sin(q2) + g4 cos(q2 + q3)

+ (g2 + g5) sin(q2 + q3) (23)

G3 = (g2+g5) sin(q2 + q3)+g4 cos(q2 + q3) (24)

G5 = g5 sin(q2 + q3) (25)

The parameters used in Eqs. (23)–(25) are given in
Table 1.

Considering actuation faults, the robot dynamic
model in Eq. (1) can be rewritten as follows:

M(q)q̈ + C(q, q̇)q̇ + G(q) + τd(q̇) = τa (26)

where τa ∈ R
5 represents the vector of actual actuation

torque. Unlike in [2], in order to consider not only the
partial loss of effectiveness fault, we consider that

τa = τ − δτ + � (27)

where δ = diag [δ1, . . . , δ5] is the time-varying/const-
ant matrix of actuation power loss rates, τ ∈ R

5 is the
vector of theoretical joints input torques (provided by
the control algorithm), and �T = [�1, . . . ,�5] rep-
resents the time-varying/constant bias in the actuation
torque. Hence, Eq. (27) can represent different types of
actuation faults. For 1 ≤ i ≤ 5, if δi = 1 and �i = 0,
there is a total failure at the i-th bar-link that can man-
ifest in free-swinging joint, or locked joint because of

jamming of bearings, transmission or because of the
failure of the drive motor; if δi < 1 and �i = 0,
there is a partial loss of actuation at the i-th bar-link
that may be caused by increased resistance in the joint
movement (e.g., due to loss of lubrication) or vibrations
(e.g., due to increased backlash); if δi = 1 and�i �= 0,
there is a bias fault at the i-th bar-link; if δi < 1 and
�i �= 0, the system may be subject to a complex fault
[2,16,17,45,46].

Given a vector qd ∈ R
5 of reference trajectories for

the five links, the objective is to design a controller that
will provide τ ∈ R

5 to force the robot position vector
q ∈ R

5 to track qd with accuracy despite the torque
disturbance τd ∈ R

5, unknown or uncertain system
dynamics or parameters (M(q), C(q, q̇), and G(q)),
unavailable velocity measurements q̇, actuation faults
of different types.

2.2 Controller design: ideal case with available states
and system dynamics

Herewefirst assume that full system statemeasurement
information (q, q̇) and system nonlinear dynamics (or
parametersM(q), C(q, q̇), andG(q)) are known. This
will set the path to the main results of this paper.

Considering the aforementioned control objective,
let us denote the position tracking error vector by eT =
[e1, . . . , e5] where ei = qd,i − qi for 1 ≤ i ≤ 5.

Let us denote the sliding function vector as sT =
[s1, . . . , s5] obtained from

s = ė + �e (28)

where � = �T ∈ R
5×5 is a positive-definite constant

diagonalmatrix. Thefirst timederivative of smultiplied
by the generalized inertia matrix corresponds to

M(q)ṡ = M(q) (q̈d + �ė) − M(q)q̈ (29)

Using the expression of q̈ obtained from Eq. (26), we
obtain

M(q)ṡ = M(q) (q̈d + �ė) + C(q, q̇)q̇ + G(q)

+ τd(q̇) − τ a (30)

Using Eq. (27) in Eq. (30), we obtain

M(q)ṡ = M(q) (q̈d + �ė) + C(q, q̇)q̇

+G(q) + ψ(q̇, τ ) − τ (31)
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where ψ(q̇, τ ) = τd(q̇) + δ · τ − � is the lumped
disturbance, resulting from the disturbance torque and
the actuation fault.

Here we propose the use of a sliding mode reaching
law given as follows:

M(q)ṡ = −ηT(s) − KE(s) (32)

where η = diag [η1, . . . , η5] and K = diag [K1, . . . ,

K5] are positive-definite design matrices, T(s)T =
[T1(s1), . . . , T5(s5)] with

Ti (si ) = exp(4si ) − 1

exp(4si ) + 1
(33)

and E(s)T = [E1(s1), . . . , E5(s5)] with

Ei (si ) = si
exp(si ) + 1

(34)

Using the reaching law given by Eq. (32), we obtain
chattering phenomenon cancelation without involving
some chattering avoidance methods that have been
reported to alter the controllers’ robustness feature and
that may involve some additional design parameters to
the control system that may need to be tuned [40,48].
Some of these methods consist in, for instance, replac-
ing the sign function of the traditional SMC with a
boundary layer function [20,49] or saturation func-
tion [40,43], using a continuous hyperbolic tangent
function [50], using fuzzy logic to adjust the slope of
switching surface [51], using a disturbance observer
[52], using a radial basis function neural network [53],
and/or using power rate reaching strategy [54].

