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Abstract Magnetorheological dampers are used for
semi-active control of the vehicles vibration because
of their useful features such as reducing the dynamic
tire forces, improvement the ride quality of the passen-
gers and protection of the vehicle from rollover. The
dynamic model of these dampers is nonlinear. There-
fore, their nonlinear characteristics can lead to make
the chaotic behaviour of the vehicle system if a suit-
able controller is not used. This paper focuses on the
active control of the chaotic behaviour generated by the
nonlinear model characteristics of the MR dampers in
a typical heavy articulated vehicle. The vehicle non-
linear dynamic study is conducted by detecting the
irregular regions using the bifurcation diagrams and
Poincaré maps. Then, the active controller is proposed
to control the chaotic behaviours. The control law was
derived based on the backstepping method, and the
stability analysis is performed by Lyapunov theorem.
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Then, optimal backstepping control is designed for con-
trolling the chaos in the vehicle. The simulation results
show the vehicle displacements can track a periodic
desired motion. The robustness of the proposed con-
troller is studied by inserting external disturbance force.
The simulation results show that the vehicle body dis-
placements converge to periodic desired path in spite
of the existing external disturbance.
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1 Introduction

The use of long articulated vehicles is economically
attractive due to lower fuel and driver costs per ton of
cargo. Unlike automobiles, the transport productivity
and efficiency are generally prioritized for heavy vehi-
cles, particularly the directional and roll dynamic per-
formance [1–3]. The ride properties of heavy vehicles
concern the preservation of health, safety and comfort
of the drivers and/or passengers, and protection of the
cargoes, while the suspension design is subject to the
constraints imposed by requirements on productivity
and functional efficiency [1]. The dynamic characteris-
tics of heavy vehicle systems are therefore considerably
different from those of the passenger cars. Suspension
design of road vehicles necessities a complex compro-
mise among different performance measures related
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to ride and handling qualities. The road-friendliness
and road-damaging potential of an articulated vehicle
have been two of the important design and regulation
objectives. They are influenced by interactions between
the vehicle units, which are strongly coupled by their
respective bounce and pitch motions.

When the heavy articulated vehicle is running on the
road, changes in the road surface profile can be led to
undesirable oscillations. A portion of those vibrations
can be absorbed by the wheels, but the most should
be absorbed by the suspension system between the
tires and sprung masses. The heavy articulated vehi-
cle suspension system is necessary equipment, which
can reduce the vibration generated by the road surface
irregularities and isolate the sprung masses from road-
induceddisturbances.Conventional passive suspension
systems in heavy vehicles typically consist of springs,
dampers and anti-roll bars and can only dissipate
energy. Some studies have been investigated passive
suspensions in heavy vehicles [4–8]. Recently, there
has been a significant research activity in a new class
of so-called advanced suspension systems. Advanced
suspensions can be divided into three categories: fully
active, slow active and semi-active. Fully active and
slow active suspension systems are attractive because
they allow more design flexibility than passive suspen-
sion systems for specifying the transfer functions that
govern the handling, ride and roll performance of a
vehicle [9]. Semi-active suspensions consist of control-
lable dampers and conventional springs. Such systems
can only dissipate energy, by contrast with fully active
and slow active systems, which can supply energy.

In recent years, numerous researches have focused
on the semi-active and active suspensions with magne-
torheological (MR) damper in vehicles [10–17]. Mag-
netorheological damper fluid is a kind of smart materi-
als, which is made by mixing fine particles into a liquid
with low viscosity. The important feature of MR fluids
is their ability to reversibly change states froma viscous
fluid to a semisolid or even solid with controlled yield-
ing strength, which it is subjected to controlled mag-
netic field. The application of MR dampers in vibra-
tion control of heavy vehicle’s suspension system was
investigated by many researchers. Extended ground-
hook control logic was investigated by Valasek et al.
[18] in order to reduce the dynamic tire forces. Hen-
drick and Yi [19] studied the effect of alternative heavy
truck suspensions on flexible pavement response, and
Yi and Song [20] developed a novel control model

