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Abstract This paper considers a stochastic predator–
prey model with hyperbolic mortality and Holling type
II response. Firstly, we show that there is a critical value
which can easily determine the extinction and persis-
tence in the mean of the predator population. Then by
constructing appropriate Lyapunov functions,we prove
that there is a stationary distribution to this model and it
has the ergodic property. Finally, a numerical example
is introduced to illustrate the results developed.
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1 Introduction

In the ecological sciences, the dynamical behavior of
predator and its prey has long been and will continue
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to be one of the dominant themes in both ecology and
mathematical ecology due to its universal existence and
importance [1]. Since LotkaVolterra’s pioneeringwork
on population dynamics, various predator–prey mod-
els have been presented and studied widely by both
applied mathematicians and ecologists [2–9]. There
are a number of different functional responses used to
model predator–prey interaction, such as Beddington–
DeAngelis type, Hassell–Varley type, Holling–Tanner
type andHolling II, III, IV types. The general predator–
prey model with Holling type II response has the fol-
lowing form [7,8]:

{
ẋ(t) = r x

(
1 − x

K

) − axy
b+x ,

ẏ(t) = −h(y) + mxy
b+x ,

(1)

where x and y are the population densities of prey and
predator, respectively; r is the birth rate, K is the car-
rying capacity, and a is the maximum uptake rate of
the prey; b is the prey density at which predator has the
maximum kill rate;m is the birth rate and function h(y)
reflects the mortality rate of the predator. Mortality rate
of the predator is also essential in population dynamics.
Note that when h(y) is linear, model (1) is the classic
Holling type II predator–prey model. According to [7],
taking

u = x

K
, v = ym, t̃ = r t, s = a

rmK
,

α = m

r
, β = b

K
,
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model (1) (after dropping the tildes) becomes

⎧⎨
⎩
u̇(t) = u

(
1 − u − sv

β+u

)
,

v̇(t) = α
(
−h(v) + uv

β+u

)
,

(2)

where h(v) = γ v2

1+γ v
for hyperbolic mortality, which

dominates the mortality when population density is
large [10]. Model (2) has always three equilibria,
which consist of two boundary equilibria (0, 0) and
(1, 0), and a nontrivial stationary state (u∗, v∗) where
u∗ = (βγ−s−β2γ )+

√
4β3γ 2+(βγ−s−β2γ )2

2βγ
, v∗ = u∗

βγ
.

In this case of hyperbolic mortality, (u∗, v∗) always
exists, and it is locally asymptotically stable if 0 <

sv∗ − (β + u∗)2 < αβ.
However, in the real life situations, population sys-

tems are always affected by environmental noise. May
[11] pointed out that due to continuous fluctuation in
the environment, the birth rates, death rates, carrying
capacity, competition coefficients and all other para-
meters involved with the model exhibit random fluc-
tuation to a great lesser extent. Up to now, stochastic
population systems have been studied by many authors
[12–20]. In this paper, we assume that environmental
white noises are directly proportional to u(t) and v(t).
This approach has been used by many literature, see,
e.g., [12,21]. In this way, predator–prey model with
hyperbolic mortality in random environments will be
deduced to the form:

⎧⎨
⎩
du(t) = u

(
1 − u − sv

β+u

)
dt + σ1udB1(t),

dv(t) = αv
(

u
β+u − γ v

1+γ v

)
dt + σ2vdB2(t),

(3)

where B1(t), B2(t) are mutually independent Brown-
ian motions defined on a complete probability space
(Ω,F , {Ft }t≥0,P) with a σ−field filtration {Ft }t≥0

satisfying the usual conditions, and positive constants
σ 2
1 , σ

2
2 are intensities of the white noises.

The aim of this paper is to study the dynamical
behavior of model (3). In the study of a population
dynamics, global asymptotic stability of the positive
equilibrium is an important topic. However, stochastic
model (3) has no positive equilibrium. Therefore, it is
impossible for the solution of model (3) tending to a
fixed point. In this paper, we will show that model (3)
has an ergodic stationary distributionmainly according
to the theory of Has’minskii [22], if the white noises

are small. The stationary distribution can be consid-
ered as a weak stability. The method adopted here is
constructing new Lyapunov functions and rectangular
set, which do not depend on the equilibrium (u∗, v∗)
of the deterministic model (2). Furthermore, we try to
find the critical value between the extinction and per-
sistence of predator population and analyze how the
environmental noises affect the population dynamics.