Using Eq. (31) (where ψ(q̇, τ ) = 0) and Eq. (32),
we derive the joints theoretical input torque vector as
follows

τ = f(q, q̇) + ηT(s) + KE(s) (35)

where the nonlinear function vector f(q, q̇) ∈ R
5 cor-

responds to

f(q, q̇) = M(q) (q̈d + �ė) + C(q, q̇)q̇ + G(q) (36)

In order to check under which condition the control
law given by Eq. (35) can guarantee the closed-loop
system stability, let us consider the followingLyapunov
function

V = 1

2
sTM(q)s (37)

The first time derivative of this function is

V̇ = sTM(q)ṡ + 1

2
sT Ṁ(q)s

= sTM(q)ṡ + 1

2
sT

(
Ṁ(q) − 2C(q, q̇)

)
s

= sTM(q)ṡ (38)

Let us apply Eq. (35) in Eq. (31) (where ψ(q̇, τ ) �= 0)
to obtain

M(q)ṡ = ψ(q̇, τ ) − ηT(s) − KE(s) (39)

Applying Eq. (39) in Eq. (38), we obtain

V̇ = sT
[
ψ(q̇, τ ) − ηT(s) − KE(s)

]
(40)

Considering the worst-case scenario caused by the dis-
turbance ψ(q̇, τ ), the sliding variable may go away
from the origin such that Ti (si ) = exp(4si )−1

exp(4si )+1 ≈ 1.
Therefore, Eq. (40) becomes

V̇ ≈ sTψ(q̇, τ ) − sT ηI5 −
5∑

i=1

Ki
s2i

exp(si ) + 1

≤ ‖s‖ (‖ψ(q̇, τ )‖max − ‖η‖) −
5∑

i=1

Ki
s2i

exp(si ) + 1

(41)

If we select the five diagonal elements of the positive-
definite matrix η such that, ηi > |ψi (q̇i , τi )|max for
1 ≤ i ≤ 5,with Ki ∈ R

+, we obtain V̇ ≤ 0. Therefore,
under this condition, the closed-loop system asymp-
totic stability is guaranteed. Thus, according to Bar-
balat’s lemma, s → 0, e → 0 as t → ∞, despite
torque disturbances and actuation faults.

Remark 1 The implementation of the designed control
law Eq. (35) requires the availability of full-state mea-
surements (q, q̇), the exact knowledge of the system
dynamics f(q, q̇) given by Eq. (36), and the knowl-
edge of the upper bound of the lumped disturbance
ψ(q̇, τ ). This requirement is unlikely to be fulfilled in
practical applications because of the uncertain nature
of the upper-limb exoskeleton robot, the unavailability
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of the full-state measurement, and the unknown dis-
turbance upper bound. Therefore, the control law Eq.
(35) should be improved by making its implementa-
tion independent of full-state measurement availabil-
ity, systems dynamics, and disturbances bounds. This
improvement is the main subject of the next section.

3 Main results

3.1 High-gain state observer design

Having only information on robot links position vector
q, let us use a high-gain state observer that will provide
an accurate estimation ˙̂q of the unavailable velocity
vector q̇. Let us first consider the state-space represen-
tation of the robot dynamicmodel by rewriting Eq. (26)
as follows:

{
ẋ = Ax + F(x, τ )

y = Hx
(42)

where xT = [
x1T , . . . , x5T

]
is the state vector with

xTi = [
qi q̇i

]
; y ∈ R

5 is the system output vector;
F(x, τ ) = −B · M−1(q)

[
C(q, q̇)q̇ + G(q) + τd(q̇)

−τa]; for 1 ≤ i ≤ 5, A = diag [A1, . . . ,A5] with

Ai =
[
0 1
0 0

]
, B = diag [B1, . . . ,B5] with Bi =

[
0
1

]
,

andH = diag [H1, . . . ,H5] withHi = [
1 0

]
such that

H is a full rank matrix in accordance with the observ-
ability criteria.