that called road detection algorithm (RDA). The aim
of this algorithm was to combine the advantages of
the skyhook damping and the tire deflection feedback.
Liao and Wang [21] and Lau and Liao [22] designed a
MR fluid damper that is suitable for a semi-active train
suspension. Their results showed that the semi-active
suspension with the developed MR dampers can sub-
stantially improve the ride quality of the passengers.
A unique MR fluid bypass damper for heavy vehicle
controllable suspension systems was designed, fabri-
cated, and tested by Shahin et al. [23]. Their results
showed that the MR fluid damper could achieve better
performance for protection from the vehicle rollover
and estimated that the roll angle can be reduced by
45% compared to the regular original equipment man-
ufacturer passive dampers. Tsampardoukas et al. [24]
investigated a truck with semi-active suspension and
presented a hybrid balance algorithmbased on dynamic
tire force tracking to reduce road damage and to inves-
tigate the performance of a heavy articulated vehicle
compared to one with passive viscous dampers. Yu
et al. [25] proposed two extended versions of Time-To-
Rollover (TTR)metrics for heavy-duty vehicle rollover
detection. Based on the TTR rollover detection mod-
ule, a prototype active roll control (ARC) system is
designed. The results show that a heavy-duty vehi-
cle’s roll stability is considerably improved with the
rollover detection and active roll control systems pro-
posed.Also, someother active controlmethods [26–29]
are applied to vehicle systems.

Because of nonlinear properties of MR dampers as
well as other components such as springs and wheels,
a heavy vehicle must be regarded as a nonlinear sys-
tem. There are some contradictions between experi-
mental results and obtained results from linear models.
The nonlinear characteristics of vehicle components
can be the source of these contradictions. Owing to the
existence of the nonlinear factors and especially multi-
valued and non-smooth hysteresis of MR dampers, the
vehicle exhibits complex phenomena such as jumps,
bifurcation, quasi-periodic vibration and chaotic vibra-
tionwhen it is running on a bumpy road.Quasi-periodic
and chaotic vibration may cause shock vibration due to
road surface that can influence the life time of vehicle
components, safety of driving, protection of the cargoes
and driver’s comfort.

Many studies have been conducted by researchers
in order to introduce the benefits of MR dampers in
vehicle suspension, while the nonlinear characteris-
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tics of these dampers can result in irregular behav-
iours (chaotic or quasi-periodic) in vehicle suspen-
sion system. In heavy vehicle systems, some parts can
be more critical against unwanted vibrations. One of
these sections is articulation point, which connects the
tractor to the trailer, and its unwanted displacements
and vibrations can result in failure; therefore, it should
be avoided. However, without appropriate controlling
action, usingMR dampers is doubtful. So, there is need
to a compromise between the advantage and disadvan-
tage in utilizing these dampers. Up to now, no work has
been reported on the control of chaotic behaviours of
heavy vehicle with MR damper suspension system.

In this paper, the nonlinear dynamic behaviour of
a half-truck oscillatory system is studied by using the
bifurcation diagrams and Poincaré maps. After detect-
ing irregular (chaotic and quasi-periodic) sections, the
appropriate controller is proposed to return the system’s
vibrations to desired region. The control law is derived
based on the backstepping method, and the stability of
the controller is proved based on Lyapunov theorem.
Then, an optimal backstepping controller is proposed
such that error norm is minimized during motion. The
validity of the proposed method is verified by some
simulation experiments. The results analysis shows the
vehicle tracks desired periodic motion in spite of the
chaos motion conditions. The main contributions of
this paper are summarized as: considering the nonlin-
ear features of MR dampers and their influences on
dynamic behaviour of the heavy articulated vehicle and
optimal backstepping control design for eliminating the
chaotic behaviours.

The rest of this paper is arranged as follows. In
Sect. 2, the dynamic model of a half-truck oscilla-
tory system is presented. Chaotic vibration analysis is
explained in Sect. 3. Controller design and stability
analysis of motion is addressed in Sect. 4. Simulation
results and discussions are given in Sect. 5, and finally
some concluding remarks are presented in Sect. 6.