2 Preliminaries

For simplicity, we introduce the following notations.
R
2+ := {x = (x1, x2) ∈ R

2 : xi > 0, i = 1, 2}.
〈 f 〉t = 1

t

∫ t
0 f (s)ds.

If g(t) is a bounded function on [0,∞), define ǧ =
supt∈[0,∞) g(t).

Lemma 1 [15] Suppose that Z(t) ∈ C(Ω × [0,∞),

R+).

(I) If there are two positive constants T and δ0 such
that

ln Z(t) ≤ δt − δ0

∫ t

0
Z(s)ds +

n∑
i=1

αi B(t) a.s.

for all t > T , where αi , δ are constants, then{
lim supt→∞〈Z〉t ≤ δ

δ0
a.s., if δ ≥ 0;

limt→∞ Z(t) = 0 a.s., if δ < 0.

(II) If there exist three positive constants T , δ, δ0 such
that

ln Z(t) ≥ δt − δ0

∫ t

0
Z(s)ds +

n∑
i=1

αi B(t) a.s.

for all t > T , then lim inf t→∞〈Z〉t ≥ δ
δ0

a.s..

Lemma 2 For any initial value (u(0), v(0)) ∈ R
2+,

there is a unique positive solution (u(t), v(t)) of model
(3) on t ≥ 0, and the solution will remain in R

2+ with
probability 1. Moreover, there is a constant K such that

E[u(t)] ≤ K , E[v(t)] ≤ K , t ≥ 0. (4)

Proof Define aC2-function V : R2+ → R+ as follows:

V (u, v) = 1

β

(
u − β − β ln

u

β

)

+ s

αβ

(
v − αβ

s
− αβ

s
ln

sv

αβ

)
.
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Applying Itô’s formula, we have

LV (u(t), v(t))

= 1

β

(
u−u2− suv

β+u

)
−

(
1−u− sv

β+u
− σ 2

1

2

)

+ s

αβ

(
αuv

β + u
− αγ v2

1 + γ v

)

−
(

αu

β + u
− αγ v

1 + γ v
− σ 2

2

2

)

≤ − 1

β
u2 + β + 1

β
u + s

β
v − s

β

γ v2

1 + γ v
+ α − 1

+ σ 2
1

2
+ σ 2

2

2

= − 1

β
u2 + β + 1

β
u + s

β

v

1 + γ v

+ α − 1 + σ 2
1

2
+ σ 2

2

2

≤ − 1

β
u2 + β + 1

β
u + s

βγ
+ α − 1 + σ 2

1

2
+ σ 2

2

2

≤ K0,

where K0 is a positive constant. Following the proof
of the remainder of Theorem 2.1 in [23], we obtain
that model (3) admits a unique global positive solution
(u(t), v(t)) ∈ R

2+ for any initial value (u(0), v(0)) ∈
R
2+.
Now we are in the position to prove (4). Define a

Lyapunov function

V (u, v) = u + s

α
v.

Applying Itô’s formula, we obtain

E

(
e

α
2 t V (u, v)

)
= V (u(0), v(0))

+E

∫ t

0
e

α
2 s

[α

2
V (u(s), v(s)) + LV (u(s), v(s))

]
ds,

where for (u, v) ∈ R
2+ and t ≥ 0,

LV (u, v) := u − u2 − γ sv2

1 + γ v
.

Thenwe can deduce that there exists a constant K1 > 0
such that
α

2
V (u, v) + LV (u, v)

= α

2

(
u + s

α
v
)

+ u − u2 − γ sv2

1 + γ v

≤ −u2 + α + 2

2
u + sv

2(1 + γ v)

≤ K1.

Hence

E

(
e

α
2 t V (u, v)

)
≤ V (u(0), v(0))

+
∫ t

0
K1e

α
2 sds=V (u(0), v(0))+ 2K1

α

(
e

α
2 t − 1

)
,

which yields the desired assertion (4). ��

3 Discussion on the persistence and extinction

In this section, we will try to give the critical value
which determines the extinction and persistence of sto-
chastic predator–prey model (3) with hyperbolic mor-
tality. To this end,we quote some concepts and lemmas.