Assumption 1 [18,19,58–60] With the state vector
x ∈ R

10 bounded over the compact set � ⊂ R
10,

and the control torque τ ∈ R
5 restricted to the class

of admissible control torques U ∈ R
5, the nonlinear

vector field F(x, τ ) is bounded with respect to its argu-
ments on �, i.e., there exist a positive scalar valued
function ρ(x, τ ) such that ‖F(x, τ )‖ ≤ ‖P‖−1ρ(x, τ )

∀x ∈ R
10 and ∀τ ∈ R

5, with P = PT > 0.

Knowing that the system dynamics are unavailable and
that only position information q is available, the objec-
tive is to design an observer that does not involve the
system dynamics in its implementation, for which the
input is the system output vector y, and for which
the state x̂ will converge asymptotically to x, i.e.,
lim
t→∞(x̂− x) = 0. For that we use a high-gain observer

modeled by

{ ˙̂x = Ax̂ + L
(
y − ŷ

)

ŷ = Hx̂
(43)

whereL = block − diag [L1, . . . ,L5] is the high-gain

observer matrix with LT
i =

[
ki,1
ε(t)

ki,2
ε(t)2

]
. The parame-

ters ki,1 and ki,2 are selected such that the polynomial
p2 + ki,2 p + ki,1 = 0 is Hurwitz. The time-varying
parameter ε(t) ∈ R

+ is expressed as follows [25]:

ε(t) = exp(50t) + 1

100
[
exp(50t) − 1

] (44)

Let us denote x̃ = x − x̂ the state estimation error
vector. Using Eqs. (42) and (43), the dynamics of this
error is given as follows:

˙̃x = ẋ − ˙̂x
= (A − LH) x̃ + F(x, τ )

= A0x̃ + F(x, τ ) (45)

where A0 = (A − LH) has all its eigenvalues with
negative real parts.

In order to check the convergence property of the
state observer, let use the followingLyapunov function:

V = 1

2
x̃TPx̃ (46)

where P = PT > 0 ∈ R
10×10, mentioned in Assump-

tion 1, is a solution of the following Riccati algebraic
equation:

AT
0 P + PA0 = −Q (47)

for a given Q = QT > 0 ∈ R
10×10. The first time

derivative of the Lyapunov function is

V̇ = 1

2
˙̃xTPx̃ + 1

2
x̃TP ˙̃x

= 1

2
x̃T

(
A0

TP + PA0

)
x̃ + x̃TPF(x, τ ) (48)

Using Eq. (47), under Assumption 1, Eq. (48) becomes

V̇ = −1

2
x̃TQx̃ + x̃TPF(x, τ )

≤ −1

2
x̃TQx̃ + ‖x̃‖‖P‖‖F(x, τ )‖
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≤ −1

2
x̃TQx̃ + ‖x̃‖ρ(x, τ )

≤ −1

2
λmin(Q)‖x̃‖2 + ‖x̃‖ρ(x, τ ) (49)

where λmin(Q) is the smallest eigenvalue of Q. There-
fore, we have V̇ ≤ 0whenever ‖x̃‖ is outside the region
bounded by ‖x̃‖ ≤ 2ρ(x, τ )/λmin(Q). Hence, accord-
ing to the Barbalat’s lemma, ∀t ≥ 0, lim

t→∞(x − x̂) = 0

such that x̂ is guaranteed to be bounded in the compact
set �. This convergence property is illustrated by the
simulation results presented in Sect. 4.

3.2 Fuzzy neural network and observer-based
nonlinear controller design

As stated by Remark 1 of Sect. 2, the control law
given by Eq. (35) is not good for practical applications
as the robot dynamics f(q, q̇), the full-state vector x,
and the disturbance torque and actuation fault upper
bounds (‖ψ(q̇, τ )‖max) are not available. Therefore,we
exploit the state observer given by Eq. (43) to obtain
an accurate estimation x̂ of the state vector x.

In order to approximate the unknown dynamics with
the approximate state vector (f(q̂, ˙̂q)), considering that
the approximate state vector x̂ remains bounded in the
compact set � ∈ R

10 ∀t , we exploit the universal
approximation theorem of FNN (in this paper, unlike
in [21,55], the FNN is used for approximating only
one nonlinear vector function: less computational bur-
den). FNN are known for their ability of exploiting
the structural advantage of fuzzy logic systems and the
learning capability of neural networks [61]. It has been
proved several times that FNN are able to approximate
any continuous nonlinear function defined on a com-
pact set � to arbitrary accuracy (see, for instance, in
[20,21,24,34,41,56,57,62]).

