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Abstract The two-wave solutions of the KdV–
Sawada–Kotera–Ramani equation are studied in this
paper. By reducing this high-order wave equation into
two associated solvable ordinary differential equations,
we derive the two-wave solutions in the form u(x, t) =
U (x − c1t)+V (x − c2t) which includes solitary wave
solutions, periodic solutions and quasi-periodic wave
solutions by letting c1 = c2. We obtain a family of new
exact two-wave solutions combined by a solitary wave
and a periodic wave with two different wave speeds.
These new exact two-wave solutions are neither peri-
odic nor quasi-periodic wave solutions but approximat-
ing periodic wave solutions as time tends to infinity.
The process of translation of the two-wave solution
combined by two solitary wave solutions is illustrated
by simulation. The approach presented in this work
might be applied to study the bifurcation of multi-wave
solutions of some important high-order nonlinear wave
model equations.
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1 Introduction

The KdV–Sawada–Kotera–Ramani equation [1,5–11]
given by

ut + a(3u2 + uxx )x + b(15u3 + 15uuxx + uxxxx )x = 0,
(1.1)

was used to theoretically study the resonances of soli-
tons in one-dimensional spacebyHirota [2].Obviously,
Eq. (1.1) becomes the KdV equation when b = 0. It
reduces to the Sawada–Kotera equation when a = 0.
As for this equation, the existence of conservation laws
was studied in [3]. With the help of symbolic computa-
tion systemMaple, Zhang, et al. [4] obtained a family of
traveling wave solutions by using the generalized aux-
iliary equation method. Some traveling wave solutions
were derived in [5] by the (G ′/G)−expansion method.
By using the method of dynamical systems and Con-
grove’s results [6], Li and Zhang [7] investigated the
exact explicit gap soliton, embedded soliton, periodic
and quasi-periodic and quasi-periodic wave solutions
of the KdV–Sawada–Kotera–Ramani equation. More
recently, based on the results in [8], a class of gen-
eral traveling wave solutions including solitary wave
solution, periodic wave solutions and quasi-periodic
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wave solutions were obtained in [9]. In [10], the KdV–
Sawada–Kotera–Ramani Eq. (1.1) was reduced to a
classes of first-order solvable nonlinear ordinary differ-
ential equations to obtain the traveling wave solutions
of this fifth-order nonlinear wave equation.

For the associated fourth-order traveling wave equa-
tion

d4y

dξ4
+ (Ay + B)

d2y

dξ2
+ Dy3 + Ey2 + Fy + G = 0,

(1.2)

where A = 15, B = a/b, D = 15, E = 3a/b, F =
−c/b and G = g, we recall the following results from
[8].

Theorem 1.1 Suppose that D ≤ 3A2/40. The func-
tion y = y(ξ) solves the fourth-order ordinary differ-
ential Eq. (1.2) if it solves the equation

(
dy

dξ

)2

= a3y
3 + a2y

2 + a1y + a0, (1.3)

where

a3 = −3A ± √
9A2 − 120D

30
,

a2 = −3Ba3 + 2E

15a3 + 2A
,

a1 = −2(Ba2 + a22 + F)

9a3 + A
,

a0 = − Ba1 + a1a2 + 2G

6a3
. (1.4)

Note that all the denominators in (1.4) should be
nonzero. However, if the denominator of ai in (1.4) is
zero, then ai can be arbitrary constant if the numerator
is also zero.

Theorem 1.2 Denote h± = 2�(−a2±
√

�)+3a1a2a3
54a23

and

y±
e = −a2±

√
�

3a3
, where � = a22 − 3a1a3 > 0, then, the

following conclusions hold.

(1) For a0 = 2h+, Eq. (1.3) has a bounded solution
approaching y+

e as ξ goes to infinity, which can be
expressed as

y = −a2 + √
�

3a3
−

√
�

a3
sech2

[
1

2
�

1
4 (ξ − ξ0)

]
,

(1.5)

a constant solution

y = −a2 + √
�

3a3
, (1.6)

and an unbounded solution

y = −a2 + √
�

3a3
+

√
�

a3
csch2

[
1

2
�

1
4 (ξ − ξ0)

]
,

(1.7)

where ξ0 is an arbitrary constant.