Definition 1 [15]

(1) If limt→∞ v(t) = 0 a.s., then species v(t) is said
to be extinctive almost surely.

(2) If lim inf t→∞〈v〉t > 0 a.s., then model (3) is said
to be persistent in the mean.

Lemma 3 [16] Consider the following one-dimen-
sional stochastic system

dX (t) = X (t)(1 − X (t))dt + σ1X (t)dB1(t), (5)

with X (0) = u(0).

• If 1 − σ 2
1
2 < 0, then limt→∞ X (t) = 0, a.s.

• If 1 − σ 2
1
2 > 0, then

lim
t→∞

1

t

∫ t

0
X (s)ds = 1 − σ 2

1

2
, a.s. (6)

Furthermore, if 1 − σ 2
1
2 > 0, system (5) has a

unique ergodic stationary distribution ν(·)with sta-

tionary density μ(x) = Cx

2−σ21
σ21

−1
e
− 2

σ21
x
, where

C = (2/σ 2
1 )(2−σ 2

1 )/σ 2
1 /Γ ((2 − σ 2

1 )/σ 2
1 ), and
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P

{
lim
t→∞

1

t

∫ t

0
f (X (s))ds =

∫
R+

f (x)μ(x)dx

}

= 1,

where f is a function integrable with respect to the
measure ν.

Remark 1 From stochastic comparison theory it fol-
lows that u(t) ≤ X (t), a.s..

Theorem 1 Assume that 1− σ 2
1
2 > 0. Let λ1 := −σ 2

2
2 +

α
∫ ∞
0

x
β+x μ(x)dx and u(t), v(t) be a positive solution

of model (3) with initial value (u(0), v(0)) ∈ R
2+.

(i) If λ1 < 0, then the predator populations go to
extinction a.s..

(ii) If λ1 > 0, then model (3) will be persistent in the
mean.

Proof (i). An application of Itô’s formula to the second
equation of (3) shows that

d ln v(t) =
(

αu(t)

β + u(t)
− σ 2

2

2
− αγ v(t)

1 + γ v(t)

)
dt

+ σ2dB2(t)

≤
(

αX (t)

β + X (t)
− σ 2

2

2

)
dt + σ2dB2(t).

Integrating above inequality from 0 to t and dividing t
on both sides, we get

ln v(t) − ln v(0)

t
≤ −σ 2

2

2
+ α

1

t

∫ t

0

X (r)

β + X (r)
dr

+ M2(t)

t
, (7)

where M2(t) = ∫ t
0 σ2dB2(t) is a real-valued continu-

ous local martingale. By strong law of large numbers
[24], we have limt→∞ M2(t)

t = 0 a.s.. Taking the supe-
rior limit on both sides of inequality (7) and then using
Lemma 3 we obtain

lim sup
t→∞

ln v(t)

t
≤−σ 2

2

2
+lim sup

t→∞
α
1

t

∫ t

0

X (r)

β+X (r)
dr

≤−σ 2
2

2
+ α

∫ ∞

0

x

β+x
μ(x)dx

=:λ1.
Obviously, the predator v(t) goes to extinction when
λ1 < 0.

(ii). Applying Itô’s formula to the first equation of
(3) and (5), respectively, we have

ln u(t) − ln u(0)

t
= 1

t

∫ t

0

(
1 − σ 2

1

2
− u(r)

)
dr

− 1

t

∫ t

0

sv(r)

β + u(r)
dB(r) + M1(t)

t
,

and

ln X (t) − ln X (0)

t
= 1

t

∫ t

0(
1 − σ 2

1

2
− X (r)

)
dr + M1(t)

t
,

where M1(t) = ∫ t
0 σ1dB1(r) also has the property

limt→∞ M1(t)
t = 0 a.s. From the above two equations

it follows that

0 ≥ ln u(t) − ln X (t)

t

= −1

t

∫ t

0
(u(r) − X (r))dr − 1

t

∫ t

0

sv(r)

β + u(r)
dr

≥ −1

t

∫ t

0
(u(r) − X (r))dr − s

βt

∫ t

0
v(r)dr,

which implies that

1

t

∫ t

0
(X (r) − u(r))dr ≤ s

βt

∫ t

0
v(r)dr. (8)

Applying Itô’s formula to the second equation of (3)
again we have

d ln v(t)