With a FNN using a center-of-gravity defuzzifica-
tion method, an approximation of the nonlinear vector

function is obtained as f̂(q̂, ˙̂q)
T = [ f1, . . . , f5] where,

for i = 1, . . . , 5, we have:

f̂i (xei|θ̂i ) =
∑m

j=1 θ̂i, j (t)
(∏k

l=1 μ
A j
l
(xei,l)

)

∑m
j=1

(∏k
l=1 μ

A j
l
(xei,l)

)

= θ̂Ti (t)ϕ(xei) (50)

with m being the number of fuzzy rules, k being the
length of the FNN input vector xei for the i th link. In this
paper, xei = [

qd,i − q̂i , q̇d,i − ˙̂qi
]
; the FNNweighting

vector for the i th link is θ̂Ti (t) = [θ̂i1(t), . . . , θ̂im(t)];
ϕ(xei) ∈ R

m is the vector of fuzzy basis functions for
the i th link, for which the components ϕ j (xei), for 1 ≤
j ≤ m, are obtained from:

ϕi (xei) =
∏k

l=1 μ
A j
l
(xei,l)

∑m
j=1

(∏k
l=1 μ

A j
l
(xei,l)

) (51)

where A j
l are the fuzzy sets that correspond to themem-

bership functions μ
A j
l
, for 1 ≤ l ≤ k and 1 ≤ j ≤ m,

calculated for each input xei,l using the Gaussian func-
tion given as follows:

μ
A j
l
(xei,l) = exp

[

− (xei,l − a j
i,l)

2

2μ2

]

(52)

where a j
i,l is the width of the Gaussian function and

μ > 0 is the center of the receptive field. These para-
meters, known as membership function parameter set,
and the number of fuzzy rules (m) are very relevant
for the accuracy of the FNN output. The approximate
vector function at the output of the FNN can therefore
be written as follows

f̂ (xe|θ̂ ) = θ̂Tϕ(xe) (53)

where ϕT = [
ϕT (xe1), . . . , ϕT (xe5)

] ∈ R
5·m , and θ̂ =

block − diag
[
θ̂1, . . . , θ̂5

]
∈ R

5·m×5 is the matrix of

the five links weighting vectors, for which the update
law is designed as follows:

˙̂
θ = γ −1ϕ(xe)ŝT (54)

with ŝ ∈ R
5 being the sliding function vector obtained

with the estimated states as follows:

ŝ = ˙̂e + Γ ê (55)

where êT = [ê1, . . . , ê5], with êi = qd,i − q̂i , is the
approximate tracking error vector; γ = diag

[
γ1, . . . ,

γ5
]
, with γi > 0 ∈ R (1 ≤ i ≤ 5) being the learning

rate for the dynamics of the i th link.
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The benefit of using the update law expressed by Eq.
(54), which is a function of the approximate closed-
loop system tracking error dynamics, is that the para-
meter θ̂ (t) does not have a direct effect on the closed-
loop system stability (see the proof of Theorem 1). This
dynamics of ê is defined by the sliding function given
by Eq. (55) where the parameter � = �T > 0 ∈ R

5×5

is selected such that lim
t→∞ ê = 0.

The difference between the FNN output given by
Eq. (53) and the exact nonlinear function given by Eq.
(36) corresponds to:

f̂(xe|θ̂ ) − f(q, q̇) = θ̃Tϕ(xe) − ε(xe) (56)

where θ̃ (t) is the error on approximated weight matrix
θ̂ (t), εT (xe) = [ε1(xe1), . . . , ε5(xe5)] is the FNN
approximation error vector.

Assumption 2 The approximation errors εi (xei) are
bounded by some unknown constants εi max > 0 over
the compact set � ∈ R10, i.e., max

xei∈�
|εi (xei)| ≤ εi max.