(2) For a0 ∈ (2h−, 2h+), if a3 > 0, then there exists

y0 ∈
(−a2−2

√
�

3a3
, −a2−

√
�

3a3

)
such that

y =y0 − 1

2

(
3y0 + a2

a3
+ √

�+
)

× sn2 (�+(ξ − ξ0), k+) , (1.8)

where k+ = 2
√
3y20+2 a2

a3
y0+ a1

a3

−3y0− a2
a3

+√
�+

, �+ =
√
2
4√−3a3y0 − a2 + a3

√
�+ and �+ =

(
a2
a3

)2
−3y20 −2 a2

a3
y0−4 a1

a3
, is a smooth periodic solution

of Eq. (1.3).

If a3 < 0, then there exists y0 ∈
(−a2−

√
�

3a3
,

−a2−2
√

�
3a3

)
,

y = y0 − 1

2

(
3y0 + a2

a3
− √

�−
)

sn2 (�−(ξ − ξ0), k−) , (1.9)

where �− =
√
2
4

√−3a3y0 − a2 − a3
√

�−, k− =
2

√
3y20+2 a2

a3
y0+ a1

a3

3y0+ a2
a3

+√
�−

and�− =
(
a2
a3

)2−3y20−2 a2
a3
y0−

4 a1
a3
, is a smooth periodic solution of Eq. (1.3); here

a0 = −(a3y30 + a2y20 + a1y0).

(3) For a0 ∈ (−∞, 2h−] ∪ (2h+,+∞), Eq. (1.3) has
no nontrivial bounded solution. When a0 = 2h−,
an unbounded solution is given by

y = −a2 + √
�

3a3
+

√
�

a3
sec2

[
1

2
�

1
4 (ξ − ξ0)

]
,

(1.10)
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and a constant solution is written as

y = −a2 + √
�

3a3
. (1.11)

In this paper, extending the idea in [8–10], we inves-
tigate the two-wave solutions of the nonlinear wave
Eq. (1.1) in the form u(x, t) = U (x−c1t)+V (x−c2t)
which includes the traveling wave solutions by choos-
ing c1 = c2.

2 Exact two-wave and quasi-periodic wave
solutions to the KdV–Sawada–Kotera–Ramani
equation

In this section, we aim to study the two-wave solutions
of the KdV–Sawada–Kotera–Ramani Eq. (1.1) which
can be rewritten as

∂−1
x ut + a(3u2 + uxx ) + b(15u3

+ 15uuxx + uxxxx ) = 0. (2.1)

Let u(x, t) = U (ξ1) + V (ξ2), where ξ1 = x − c1t
and ξ2 = x−c2t . Substitutingu(x, t) = U (ξ1)+V (ξ2)

into Eq. (2.1) yields

(
d4U

dξ41
+

(
15U + a

b

) d2U

dξ21
+ 15U 3

+ 3
a

b
U 2 + f1U + g1

)
+

(
d4V

dξ42
+

(
15V + a

b

)

×d2V

dξ22
+ 15V 3 + 3

a

b
V 2 + f2V + g2

)

+ V

(
15

d2U

dξ21
+ 45U 2 + 3

a

b
U −

(c2
b

+ f2
))

+U

(
15

d2V

dξ22
+ 45V 2 + 3

a

b
V −

(c1
b

+ f1
))

= 0,

(2.2)

where g1, g2, f1 and f2 are arbitrary constants. Clearly,
u(x, t) = U (ξ1) + V (ξ2) solves the KdV–Sawada–
Kotera–RamaniEq. (1.1) provided that there exist some
values of g1, g2, f1 and f2 such that U and V satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

15
d2U

dξ21
+ 45U 2 + 3

a

b
U −

(c2
b

+ f2
)

= 0,

d4U

dξ41
+

(
15U + a

b

) d2U

dξ21

+ 15U 3 + 3
a

b
U 2 + f1U + g1 = 0,

(2.3)

and

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

15
d2V

dξ22
+ 45V 2 + 3

a

b
V −

(c1
b

+ f1
)