=
(

αu(t)

β + u(t)
− σ 2

2

2
− αγ v(t)

1+γ v(t)

)
dt+σ2dB2(t)

=
(

−σ 2
2

2
+ αX (t)

β+X (t)
−

(
αX (t)

β+X (t)
− αu(t)

β+u(t)

)

− αγ v(t)

1 + γ v(t)

)
dt + σ2dB2(t)

≥
(

−σ 2
2

2
+ αX (t)

β + X (t)
− αβ(X (t) − u(t))

(β + X (t))(β + u(t))

−αγ v(t)) dt + σ2dB2(t)

≥
(

−σ 2
2

2
+ αX (t)

β+X (t)
− α

β
(X (t)−u(t))−αγ v(t)

)

dt + σ2dB2(t).

(9)

123



Dynamics of a stochastic Holling type II predator–prey model 2015

Substituting (8) into (9) and combining Lemma 3, we
obtain that

ln v(t) − ln v(0)

t

≥ −σ 2
2

2
+ α

t

∫ t

0

X (r)

β + X (r)
dr − α

(
s

β2 + γ

)

1

t

∫ t

0
v(r)dr + M2(t)

t

≥ −σ 2
2

2
−ε+α

∫ ∞

0

x

β+x
μ(x)dx−α

(
s

β2 +γ

)

1

t

∫ t

0
v(r)dr + M2(t)

t

= λ1 − ε − α

(
s

β2 + γ

)
〈v〉t + M2(t)

t

for sufficiently large t . Applying (II) in Lemma 1 and
the arbitrariness of ε, one can derive that

lim inf
t→∞ 〈v〉t ≥ λ1

α
(

s
β2 + γ

) , a.s.

That is to say model (3) will be persistent in the mean
when λ1 > 0. The proof is complete. ��
Remark 2 From Theorem 1, we can see that λ1 is the
critical value between persistence in the mean and
extinction for predator v(t). Furthermore, combining

Lemma 3, we obtain that limt→∞〈u〉t = 1 − σ 2
1
2 ,

limt→∞ v(t) = 0 a.s. when λ1 < 0.

Remark 3 Lemma 3 and Theorem 1 show that the two
species will die out if 1− σ 2

1
2 < 0. That is to say, large

white noise intensity σ 2
1 can cause the species extinc-

tion. On the other hand, model (3) will be persistent
in the mean if the white noise disturbances are small
enough such that 1 − σ 2

1
2 > 0 and λ1 > 0.

4 Existence of ergodic stationary distribution

Using the theory of Has’minskii [22] (see “Appendix”)
and the Lyapunov function method, in this section, we
prove that when the noises are small enough, model (3)
has a stationary distribution which is ergodic.

Theorem 2 Assume that

λ := 1 − σ 2
1

2
− β + 1

2α
σ 2
2 > 0,

then there exists a stationary distribution m(·) for
model (3) and it has the ergodic property:

P
{
lim
t→∞

1

t

∫ t

0
u(r)dr =

∫
R
2+
xm(dx, dy)

}
= 1,

P
{
lim
t→∞

1

t

∫ t

0
v(r)dr =

∫
R
2+
ym(dx, dy)

}
= 1.

(10)

Proof In order to prove Theorem 2, it suffices to verify
Assumptions (B1) and (B2) in “Appendix.” To verify
(B2), it suffices to prove that there exist a neighborhood
U ⊂ R

2+ and a nonnegative C2-function V such that
for any (u, v) ∈ R

2+ \U , LV is negative (see [25]).
Define a C2-function

h(u, v) = M

(
− ln u− β+1

α
ln v+ln(β+u)+ K

α
v

)

+ (u + s
α
v)θ+1

θ + 1
,

here θ ∈ (0, 1), K and M are constants satisfying the
following condition, respectively,

K >
s

β
+

(
γ (β + 1) + s

β
− λγ

)2
4λγ

, (11)

−CM + f̌ + ǧ ≤ −2, (12)

and positive constant C , functions f (x), g(x) will be
determined later. It is not difficult to see that there exists
a unique point (u0, v0) which is the minimum point of
h(u, v). Define a nonnegative C2-Lyapunov function

V (u, v)=M

(
− ln u − β+1

α
ln v+ln(β+u)+ K

α
v

)

+ (u + s
α
v)θ+1

θ + 1
− h(u0, v0).