In order to improve theFNNperformances (i.e., to com-
pensate the approximation error effects) for a fixed low
number of fuzzy rules m and a fixed FNN parameter
set, we add to the designed control law a dynamic para-
meter vector ε̂(t) ∈ R

5 tuned online to compensate the
FNN approximation errors without causing an impor-
tant computational load, while ensuring robustness of
the control system (and without any prior error upper
bound knowledge). The update rule for this parameter
vector is

ε̂(t) = ζ−1
ε ŝ (57)

where ζε = diag
[
ζε,1, . . . , ζε,5

]
, with ζε,i ∈ R

+ (for
1 ≤ i ≤ 5), is the matrix of the parameter ε̂(t) learning
rate.

In order to compensate the effects of the lumped
disturbance ψ(q̇, τ ) without any prior knowledge of
its upper bound, unlike as suggested in Sect. 2, let us
add to the control law the dynamic matrix η̂1(t) =
diag

[
η̂1,1, . . . , η̂1,5

]
for which the update rule is

˙̂η1 = ζ−1
η ŝ∗ (58)

where ŝ∗ = diag
[
ŝ1, . . . , ŝ5

]
, ζη = diag

[
ζη,1, . . . ,

ζη,5
]
, with ζη,i ∈ R

+ (for 1 ≤ i ≤ 5), is the matrix of
the parameter η̂1(t) learning rate.

Theorem 1 By generating the robot actuation input
torque using the following control law

τ = f̂(xe|θ̂ ) + η̂(t)T (ŝ) + KE(ŝ) (59)

that uses the estimated vector x̂ ∈ R
10 of the high-again

state observer given by Eq. (43) (with proved conver-
gence) and the FNN output given by Eq. (53) for which
theweights are adjusted usingEq. (54), the closed-loop
system’s stability, and therefore, robustness is guar-
anteed regardless the changes in the robotic system’s
parameters, the torque disturbances, the FNN approx-
imation error, and different types of actuation faults;
this is ensured if

η̂(t) = η̂1(t) + η2(t) (60)

with η̂1(t) ∈ R
5×5 obtained using the update rule by

Eq. (58), and η2(t) = diag
[
�|ε̂1|, . . . , �|ε̂5|

]
, with

� > 1 ∈ R, where the parameters ε̂i are obtained using
the update rule in Eq. (57);K = diag [K1, . . . , K5] >

0, T(ŝ) ∈ R
5 and E(ŝ) ∈ R

5 are obtained using Eqs.
(33) and (34), respectively.

Proof in order to prove Theorem 1, let us consider the
following candidate Lyapunov function (in the follow-
ing development, for simplicity in notations, we will
omit the independent variable t , and the dependent
variables q and q̇):

V = V1 + V 2 (61)

where

V1 = 1

2
sTMs + 1

2
tr

[
θ̃T γ θ̃

]
(62)

with the error vector on the approximate weight θ̂ given
as

θ̃ = θ̂ − θ∗ (63)

where θ∗ ∈ R
5·m×5 is the optimal weight vector, which

is used here only for stability analysis purpose, and

V2 = 1

2
tr

[
η̃T1 ζηη̃1

]
+ 1

2
ε̃T ζεε̃ (64)
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with the error on the approximate matrix η̂1 given by

η̃1 = η̂1 − η1 (65)

with η1 being a large value considered here only for
analytical purpose, and

ε̃ = ε̂ − ε(xe) (66)

is the error matrix on the approximate ε̂.
Let us find the first-order derivative of V1 and apply

the identity given by Eq. (63) as follows:

V̇1 = sTMṡ + 1

2
sT Ṁs + tr

[
θ̃T γ

˙̃
θ
]

= sTMṡ + 1

2
sT

(
Ṁ − 2C

)
s + tr

[
θ̃T γ

˙̂
θ
]

= sTMṡ + tr
[
θ̃T γ

˙̂
θ
]

(67)

Let us apply the control law given by Eq. (59) in Eq.
(31) [where the identities Eqs. (36) and (56) are used]
to obtain

Mṡ = −
[
θ̃Tϕ(xe)−ε(xe)

]
+ψ − η̂T(ŝ) − KE(ŝ)

(68)

Applying Eq. (68) in Eq. (67), we obtain

V̇1 = sT {−
[
θ̃Tϕ(xe) − ε(xe)

]
+ ψ − η̂T(ŝ)

−KE(ŝ)} + tr
[
θ̃T γ

˙̂
θ
]