2 Dynamic modelling

Figure 1 shows the schematic diagram of a nonlinear
half-truck oscillatory system which has carried out as a
heavy articulated vehiclemodel. The notations in Fig. 1
are given in “Appendix”. Both vehicle units are repre-
sented bymassive rigid cuboids, sprungmasses, and the
axles are shown by massive blocks, unsprung masses
[24].

The half-truck is presented as a seven degree-
of-freedom system including the bounce and pitch
motions of tractor and trailer; and three bouncemotions
of the centre of gravity of unsprung masses. The vehi-
cle’s yaw roll motions are neglected due to the small
effects.

The suspension system between the sprung masses
and the unsprung masses is modelled as spring and
damper elements. Suspension’s spring units of the
heavy articulated vehicle have linear mechanical char-
acteristics [24], and the articulation connection is also
modelled as a high linear stiffness spring and damper.
Suspension’s dampers are both passive viscous damper
and MR damper which are considered as nonlinear

Fig. 1 Schematic diagram of a nonlinear half-truck oscillatory model
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units. All of the truck’s axles are equipped with MR
dampers.

Before analysing the dynamic behaviour of the sys-
tem, the differential equations of motion correspond-
ing to the oscillatory model, shown in Fig. 1, should
be derived. By applying Newton–Euler laws and tak-
ing the above assumptions into account, the differential
equations of motion are obtained in compact form as
follows:

Mq̈ = h(q, q̇) (1)

where q = [XC , θC , XT , θT , XUF, XUR, XUT]T is the
generalized coordinates vector and the inertia matrix
M is defined as:

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

MC + 2m m(L2 − L1) cos q2 0 0 −m −m 0
m(L2 − L1) IC + m(L2

1 + L2
2) cos q2 0 0 mL1 mL2 0

0 0 MT + m mL5 cos q4 0 0 −m
0 0 mL5 IT + mL2

5 cos q4 0 0 −mL5

−m mL1 cos q2 0 0 MUF + m 0 0
−m −mL2 cos q2 0 0 0 MUR + m 0
0 0 −m −mL5 cos q4 0 0 MUT + m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where m is MR damper mass. The force vector
h(q, q̇, q̈) contains all of springs and dampers forces.
These forces are as functions of relative displace-
ments and velocities between the sprung and unsprung
masses. The relative displacements and velocities vec-
tors are given by

X(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1 − L1 sin q2 − q5
q1 + L2 sin q2 − q6
q3 + L5 sin q4 − q7
q3 − q1 − L3 sin q2 − L4 sin q4
q5 − XWF

q6 − XWR

q7 − XWT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ẋ(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̇1 − L1q̇2 cos q2 − q̇5
q̇1 + L2q̇2 cos q2 − q̇6
q̇3 + L5q̇4 cos q4 − q̇7
q̇3 − q̇1 − L3q̇2 cos q2 − L4q̇4 cos q4
q̇5 − ẊWF

q̇6 − ẊWR

q̇7 − ẊWT

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

where the XWF, XWR and XWT are the road roughness
on the tractor front and rear wheels and on the trailer
wheel, respectively, which are defined as:

XWF = ξ(t) (4)

XWR = ξ(t − t1) (5)

XWT = ξ(t − t2) (6)

where t1 and t2 are time delays of the tractor drive axle
and trailer axle, respectively. The sinusoid forcing func-
tion [24,25] is used to describe the excitations caused
by road surface. Thus, the forcing functions for three
axles are approximated by:

ξ(t) = b sin(ωt) (7)

ξ(t − t1) = b sinω(t − t1) (8)

ξ(t − t2) = b sinω(t − t2) (9)

where b and ω are harmonic excitation amplitude and
frequency, respectively. Also, the excitation frequency
is defined as ω = 2π(v/λ) where v is the velocity of

the vehicle and λ is the wavelength of the harmonic
excitation. Hence, the truck goes through a series of
consecutive harmonic excitation with speed v, so t1 =
(L1 + L2)/v and t2 = (L1 + L3 + L4 + L5)/v.