= 0,

d4V

dξ42
+

(
15V + a

b

) d2V

dξ22
+ 15V 3

+ 3
a

b
V 2 + f2V + g2 = 0,

(2.4)

respectively.
Multiplying the first equation of system (2.3) by dU

dξ1
and integrating once with respect to ξ1 yield

(
dU

dξ1

)2

= −2U 3 − a

5b
U 2 + 2

15

(c2
b

+ f2
)
U + G1,

(2.5)

whereG1 is a constant of integration. This is to say that
for the case when dU

dξ1
�= 0 the first equation of system

(2.3) is equivalent to Eq. (2.5) with arbitrary constant
G1 which is Eq. (1.3) with a3 = −2, a2 = − a

5b , a1 =
2
15 (

c2
b + f2), a0 = G1. Note that the second equation

of system (2.3) is exactly Eq. (1.2) with A = 15, B =
a
b , D = 15, E = 3 a

b , F = f1 andG = g1. According
to Theorem 1.1, we know that the solution set of the
first equation of system (2.3) can be the subset of the
solution set of the second equation of system (2.3) if
the coefficients of system (2.3) satisfy (1.4). Based on
the analysis above and careful computations, we can
draw the following conclusion.

Lemma 2.1 Let

f1 = c1 + 5c2
24b

+ a2

5b2
and f2 = c2 + 5c1

24b
+ a2

5b2
.

(2.6)

Then the solutions of the first equation of systems (2.3)
or (2.4) satisfy (2.3) or (2.4) with certain values of g1
or g2, respectively.
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Proof It is easy to see that for any given value of f2
there exists a constant g1 such that the constant solution
of the first equation of (2.3) satisfies the second one.
According to Theorem 1.1 and the analysis above, to
prove the nontrivial solutions of the first equation of
system (2.3) satisfy (2.3) with certain value of g1, we
only need to check that for any given G1 there exists a
constant g1 such that (2.5) and the second equation of
system (2.3) satisfy (1.4) when (2.6) holds.

Actually, it is easy to check that the first equivalent
of (1.4) is valid when its right side is “+”. The second
equivalent of (1.4) is right because the numerator and
denominator of its right side are both zero. The third
equivalent require the following condition

2

15

(
c2
b

+ f2

)
= − 8

75

a2

b2
+ 2

3
f1. (2.7)

Obviously, the last equation of (1.4) is linear in G and
thus it is also linear in g1, which implies that there exists
g1 such that the last equivalent of (1.4) holds for any
values of f1 and f2. That is to say that the solutions of
the first equations of (2.3) satisfy the second one with
some constant g1 provided that (2.7) holds.

Similar analysis on system (2.4) gives the condition
that

2

15

(
c1
b

+ f1

)
= − 8

75

a2

b2
+ 2

3
f2, (2.8)

under which V solves system (2.4) provided that it
solves the first equation of (2.4).

Now solving Eqs. (2.7) and (2.8) for f1 and f2 yields
(2.6). This complicate the proof of Lemma 2.1. 	


Theorem 2.1 Suppose that U (x, t) = U (x − c1t) =
U (ξ1) and V (x, t) = V (x − c2t) = V (ξ2) satisfy
equations

15
d2U

dξ21
+ 45U 2 + 3

a

b
U−

(
25c2 + 5c1

24b
+ a2

5b2

)
= 0

(2.9)

and

15
d2V

dξ22
+45V 2+3

a

b
V−

(
25c1 + 5c2

24b
+ a2

5b2

)
= 0,

(2.10)

respectively. Then u(x, t) = U (x, t) + V (x, t) solves
Eq. (1.1).

Proof Clearly, Eqs. (2.9) and (2.10) are exactly the first
equation of (2.3) and (2.4) with f1 = c1+5c2

24b + a2

5b2
and

f2 = c2+5c1
24b + a2

5b2
. By Lemma 2.1, one knows that

there exist two constants g1 and g2 such that the solu-
tions of (2.9) satisfy (2.3) and the solutions of (2.10)
satisfy (2.4). That is to say that if U (ξ1) and V (ξ2)

satisfy (2.9) and (2.10), respectively, then there are
two constants g1 and g2 such that substituting U (ξ1)

and V (ξ2) makes (2.2) an identity, which implies that
u(x, t) = U (x, t) + V (x, t) solves Eq. (1.1). 	