= tr
[
θ̃T

(
γ

˙̂
θ − ϕ(xe)sT

)]
+ sT ε(xe) + sTψ

− sT η̂T(ŝ) − sTKE(ŝ) (69)

Applying the update law given by Eq. (54) in Eq. (69)
yields

V̇1 = tr
[
θ̃Tϕ(xe)

(
ŝT − sT

)]
+ sT ε(xe) + sTψ

− sT η̂T(ŝ) − sTKE(ŝ) (70)

Considering the convergence property of the employed
high-gain state observer, i.e., the fact that ŝ → s, we
have

V̇1 = sT ε(xe) + sTψ − sT η̂T(ŝ) − sTKE(ŝ) (71)

The first time derivative of Eq. (64) corresponds to

V̇2 = tr
[
η̃T1 ζη

˙̃η1
]

+ ε̃T ζε
˙̃ε (72)

UsingEqs. (65), (66), (71), and (72), thefirst timederiv-
ative of the Lyapunov function given by Eq. (61) can
be written as follows:

V̇ = sT
(
ε̂ − ε̃

) + sTψ − sT η̂T(ŝ) − sTKE(ŝ)

+ tr
[
η̃T1 ζη

˙̂η1
]

+ ε̃T ζε
˙̂ε

= ε̃T
(
ζε

˙̂ε − s
)

+ sTψ − sT η̂T(ŝ) − sTKE(ŝ)

+ tr
[
η̃T1 ζη

˙̂η1
]

+ sT ε̂ (73)

Let us apply the update rule given by Eq. (57) in Eq.
(73) to obtain

V̇ = ε̃T
(
ŝ − s

) + sTψ − sT η̂T(ŝ) − sTKE(ŝ)

+ tr
[
η̃T1 ζη

˙̂η1
]

+ sT ε̂ (74)

Considering the convergence property of the state
observer, i.e., ŝ → s, we have

V̇ = sTψ−sT η̂T(ŝ) − sTKE(ŝ) + tr
[
η̃T1 ζη

˙̂η1
]

+ sT ε̂

(75)

Considering the worst-case scenario caused by the dis-
turbance ψ(q̇, τ ), the sliding variable ŝ may go away
from the origin such that Ti (ŝi ) = exp(4ŝi )−1

exp(4ŝi )+1 ≈ 1.
Therefore, Eq. (75) can be written as follows:

V̇ ≈ sTψ − sT η̂I5 − sTKE(ŝ) + tr
[
η̃T1 ζη

˙̂η1
]

+ sT ε̂

= sTψ − sT
(
η̂1 + η2

)
I5 −

5∑

i=1

Ki
ŝi si

exp(ŝi ) + 1

+ tr
[
η̃T1 ζη

˙̂η1
]

+ sT ε̂ − sT η1I5 + sT η1I5 (76)

Applying the identities Eqs. (60) and (65), and consid-
ering the convergence of the observer, i.e., s = ŝ, Eq.
(76) becomes as follows

V̇ = sT
(−η̂1 + η1

)
I5 −

5∑

i=1

Ki
s2i

exp(si ) + 1

+ sTψ + tr
[
η̃T1 ζη

˙̂η1
]

+ sT ε̂ − sT η1I5 − sT η2I5

= −sT η̃1I5 −
5∑

i=1

Ki
s2i

exp(si ) + 1
+ sT ε̂

+ sTψ + tr
[
η̃T1 ζη

˙̂η1
]

− sT η1I5 − sT η2I5
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= tr
[
η̂T1

(
ζη

˙̂η1 − I5sT
)]

−
5∑

i=1

Ki
s2i

exp(si ) + 1

+ sTψ + sT ε̂ − sT η1I5 − sT η2I5 (77)

Let us apply the update rule given by Eq. (58) in Eq.
(77) to obtain

V̇ = tr
[
η̂T1

(
ŝ∗ − s∗

)] −
5∑

i=1

Ki
s2i

exp(si ) + 1

+ sTψ + sT ε̂ − sT η1I5 − sT η2I5 (78)

where ŝ∗ = diag
[
ŝ1, . . . , ŝ5

]
and s∗ = diag [s1, . . . ,

s5]. Considering the convergence property of the state
observer, Eq. (78) becomes