Denote

V1 = − ln u − β + 1

α
ln v + ln(β + u) + K

α
v,

V2 = (u + s
α
v)θ+1

θ + 1
.
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Direct calculations imply that

LV1 = −
(
1 − σ 2

1

2

)
+ u + sv

β + u
+ (β + 1)

(
− u

β + u
+ γ v

1 + γ v
+ σ 2

2

2α

)

+ u

β + u
− u2

β + u
− suv

(β + u)2

− 1

2
σ 2
1

(
u

β + u

)2

− Kγ v2

1 + γ v
+ Kuv

β + u

≤ −
(
1 − σ 2

1

2

)
+ u + s

β
v − (β + 1)

u

β + u

+ γ (β + 1)v

1 + γ v
+ (β + 1)σ 2

2

2α

+ (β + 1)
u

β + u
− u − Kγ v2

1 + γ v
+ Kuv

β + u

= −
(
1 − σ 2

1

2
− β + 1

2α
σ 2
2

)
+ s

β
v + γ (β + 1)v

1 + γ v

− Kγ v2

1 + γ v
+ Kuv

β + u

= − λ + s

β
v + γ (β + 1)v

1 + γ v
− Kγ v2

1 + γ v
+ Kuv

β + u

=
−γ

(
K− s

β

)
v2+

(
γ (β+1)+ s

β
−λγ

)
v−λ

1+γ v

+ Kuv

β + u

= − F(v)

1 + γ v
+ Kuv

β + u
,

where F(v) = γ
(
K − s

β

)
v2 −

(
γ (β+1)+ s

β
− λγ

)

v + λ. Note that
(
γ (β + 1) + s

β
− λγ

)2 − 4λγ(
K − s

β

)
< 0 when condition (11) holds. This implies

that F(v) > 0 for all v ∈ (0,∞). Therefore, define
a positive constant C = infv∈(0,∞)

F(v)
1+γ v

, then one
derives

LV1 ≤ −C + Kuv

β + u
. (13)

Also

LV2 =
(
u + s

α
v
)θ

(
u − u2 − γ sv2

1 + γ v

)

+ θ

2

(
u + s

α
v
)θ−1

(
σ 2
1 u

2 +
( s

α
σ2

)2
v2

)

≤ 2θu

(
uθ +

( s

α
v
)θ

)
− u2+θ − γ s

( s

α

)θ

v2+θ

1 + γ v
+ θ

2

(
σ 2
1 u

1+θ + σ 2
2

( s

α
v
)1+θ

)

≤ 2θuθ+1 + 2θ−1
( s

α

)θ

u2 + θ

2
σ 2
1 u

θ+1 − u2+θ

+ 2θ−1
( s

α

)θ

v2θ + θ

2
σ 2
2

( s

α

)θ+1
vθ+1

− γ s
( s

α

)θ vθ+2

1 + γ v

=: f (u) + g(v), (14)

where

f (u) = 2θuθ+1 + 2θ−1
( s

α

)θ

u2 + θ

2
σ 2
1 u

θ+1 − u2+θ ,

g(v) = 2θ−1
( s

α

)θ

v2θ + θ

2
σ 2
2

( s

α

)θ+1
vθ+1

− s
( s

α

)θ γ vθ+2

1 + γ v

It is not difficult to obtain

f (u) → −∞, as u → +∞.

Applying inequalities 0 < θ < 1 and
σ 2
2

2α < 1we obtain

θ

2
σ 2
2

( s

α

)θ+1
< s

( s

α

)θ

, 2θ < θ + 1, (15)

which implies

g(v) → −∞, as v → +∞.

Therefore

LV ≤ M

(
−C + Kuv

β + u

)
+ f (u) + g(v),

where M satisfies

− MC + f̌ + ǧ ≤ −2. (16)

Now we are in the position to construct a bounded set
U ⊂ R

2+ such that LV ≤ −1, (u, v) ∈ R
2+ − U .