The mathematical model of the passive viscous
damper is described by

Fd−F =
{
Cb Ẋ j Ẋ j ≥ 0
Cr Ẋ j Ẋ j < 0

(10)

where the damping coefficients are different for the
bound and rebound strokes.

Lau and Liao [22] designed and modelled a pro-
totype MR damper for a train suspension. Here, the
same model of the MR damper is used. Such a
damper develops forces of the same order of magni-
tude as those required in a truck application, and in
this respect it could be potentially suitable for heavy
vehicle applications as well. It is a Bouc–Wen model
[21,22,24] that includes a set of differential equa-
tions for describing the hysteretic characteristic of the
damper force/velocity response. This model is given as
follows:
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Table 1 Constant parameters for MR damper [22]

Parameter Value (m−1) Parameter Value

γ 32,000 m 100 kg

β 22 k 2.5 kN m−1

A 220 p 0.54

Table 2 Current-dependent parameters of MR damper [22]

Current (A) a(kN) a1(kN s m−1) a2 (s m−1) n F0 (kN)

0.5 15 32 6 2.7 0.4

1 27 65 8 2.7755 0.5

1.5 40 85 8 2.7755 0.5

ż = −γ
∣∣Ẋ j

∣∣ |z|n−1 z − β Ẋ j |z|n
+AẊ j ( j = 1, 2, 3) (11)

C = a1 exp
[
− ∣∣a2 Ẋ j

∣∣p] ( j = 1, 2, 3) (12)

FMR−i = az + kX j + C Ẋ j + mẌ j

+F0 (i = F, R, T j = 1, 2, 3) (13)

where z is the evolutionary variable and the parameters
β,γ , A and n define the shape of the hysteresis loop.
The numerical values of the MR damper parameters
are given in Tables 1 and 2.

Having the springs and dampers force, the vector
h(q, q̇, q̈) can be obtained as:

h(q, q̇, q̈) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−KF X1 − FMR−F − KRX2

−FMR−R − K4X4 − C4 Ẋ4

L1(KF X1 + FMR−F )

−L2(KRX2 + FMR−R)

+L3(K4X4 + C4 Ẋ4)

−KT X3 − FMR−T − K4X4 − C4 Ẋ4

−L5(KT X3 + FMR−T )

+L4(K4X4 + C4 Ẋ4)

KF X1 + FMR−F − KUFX5 − CF Ẋ5

KRX2 + FMR−R − KURX6 − CR Ẋ6

KT X3 + FMR−T − KUTX7 − CT Ẋ7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

where the FMR−F , FMR−R and FMR−T are tractor steer-
ing axle, tractor drive axle and trailer axleMR dampers
forces, respectively. These forces are functions of rela-
tive displacements, velocities and accelerations. Also,
they have nonlinear nature, Eqs. (11)–(13); so the rela-
tion (14) is nonlinear.

3 Chaotic vibration analysis

In this section, the chaotic behaviour analysis of the
vehicle is carried out by the numerical analysis of Eq.
(1) with variable step continuous solver based on the
forth-order Runge–Kutta method. In order to guaran-
tee that the data being used are in a steady state, the
first few hundred time series data of the integration
were neglected. The results of the next few hundred
time series were retained to carry out the analysis. The
numerical values of the half-truck’s parameters which
were used in this study are given in Tables 3, 4 and 5
[24].

The bifurcation diagrams are one of the main tools
to analyse the nonlinear dynamic behaviour of the sys-
tems. These diagrams can be useful in detecting the
irregular regions of the system’s behaviour as a func-
tion of some controlling parameters. The bifurcation
diagram of the amplitude versus the excitation fre-
quency in vehicle dynamic is typically used to analyse
the response of system. For the vehicle that encounters
road roughness, the speed is more significant parame-
ter; so it can be taken as a control parameter instead
of frequency in bifurcation diagrams. To generate the
bifurcation diagram, the speed of vehicle is as a con-
trol parameter that varies with fixed steps, and the state

Table 3 Geometric parameters of the half-truck

Geometric parameters Value (m)