From Theorem 1.2, we know that Eq. (2.9) admits
the following solutions:

U1(ξ1, c1, c2) = −6a +
√
180a2 + 150b(c1 + 5c2)

180b
;

(2.11)

U2(ξ1, c1, c2) = −6a +
√
180a2 + 150b(c1 + 5c2)

180b
;
(2.12)

U3(ξ1, c1, c2)

= −6sgn(b)a +
√
180a2 + 150b(c1 + 5c2)

180|b|

+
√
180a2 + 150b(c1 + 5c2)

60|b|

× sech2

⎡
⎣1

2

(
6a2 + 5b(c1 + 5c2)

30b2

) 1
4

(x − c1t − ξ1)

⎤
⎦ ;

(2.13)

U4(ξ1, c1, c2)

= −6sgn(b)a +
√
180a2 + 150b(c1 + 5c2)

180|b|

−
√
180a2 + 150b(c1 + 5c2)

60|b|

× csch2

⎡
⎣1

2

(
6a2 + 5b(c1 + 5c2)

30b2

) 1
4

(x − c1t − ξ1)

⎤
⎦ ;

(2.14)

U5(ξ1, c1, c2)

= −6sgn(b)a +
√
180a2 + 150b(c1 + 5c2)

180|b|

−
√
180a2 + 150b(c1 + 5c2)

60|b|
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× sec2

⎡
⎣1

2

(
6a2 + 5b(c1 + 5c2)

30b2

) 1
4

(x − c1t − ξ1)

⎤
⎦ ;

(2.15)

For any θ1 ∈
(

−6sgn(b)a+
√

180a2+150b(5c2+c1)
180|b| ,

−3sgn(b)a+
√

180a2+150b(5c2+c1)
90|b|

)
,

U6(ξ, c1, c2, θ1) = θ1 − 3θ1 + a
10b − √

�1

2
× n2 (�1(x − c1t − ξ1), k1) , (2.16)

where �1(θ1, c1, c2) =
√
2
4

√
6θ1 + a

5b + 2
√

�1,

k1(θ1, c1, c2) =
2

√
3θ21+ a

5b θ1−
(

a2

75b2
+ 5c2+c1

72b

)

3θ1+ a
10b+√

�1
and

�1(θ1, c1, c2) = −3θ21 − a
5b θ1 + 19a2

300b2
+ 5c2+c1

18b .
According to Theorem 1.2, we know that (2.10)

admits the following solutions:

V1(ξ2, c1, c2) = −6a +
√
180a2 + 150b(c2 + 5c1)

180b
;

(2.17)

V2(ξ2, c1, c2) = −6a +
√
180a2 + 150b(c2 + 5c1)

180b
;
(2.18)

V3(ξ2, c1, c2)

= −6sgn(b)a +
√
180a2 + 150b(c2 + 5c1)

180|b|

+
√
180a2 + 150b(c2 + 5c1)

60|b|

× sech2

⎡
⎣1

2

(
6a2 + 5b(c2 + 5c1)

30b2

) 1
4

(x − c2t − ξ2)

⎤
⎦ ;

(2.19)

V4(ξ2, c1, c2)

= −6sgn(b)a +
√
180a2 + 150b(c2 + 5c1)

180|b|

−
√
180a2 + 150b(c2 + 5c1)

60|b|

× csch2

⎡
⎣1

2

(
6a2 + 5b(c2 + 5c1)

30b2

) 1
4

(x − c2t − ξ2)

⎤
⎦ ;

(2.20)

V5(ξ2, c1, c2)

= −6sgn(b)a +
√
180a2 + 150b(c2 + 5c1)

180|b|

−
√
180a2 + 150b(c2 + 5c1)

60|b|

× sec2

⎡
⎣1

2

(
6a2 + 5b(c2 + 5c1)

30b2

) 1
4

(x − c2t − ξ2)

⎤
⎦ ;

(2.21)