V̇ = −
5∑

i=1

Ki
s2i

exp(si ) + 1
+ sTψ

+ sT ε̂ − sT η1I5 − sT η2I5

≤ −
5∑

i=1

Ki
s2i

exp(si ) + 1
+ ‖s‖ (‖ψ‖ − ‖η1‖)

+‖s‖ (‖ε̂‖ − ‖η2‖
)

(79)

Considering that η2 = diag
[
�|ε̂1|, . . . , �|ε̂5|

]
with

� ∈ R
+, we have ‖η2‖ = �‖ε̂‖. Applying this late

equality in Eq. (79), we obtain

V̇ ≤ −
5∑

i=1

Ki
s2i

exp(si ) + 1
+ ‖s‖ (‖ψ‖ − ‖η1‖)

+ ‖s‖
(
1

�
− 1

)
‖η2‖ (80)

Knowing that η1 (which is not needed for the con-
troller’s implementation but that is used for stability
analysis purpose only) is such as ‖η1‖ >> ‖ψ‖, and by
selecting � > 1, with Ki ∈ R

+, we have V̇ ≤ 0. This
means that the closed-loop system is asymptotically
stable regardless of the uncertain dynamics f(q, q̇), the
disturbance torque, and the actuation fault (lumped dis-
turbanceψ(q̇, τ )). According to the Barbalat’s lemma,
s → 0, and therefore e → 0 as t → ∞. Hence, we
conclude that the control objective is achieved with the
proposed control law used with the proposed dynamic
parameters and update rules. This ends the proof of
Theorem 1. ��

4 Simulation and discussion

In order to illustrate the efficiency of the proposed
control algorithm for the 5-DOF upper-limb exoskele-
ton robot, in this section we present the results
obtained when simulating the controlled system in
MATLAB/SIMULINK. A benchmarking is performed
by comparing these late results with those reported in
[2].

For this simulation, the control objective is, as in
[1] and [2], to force the links position vector q to track
the reference qd = [

qd,1, . . . , qd,5
]T where qd,i =

5 sin(t + iπ/5) for 1 ≤ i ≤ 5.
For the high-gain state observer in Eq. (43) used

to obtain an estimate state vector x̂, the high-gain
matrix L = diag [L1, . . . , L5] is selected with LT

i =[
18
ε(t)

9
ε(t)

]
where ε(t) is obtained using Eq. (44). For

the FNN used for approximating the system dynam-
ics f(q, q̇), we use seven fuzzy rules for each link. For
simplicity in the design, we use the same membership
function for each link, given by

μ
A j
l

= exp

[

−
(
xei,l + 1.5 − ( j − 1)0.5

)2

102

]

(81)

for xei =
[
q̂i , ˙̂qi

]
, i = 1, . . . 5, j = 1, . . . , 7 and

l = 1, 2. The learning rate matrix for the FNN weight
is selected as γ = diag

[
γ1, . . . , γ5

]
where γi = 1/15

for 1 ≤ i ≤ 5. For the controller’s dynamic matrix
parameter ε̂(t), the learning rate matrix is selected as
ζε = diag

[
ζε,1, . . . , ζε,5

]
with ζε,i = 0.02 for 1 ≤

i ≤ 5. The learning rate matrix for the dynamic matrix
η̂1(t) is selected as ζη = diag

[
0.05 0.05 0.2 0.5 4

]
.

The sliding function uses a diagonal matrix � ∈ R
5 for

which all diagonal elements are equal to 15; we select
� = 2 for the parameter η2.

Remark 2 It is worth mentioning here that the choice
of all the aforementioned constant design parameters
may affect the tracking performances in terms of set-
tling time and tracking accuracy. Their values are tuned
during a trial-and-error process for which the outcome
is a set of parameters that lead to optimal tracking per-
formances. Just for illustration, the effect of the val-
ues selected for the controller’s parameter K = KT ∈
R
5×5 on the tracking performances can be observed

by comparing results obtained for Ki = 5 and for
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Fig. 1 Links’ positions q1, q2 and q3 for K1 = K2 = K3 = 5
(dashed line) and for K1 = K2 = K3 = 2 (dashdoted line)
tracking the references qd1, qd2 and qd3 with the nonlinear fault-

tolerant controller from [2] (see a, c, e), and with our nonlinear
controller (see b, d, f)
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Fig. 2 Links’ positions q4 and q5 for K4 = K5 = 5 (dashed line) and for K4 = K5 = 2 (dashdoted line) tracking the references qd4
and qd5 with the nonlinear fault-tolerant controller from [2] (see a, c), and with our nonlinear controller (see b, d)

Ki = 2 with 1 ≤ i ≤ 5 (see dashed and dashdoted
lines, respectively, on the right-hand side of Figs. 1, 2).