Consider the following bounded subset

U =
{
ε1 ≤ u ≤ 1

ε1
, ε2 ≤ v ≤ 1

ε2

}
,

where ε1, ε2 ∈ (0, 1) are sufficiently small positive
constants satisfying the following inequalities
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−MC + MK ε2 + f̌ + ǧ ≤ −1, (17)

−MC + MK

β
ε2 + f̌ + ǧ ≤ −1, (18)

−MC + f̌ + C1 − ργ

γ + 1

1

εθ+1
2

≤ −1, (19)

−MC + ǧ1 + C2 − 1

2

1

ε2+θ
1

≤ −1, (20)

ε1 = ε22,

where inequalities (17) and (18) can be derived from
(16), and the constants ρ, C1, C2 and ǧ1 will be deter-
mined later. Then

R
2+ \U = Uc

1 ∪Uc
2 ∪Uc

3 ∪Uc
4 ,

with

Uc
1 =

{
(u, v) ∈ R

2+| 0 < v < ε2

}
,

Uc
2 =

{
(u, v) ∈ R

2+| 0 < u < ε1, ε2 < v <
1

ε2

}
,

Uc
3 =

{
(u, v) ∈ R

2+| v >
1

ε2

}
,

Uc
4 =

{
(u, v) ∈ R

2+| u >
1

ε1

}
.

Case 1 If (u, v) ∈ Uc
1 , (17) implies that

LV ≤ −MC + MKv + f (u) + g(v) ≤
−MC + MK ε2 + f̌ + ǧ ≤ −1.

Case 2 If (u, v) ∈ Uc
2 , we obtain that

LV ≤ −MC + MK

β

ε1

ε2
+ f̌ + ǧ,

Choosing ε1 = ε22 and combining (18), we have

LV ≤ −MC + MK

β
ε2 + f̌ + ǧ ≤ −1.

Case 3 If (u, v) ∈ Uc
3 , we have

LV ≤ −MC + f̌ + C1 − ρ
γ vθ+2

1 + γ v

≤ −MC + f̌ + C1 − ργ

γ + 1

1

εθ+1
2

≤ −1,

which follows from (19), where

C1 = sup
v∈(0,∞)

{
MKv + 2θ−1

( s

α

)θ

v2θ

+ θ

2
σ 2
2

( s

α

)θ+1
vθ+1

−
(
s
( s

α

)θ − ρ

)
γ vθ+2

1 + γ v

}
< ∞,

in which ρ is sufficiently small positive constant such
that θ

2σ 2
2

( s
α

)θ+1
< s

( s
α

)θ − ρ.

Case 4 If (u, v) ∈ Uc
4 , it follows that

LV ≤ −MC + MKv + g(v) + C2 − u2+θ

2

≤ −MC + ǧ1 + C2 − 1

2

1

ε2+θ
1

,

where

C2 = sup
u∈(0,∞)

{
2θuθ+1 + 2θ−1

( s

α

)θ

u2

+ θ

2
σ 2
1 u

θ+1 − u2+θ

2

}
< ∞,

and

ǧ1 = sup
v∈(0,∞)

{MKv + g(v)},

which together with (20) imply that

LV ≤ −1.

From the above discussion it follows that

LV ≤ −1, (u, v) ∈ R
2+ \U.

On the other hand, in order to verify Assumption (B1),
we only need to show that (21) holds. The diffusion
matrix of model (3) is

Ā(X) =
(

σ 2
1 u

2 0
0 σ 2

2 v2

)
.

It is not difficult to see that there exists a c > 0 such
that
2∑

i, j=1

āi j (X)ξiξ j = σ 2
1 u

2ξ21 + σ 2
2 v2ξ22 > c|ξ |2

for (u, v) ∈ Ū and ξ ∈ R
2+. That is to say, Assumption

(B1) holds. Consequently, model (3) has a stationary
distribution m(·) and it is ergodic.

Following the proof of the remainder of Theorem
2.1 in [15] and (4), we can get the ergodic property
(10). The proof is complete. ��
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Remark 4 There is no positive equilibrium for stochas-
tic model (3). Hence we cannot show the permanence
of the stochastic model by proving the stability of the
positive equilibrium as the deterministic model. Theo-
rem 2 shows that model (3) has an ergodic stationary
distribution if the white noise is small. The station-
ary distribution can be considered as a stability of the
model in weaksense, which appears as the solution is
fluctuating in a neighborhood of the equilibrium point
of the corresponding deterministic model. Theorem 2
also shows that small white noise can make model per-
manent.