For any θ2 ∈
(

−6sgn(b)a+
√

180a2+150b(c2+5c1)
180|b| ,

−3sgn(b)a+
√

180a2+150b(c2+5c1)
90|b|

)
,

V6(ξ2, c1, c2, θ2) = θ2 − 3θ2 + a
10b − √

�2

2
Sn2 (�1(x − c2t − ξ2), k2) , (2.22)

where �2(θ2, c1, c2) =
√
2
4

√
6θ2 + a

5b + 2
√

�2,

k2(θ2, c1, c2) =
2

√
3θ22+ a

5b θ2−
(

a2

75b2
+ c2+5c1

72b

)

3θ2+ a
10b+√

�2
and �2(θ2,

c1, c2) = −3θ22 − a
5b θ2 + 19a2

300b2
+ c2+5c1

18b .
Based on the analysis above and Theorem 2.1, we

obtain some exact two-wave solutions to the KdV–
Sawada–Kotera–Ramani
Eq. (1.1).

Theorem 2.2 The KdV–Sawada–Kotera–Ramani Eq.
(1.1) admits the wave solutions ui j (x, t) = Ui (x −
c1t) + Vj (x − c2t), i, j ∈ {1, 2, 3, 4, 5, 6}. Here Ui

and Vj (i, j ∈ {1, 2, 3, 4, 5, 6}) are determined by
(2.11)–(2.22), and the wave speeds c1 and c2 satisfy
6a2 + 5b(c1 + 5c2) > 0 and 6a2 + 5b(c2 + 5c1) > 0,
respectively.

Remark 2.1 For c1 �= c2 and i �= j, i, j ∈
{3, 4, 5, 6}, ui j (x, t) = Ui (x − c1t) + Vj (x − c2t)
is a two-wave solution to the KdV–Sawada–Kotera–
Ramani equation. If c1 = c2 = c, for any i ∈
{1, 2}, j ∈ {1, 2, 3, 4, 5, 6}, u j j (x, t) = 2Uj (x − ct)
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Fig. 1 Portrait of the two-wave solution: u33(x, t) = U3(x −
c1t) + V3(x − c2t) of Eq. (1.1) with parameters: a = 1, b =
1, c1 = 1, c2 = 2, ξ1 = ξ2 = 0. a Three-dimensional portrait;

b overhead view with contour plot; c t = −5; d t = −2; e t = 0;
f t = 3; g t = 4; h t = 10; i t = 20; j t = 40
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Fig. 2 Portrait of the two-wave solution: u66(x, t) = U6(x −
c1t) + V6(x − c2t) of Eq. (1.1) with parameters: a = 1, b =
1, c1 = 1, c2 = 2, θ1 = −1/30 + √

1830/120, θ2 =

−1/30 + 2
√
1230/225, ξ1 = ξ2 = 0. a Three-dimensional

portrait; b overhead view with contour plot; c t = 0; d t = 6

and ui j (x, t) = u ji (x, t) = Ui (x − ct) + Vj (x − ct)
are the exact traveling wave solutions obtained in [10].
However, for c1 = c2 = c and i, j ∈ {3, 4, 5, 6} and
i �= j the exact traveling wave solutions ui j (x, t) =
Ui (x − ct) + Vj (x − ct) are new traveling wave solu-
tions. We also point out that ui j (x, t) is an unbounded
solution if and only if {i, j} ∩ {4, 5} �= ∅.

3 Simulation of some two-wave and quasi-periodic
wave solutions

In order to understand intuitively the properties of these
exact bounded wave solutions to the KdV–Sawada–
Kotera–Ramani Eq. (1.1) obtained in Sect. 2, four fig-
ures which are drawn with Maple are presented in this
section.

Figure 1 illustrates the two-wave solution u33(x, t)
= U3(x − c1t) + V3(x − c2t) of Eq. (1.1) with two

different wave speeds c1 and c2. We can observe the
process of two solitarywaves that intersect and separate
clearly from thewave profiles in Fig. 1. The two solitary
waves coincide into one solitary wave and gradually
separate into two waves when t tends to positive or
negative infinity, which exhibits the typical properties
of solitons.