As in [2], for checking the performance of the control
systemwhen a torque disturbance and an actuation fault
occur, we consider that at the time t = 4s, a disturbance
torque τd = [τd1, . . . , τd5] with τdi = 0.5 Nm and a
fault τa = 1.2τ occur.

Figures 1 and 2 depict the 5-DOF upper-limb
exoskeleton robot links positions q1, . . . , q5 track-
ing their references qd1, . . . , qd5 when the FNN and
observer-based nonlinear controller in Eq. (59) are
used, and as reported in [2] where a fault-tolerant adap-

tive nonlinear controller was proposed for the same
robotic system.

The plots on the left-hand-side of these figures rep-
resent the results reported in [2] while the ones on the
right-hand-side are those obtained with the control law
in Eq. (59). One can notice that the use of the control
law in Eq. (59) leads to shorter settling time with fewer
oscillations during the transient phase and better track-
ing accuracy. Information on the obtained approximate
values of the minimum andmaximum settling times on
the five links with the two controllers can be found in
Table 2.

Let us remind that only the robot’s position infor-
mation q is available and that the controller uses the
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Table 2 Some performance
specifications on the five
links with the controller Eq.
(59) and the fault-tolerant
adaptive nonlinear
controller from [2]

Performance specifications Equation (59) Adapt. Nonl. contr. from [2]

Min settling time (s) ≈0.8 ≈3

Max settling time (s) ≈2 ≈6

|τi |max in steady state (Nm) ≈200 ≈4900
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Fig. 3 Actual velocity q̇2 (dashed line) with its estimated value˙̂q2 for the 2nd link

approximated position q̂ and velocity ˙̂q vectors. The
good convergence ability of the employed high-gain
observer is illustrated in Fig. 3 where the approximate
velocity (continuous plot) for the robot’s second link is
represented along with its corresponding actual veloc-
ity (dashed plot).

Another important fact worth to be mentioned here
is that the actuation effort needed to achieve the per-
formance reported in [2] is away bigger than the one
needed to achieve the improved performances obtained
using the control law in Eq. (59). The control torques
for the fives links obtained when the control law in Eq.
(59) is applied, and the ones reported in [2] are por-
trayed in Fig. 4.

Table 2 provides an insight into the advantage of
using the controller given by Eq. (59) by pointing out
the fact that, with the control law reported in [2], con-
sidering each link individually, the maximum control
effort in steady state is about 25 times bigger thanwhen
Eq. (59) is used for controlling the exoskeleton robot
with unknowns dynamics, a disturbance torque and an
actuation fault.

5 Conclusion

This paper has studied the design of a controller for
a 5-DOF upper-limb exoskeleton robot used for pas-
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Fig. 4 Five links actuation torques τ1, . . . , τ5 obtained: a with nonlinear fault-tolerant controller from [2]; b with the control approach
proposed in this paper
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sive rehabilitation therapy. The study has addressed
challenges related to practical utilization of the robot
such as uncertain nonlinear dynamics, unavailable full-
state measurement, occurrence of disturbance torque,
and actuation faults of different types. For tack-
ling these challenges, an adaptive nonlinear control
scheme, which is a new reaching law-based sliding
mode control strategy, has been proposed. A high-
gain state observer and a FNN have been used in the
scheme for state vector and nonlinear dynamics esti-
mation, respectively. Some dynamic parameters have
been used in the scheme for efficiently and simul-
taneously tackling the effects of FNN approximation
error, disturbance torque, and actuation faults. Simula-
tion results have proved that fewer oscillations during
transient phase, faster response, good tracking accu-
racy, and chattering-free control torques with lower
amplitudes are obtained when the proposed scheme
is employed. Future research will focus on extend-
ing the study presented in this work to propose an
approach for the design of efficient observer-based
adaptive fault-tolerant controllers for uncertain MIMO
strict-feedback nonlinear systems with unknown con-
trol directions and constrained inputs.
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