Remark 5 According to the theory of Has’minskii, to
prove the existence of the stationary distribution, it is
critical to construct a bounded domain U and a non-
negative C2-function V such that LV is negative out-
side U . Here we construct a new Lyapunov function
and a rectangular set which do not depend on the equi-
librium (u∗, v∗) of the deterministic model (2). From
the ergodic property (10) it follows that the solution of
model (3) tends to a fixed positive point in the sense of
time average with probability one.

5 Numerical example

In this section, in order to illustrate the results devel-
oped, we introduce a numerical example. Using Mil-
stein’s higher-order method [26], we get the discretiza-
tion equation:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

uk+1 = uk + uk
(
1 − uk − svk

β+uk

)
Δt

+ σ1uk
√

Δtξk + σ 2
1
2 uk(Δtξ2k − Δt),

vk + 1 = vk + αvk
(

uk

β+uk
− γ vk

1+γ vk

)
Δt

+ σ2v
k
√

Δtηk + σ 2
2
2 vk(Δtη2k − Δt),

where time increment Δt > 0, and ξk , ηk are N (0, 1)-
distributed independent random variables.

Inmodel (3), let s = 0.5, α = 1.48, β = 0.4, γ = 2,
σ1 = 0.1, σ2 = 0.2, u(0) = 0.6, v(0) = 0.8. Then the
nontrivial stationary state of the corresponding deter-
ministic model (2) is (u∗, v∗) = (0.6306, 0.7907).
Notice that

λ = 1 − σ 2
1

2
− β + 1

2α
σ 2
2 = 0.976 > 0.
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Fig. 1 Simulations of prey population u(t) and its histogram to
the stochastic model (3)
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Fig. 2 Simulations of predator population v(t) and its histogram
to the stochastic model (3)

Theorem 2 shows that model (3) has a stationary dis-
tribution. (see Figs. 1, 2).

6 Conclusions

This paper presents a stochastic Holling type II
response predator–prey model with hyperbolic mortal-
ity. The dynamical behavior of this model has been
studied. According to the ergodic property of stochas-
tic logistic model (5), we obtain the critical value λ1
for the persistence in the mean and extinction of this
model. If λ1 < 0, predator population tends to zero. If
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λ1 > 0, predator population is persistent in the mean
which means model (3) is persistent. Furthermore, by
using the theory of Has’minskii and constructing Lya-
punov function, we establish sufficient conditions for
the existence of ergodic stationary distribution, which
implies that the system is permanent. The theories and
numerical examples we have presented show that small
environmental noise can make the system persistent,
while large noise may make the species extinct.
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Appendix

In this section, we introduce some results concerning
the stationary distribution. For more details readers can
see [22].

Let X (t) be a homogeneous Markov process in El

(El denotesEuclidean l-space) satisfying the stochastic
equation

dX (t) = h(X)dt +
k∑

m=1

gm(X)dBm(t).

The diffusion matrix is

Ā(x) = (āi j (x)), āi j (x) =
k∑

m=1

g(i)
m (x)g( j)

m (x).

Assumption There is a bounded domainU ⊂ El with
regular boundary Γ , which has the properties that

(B1) In the domain U and some neighborhood
thereof, the smallest eigenvalue of the diffusion
matrix Ā(x) is bounded away from zero.

(B2) If x ∈ El \ U , the mean time τ at which a path
issuing from x reaches the set U is finite, and
supx∈K Exτ < +∞ for every compact subset
K ∈ El .

Lemma 4 (see [24]). If Assumption 1 holds, then the
Markov process X (t)has a stationary distributionμ(·).
Let f (·) be a function integrable with respect to the
measure μ. Then

P

{
lim
t→∞

1

t

∫ t

0
f (X (s))ds =

∫
El

f (x)μ(dx)

}
= 1.

In order to verify (B1), we only need to show that F
is uniformly elliptical in U , where F(u) = h(x)ux +
0.5trace( Ā(x)uxx ), that is to say, there is M > 0 such
that

k∑
i, j=1

āi j (x)ξiξ j > M |ξ |2, x ∈ U, ξ ∈ R
k . (21)

(see Chapter 3 of [27] andRayleigh’s principle in [28]).
To verify (B2), it suffices to prove that there exist a
neighborhood U and a nonnegative C2-function such
that for any x ∈ El \U , LV is negative (see [25]).
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