L1 1.2

L2 4.8

L3 4.134

L4 6.973

L5 4

Table 4 Mass parameters of the half-truck

Mass parameters Value

MC 4400 kg

MT 12500 kg

IC 18,311 kg m2

IT 251,900 kg m2

MUF 270 kg

MUR 520 kg

MUT 340 kg
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Table 5 Oscillatory parameters of the half-truck

Oscillatory parameters Value

CF 10 kN s m−1

CR 27,627 N s m−1

CT 44,506 kN s m−1

C4 200 kN s m−1

ζC 0.15 for closure

ζR 0.35 for rebound

KF 300 kN m−1

KR 967,430 N m−1

KT 155,800 N m−1

K4 20 MN m−1

KUF 847 kN m−1

KUR 2 MN m−1

KUT 2 MN m−1

variables at the end of each step are used as initial con-
ditions for the next step. These data points are then plot-
ted versus the speed of vehicle. If the motion is regular,
periodic, at the specific vehicle’s speed, the bifurca-
tion diagram should contain a finite number of separate
points. When the motion is irregular, quasi-periodic or
chaotic, the data points in the bifurcation diagram are
distributed along a vertical line. As mentioned previ-
ously, the articulation point between the trailer and trac-
tor and its displacements can be more serious [30,31].
So, the bifurcation diagramof the articulation point dis-
placement is depicted to analyse the system behaviour.
The bifurcation diagrams of the system are obtained
when the vehicle speed is slowly changed in region
0.01 < v < 8 m/s and the step size of the speed is
0.01 m/s. The amplitude of the road excitation used in
the computation is b = 0.05m, and the initial condi-
tions for all variables set to zero. Figures 2, 3 and 4
show the bifurcation diagrams of the heave, pitch and
articulation point displacements.

These figures show at the speed regions v ∈ [2.4 ∼
3], v ∈ [3.83 ∼ 5.95] and v ∈ [6.43 ∼ 6.73], the irreg-
ular motion, quasi-periodic or chaotic, can be detected
in the system dynamic behaviour. However, the chaotic
behaviour has an oscillatory nature with unpredictable
amplitudes that can lead to cyclic stresses and a reduc-
tion in life of the vehicle components, safety of driving,
protection of the cargoes and driver’s comfort. The
aim is to detect the chaotic regions and then to apply

Fig. 2 Bifurcation diagrams of a tractor heave motion b trailer
heave motion

the active control action to this behaviour. For more
detailed analyses of system behaviour and confirma-
tion of the chaotic responses, other identifying tech-
niques are necessary. One of the main techniques is
Poincaré map. In non-autonomous systems, a point on
the Poincaré section is referred to as the return point of
the time series at the constant interval T , where T is the
driving period of the exciting force. The projection of
the Poincaré section on the phase plane is referred to as
the Poincaré map. If there have been k discrete return
points, the corresponding motion will be periodic with
the period kT. For a quasi-periodic motion, the return
points form a closed curve. For a chaotic motion, the
return points on the Poincaré map form a geometrically
fractal structure [32].

Figures 5 and 6 show the Poincaré map of the heave
and pitch displacements of tractor and trailer. At speed
v = 4.6m/s, all displacements show the chaotic behav-
iour, but at v = 5.9m/s the tractor’s irregular behav-
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Fig. 3 Bifurcation diagrams of a tractor pitch motion b trailer
pitch motion

Fig. 4 Bifurcation diagram of the articulation point

iour is chaotic and the trailer’s irregular behaviour is
quasi-periodic. However, the irregular motions have
variable nature with relatively high amplitude that is
not desirable.

However, the obtained results show the nonlinear
terms in the MR dampers lead to chaotic motions in
the trailer system. The displacement of articulation
point is a function of the heave and pitch displace-
ments of trailer and tractor. Here, first we show that
the chaotic behaviour of the above-mentioned displace-
ments results in chaotic vibrations of the articulation
point. Then, the active control of the chaotic behav-
iour is proposed in the next section. As shown in Fig.
5, Poincaré maps consist of a pile of points in the
phase space or have a fractal structures for all of vehi-
cle displacements at v = 4.6m/s, which confirm that
the irregular motions in the respective bifurcation dia-
grams, Figs. 2, 3 and 4, are chaotic motions. Thus, in
the next section we intend to apply active control on
the chaotic behaviour at v = 4.6m/s.