Figure 2 illustrates the quasi-periodic two-wave
solution u66(x, t) = U6(x − c1t) + V6(x − c2t) of
Eq. (1.1) with two different wave speeds c1 and c2.
The wave profiles at t = 0 and t = 6 are presented to
demonstrate that the solutionu66(x, t) is quasi-periodic
with respect to the variable x . Actually, it is also quasi-
periodic with respect to the variable t .

Figure 3 illustrates the two-wave solution u36(x, t)
= U3(x−c1t)+V6(x−c2t) ofEq. (1.1)with twodiffer-
ent wave speeds c1 and c2. It is worth pointing out that
the solution u36(x, t) = U3(x−c1t)+V6(x−c2t) is an
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Fig. 3 Portrait of the two-wave solution: u36(x, t) = U3(x −
c1t) + V6(x − c2t) of Eq. (1.1) with parameters: a = 1, b =
1, c1 = 1, c2 = 2, θ1 = −1/30+ 2

√
1230/225, ξ0 = ξ1 = 0.

a Three-dimensional portrait; b overhead view with contour
plot; c t = 0; d t = 1; e t = 6

Fig. 4 Three-dimensional portrait of the two-wave solution
u63(x, t) = U6(x − c1t) + V3(x − c2t) of Eq. (1.1) with para-
meters: a = 1, b = 1, c1 = 1, c2 = 2, θ1 = −1/30 +√
1830/120, ξ0 = ξ1 = 0

exact wave solution which is neither a quasi-periodic
wave nor a solitary wave solution. In fact, u36(x, t) is
not a quasi-periodic function and its limit fails to exist

as t approaches ∞ if c1c2 �= 0 even when c1 = c2.
From (2.13) we know that limξ→∞U3(ξ) = U1 when
b < 0 or limξ→∞U3(ξ) = U2 when b > 0, so
u36(x, t) with c1c2 �= 0 approximates the periodic
wave solution u16(x, t) when b < 0 or u26(x, t) when
b > 0 as t approaches∞. By the symmetry of Eq. (2.9)
and (2.10), we can find that the two-wave solution
ui, j (x, t) = Ui (x − c1t) + Vj (x − c2t) is equivalent
to the solution u ji (x, t) = Uj (x − c2t) + Vi (x − c1t).
Thus, the two-wave solution u6,3(x, t) = U6(x−c1t)+
V3(x − c2t) illustrated in Fig. 4 is the same as the solu-
tion u3,6(x, t) = U3(x − c2t) + V6(x − c1t).

4 Conclusion and discussion

The dynamical system theory has been well applied
to study the bifurcation and exact traveling wave solu-
tions of some nonlinear wave equations [7–18], espe-
cially those equations whose corresponding traveling
wave systems can be reduced into planar dynamical
systems. The advantage of this method is that all pos-
sible kinds of traveling wave solutions can be observed
clearly from the phase portraits of their correspond-
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ing traveling wave systems. It has been successfully
applied [11–13,17,18] to explain the reason why some
analytic nonlinear wave equations possess the singular
traveling wave solutions, such as compacton, peakon
and cuspon. However, it is usually out of the reach of
this approach to study the multi-wave solutions of non-
linear wave equations.

In this paper, by reducing theKdV–Sawada–Kotera–
Ramani equation (1.1) into two systems of ordinary dif-
ferential equations, we obtained a very general class of
exact solutions of this equation, which include the soli-
tary wave solutions, periodic and quasi-periodic trav-
eling wave solutions, some unbounded traveling solu-
tions and some two-wave solutions as well. This work
provides a supplement to existing literature on reduc-
tions of nonlinear PDEs [19]. It is worth pointing out
that the multi-wave solutions of nonlinear wave equa-
tions, especially Hirota bilinear equations, could be
generated through the multiple exp-function method
[20,21].

Evidently, the method we have proposed in this
paper can also be applied to study the existence and
exact multi-wave solutions of some other high-order
nonlinear wave equations provided that they can be
reduced into ordinary differential equations properly.
Research on multiple wave solutions shows various
situations of integrability and bifurcation of nonlinear
PDEs, and so the approach proposed in this work will
amend the PDE theory and improve our understanding
on solutions to nonlinear PDEs.
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