4 Controller design

In this section, an active chaos control system is
designed to control the appeared chaotic vibrations in
the vehicle. In Sect. 3, it was shown that the vehi-
cle has chaotic behaviour at v = 4.6m/s. The control
objective is to force the heavy vehicle’s state to follow
a periodic motion in spite of its chaotic situation. To
this end, the variables of the heave motions of tractor
and trailer and the pitchmotion of tractor are controlled
such that they follow periodic desired trajectories dur-
ing the motion. Here, it is assumed that the dynamic
model of the vehicle is known and a control law is
designed based on the backstepping method.

To apply the active control, the equations of motion,
Eq. (1), should be written as

Mq̈ − h(q, q̇) = Bu + f d (15)

whereu = [uF , uR, uT ]T is controller input vector and
matrix B is defined the number of controller as

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 −1 0
L1 −L2 0
0 0 −1
0 0 −L5

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)
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Fig. 5 Poincaré maps of a heave displacement of tractor, b pitch displacement of tractor, c heave displacement of trailer, d pitch
displacement of trailer at v = 4.6m/s

and f d is external disturbance forces vector. It is
assumed that the external disturbances are bounded.

In this paper, the backstepping method is used for
stabilizing and trajectory tracking of the vehicle. The
backstepping control is a nonlinear control method
based on the Lyapunov theorem. The design flexibility
of backsteppingmethod is its advantage comparedwith
other control methods. This flexibility is due to recur-
sive Lyapunov functions which are used in the back-
stepping method. The backstepping control is derived
step-by-step as follows:

Step 1 The tracking error of the heave motion of tractor
is defined as

e1 = Xd
C − XC (17)

where the superscript d in Xd
C denotes its desired state.

Considering the first Lyapunov function as V1 = 1
2e

2
1,

the time derivation of V1 is given as

V̇1 = e1ė1 = e1(Ẋ
d
C − ẊC ) (18)

ẊC can be used as a virtual input. To this end, based
on the desired value of virtual control, a stabilizing
function is defined as follows:

η1 = Ẋd
C + k1e1 (19)

where k1 is a positive constant. By considering (19),
Eq. (18) yields

V̇1 = −k1e
2
1 + e1(η1 − ẊC ) (20)
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Fig. 6 Poincaré maps of a heave displacement of tractor, b pitch displacement of tractor, c heave displacement of trailer, d pitch
displacement of trailer, at v = 5.9m/s

Step 2 Considering the error of the virtual control as

e2 = η1 − ẊC (21)

The second Lyapunov function is chosen as follows:

V2 = V1 + 1

2
e22 (22)

The time derivation of V2 yields

V̇2 = −k1e
2
1 + k1e

2
2 + e1e2 − k21e1e2 + e2 Ẍ

d
C − e2 ẌC

(23)

Step 3 In this step, the tracking error of the tractor pitch
motion is considered as

e3 = θdC − θC (24)

and the Lyapunov function is modified as follows:

V3 = V2 + 1

2
e23. (25)

Differentiating V3 with respect time yields

V̇3 = V̇2 + e3(θ̇
d
C − θ̇C ) (26)
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Now, the stabilizing function is chosen as

η2 = θ̇d4 + k2e3 (27)

where k2 is a positive constant. By considering (27),
Eq. (26) gives

V̇3 = V̇2 − k2e
2
3 + e3(η2 − θ̇C ) (28)

Step 4 Defining the error e4 as

e4 = η2 − θ̇4 (29)

The Lyapunov function is updated as follows:

V4 = V3 + 1

2
e24 (30)

The time derivation of V4 is given as

V̇4 = V̇2 − k2e
2
3 + k2e

2
4 + e3e4 − k22e3e4 + e2θ̈

d
4 − e4θ̈4

(31)

Step 5 Now, the tracking error of the trailer heave
motion is considered as

e5 = Xd
T − XT (32)

and the Lyapunov function is chosen as

V5 = V4 + 1

2
e25 (33)

The time derivative of (33) is given as

V̇5 = V̇4 + e5(Ẋ
d
T − ẊT ) (34)

By considering the stabilizing function

η3 = Ẋd
T + k3e5 (35)

where k3 is a positive constant, Eq. (34) is rewritten as

V̇5 = V̇4 − k3e
2
5 + e5(η3 − ẊT ) (36)

Step 6 The error e6 is considered as

e6 = η3 − ẊT (37)

The Lyapunov function is modified as follows:

V6 = V5 + 1

2
e26 (38)

The time derivative of (38) yields

V̇6 = V̇4−k3e
2
5+k3e

2
6+e5e6−k23e5e6+e6 Ẍ

d
T −e6 ẌT

(39)

Substituting Eqs. (23) and (32) in Eq. (39) gives

V̇6 = −k1e
2
1 − k2e

2
3 − k3e

2
5 + e1e2 + e3e4 + e5e6

+ k1e
2
2 + k2e

2
4 + k3e

2
6

− k21e1e2 − k22e3e4 − k23e5e6

+ e2(Ẍ
d
C − ẌC ) + e4(θ̈

d
C − θ̈C ) + e6(Ẍ

d
T − ẌT )

(40)

Now, the accelerations ẌC , θ̈C and ẌT are obtained
from equations of motion, Eq. (15), as follows:

ẌC = α1(q, q̇) + PT
1 u + δ1

θ̈C = α2(q, q̇) + PT
2 u + δ2

ẌT = α3(q, q̇) + PT
3 u + δ3 (41)

where Pi (i = 1, 2, 3) is i th row of matrix M−1B; αi

(i = 1, 2, 3) is i th elements of vector M−1h and δi
(i = 1, 2, 3) is the acceleration due to the external
disturbances. It is assumed that

∥∥f d
∥∥ ≤ β where β

is a positive constant. Therefore, δi (i = 1, 2, 3) is
bounded. Substituting the accelerations presented in
(41) into Eq. (40) leads to

V̇6 = −k1e
2
1 − k2e

2
3 − k3e

2
5 + e1e2 + e3e4 + e5e6

+ k1e
2
2 + k2e

2
4 + k3e

2
6 − k21e1e2

− k22e3e4 − k23e5e6

+ e2(Ẍ
d
C − α1 − δ1 − PT

1 u)

+ e4(θ̈
d
C − α2 − δ2 − PT

2 u)

+ e6(Ẍ
d
T − α3 − δ3 − PT

3 u) (42)

By considering the following relations:

P1u = Ẍd
C − α1 + k4e2

P2u = θ̈dC − α2 + k5e4

P3u = Ẍd
T − α3 + k6e6 (43)

the control law is proposed as

u = P−1(q̈dc−α + kẽ) (44)

with

P = [
PT
1 PT

2 PT
3

]T
, q̈dc =

[
Ẍd
C θ̈dC Ẍd

T

]T

α = [
α1 α2 α3

]T
, k = diag(k4, k5, k6), ẽ = [

e2 e4 e6
]T
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Fig. 7 Tracking performance on heave displacement of tractor

Based on Eq. (44), to control the articulation point,
three controllers are required. The above results can
be summarized in the following theorem for the chaos
control of heavy articulated vehicles.

Theorem 1 Consider the heavy articulated vehicle
with magnetorheological dampers represented by (15)
with the bounded external disturbances. If the inputs
are chosen by (44), the vehicle can follow the desired
periodic motion and the tracking errors can be made
bounded by choosing properly gains ki (i = 1, . . ., 6).

Proof The Lyapunov stability theorem is used in the
proof. To this end, the Lyapunov candidate function is
considered as (40). Considering the control law (44),
Eq. (39) can be written as follows:

Fig. 8 Tracking performance on heave displacement of trailer

V̇6 ≤ −k1e
2
1 − k2e

2
3 − k3e

2
5

+
(
1 + k21

)
2

(
e21
ρ1

+ ρ1e
2
2

)

+
(
1 + k22

)
2

(
e23
ρ2

+ ρ2e
2
4

)

+
(
1 + k23

)
2

(
e25
ρ3

+ ρ3e
2
6

)

+1

2

(
δ21m

ρ4
+ ρ4e

2
2

)

+1

2

(
δ22m

ρ5
+ ρ5e

2
4

)
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Fig. 9 Tracking performance on pitch displacement of the trac-
tor

+1

2

(
δ23m

ρ6
+ ρ6e

2
6

)

+ k1e
2
2 + k2e

2
4 + k3e

2
6 − k4e

2
2 − k5e

2
4 − k6e

2
6

(45)

where Young’s inequality, i.e. ab ≤ 1
2

(
a2
ρ

+ ρb2
)

with (a, b) ∈ R2 and ρ > 0, has been used in (45).
ρi (i = 1, . . ., 6) are positive constants, and δi mS
(i = 1, 2, 3) is the maximum of δi .

V̇6 ≤ −
[
k1 −

(
1 + k21

)
2ρ1

]
e21

−
[
k4 − k1 −

(
1 + k21

)
ρ1

2
− ρ4

2

]
e22

Fig. 10 Tracking performance on pitch displacement of the
trailer

Fig. 11 Tracking performance on articulation point
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−
[
k2 −

(
1 + k22

)

2ρ2

]
e23

−
[
k5 − k2 −

(
1 + k22

)
ρ2

2
− ρ5

2

]
e24

−
[
k3 −

(
1 + k23

)
2ρ3

]
e25

−
[
k6 − k3 −

(
1 + k23

)
ρ3

2
− ρ6

2

]
e26 + λ (46)

where λ = 1
2

(
δ21m
ρ4

+ δ22m
ρ5

+ δ23m
ρ6

)
is positive constant.

Now, the following coefficients are defined:

μ1 =
[
k1 −

(
1 + k21

)
2ρ1

]

μ2 =
[
k4 − k1 −

(
1 + k21

)
ρ1

2
− ρ4

2

]

μ3 =
[
k2 −

(
1 + k22

)
2ρ2

]

μ4 =
[
k5 − k2 −

(
1 + k22

)
ρ2

2
− ρ5

2

]

μ5 =
[
k3 −

(
1 + k23

)
2ρ3

]

μ6 =
[
k6 − k3 −

(
1 + k23

)
ρ3

2
− ρ6

2

]
(47)

Coefficients ki (i = 1, . . ., 6) and ρi (i = 1, . . ., 6) are
chosen such that μi > 0 (i = 1, . . ., 6). Equation (46)
is rewritten as

V̇6 ≤ −μ1e
2
1−μ2e

2
2−μ3e

2
3−μ4e

2
4−μ5e

2
5−μ6e

2
6+λ

(48)

Defining μ = min {μ1, ..., μ6}, Eq. (48) gives
V̇6 ≤ −2μV6 + λ (49)

Solving inequality (49) yields

V̇6 ≤ V6(0)e
−2μt + λ

2μ
, ∀t > 0 (50)

This shows the Lyapunov function V6 is bounded by
λ/2μ. Therefore, all the errors are bounded during the
motion. By properly regulating the values of ki (i =

Table 6 Optimization parameters values

Parameters Value

Population size 100

Number of maximum iteration 75

Crossover fraction 0.7

Searching space limit 0–30

Time interval 50–53

Mutation rate 0.1

Fig. 12 Fitness function values during optimization

1, . . . , 6) and ρi (i = 1, . . . , 6), the value of λ/2μ
can be made arbitrarily small. Therefore, the tracking
error can be made small arbitrarily and the proof is
completed.

5 Simulation results

In this section, simulation results of the vehicle motion
are presented. Choosing the controller gains, inputs
(44) are applied to the vehicle equations. The simula-
tions are performed in two cases: designed inputs based
on the backstepping method (44) and designed inputs
based on the optimal backstepping method. In the fol-
lowing, these two cases are presented.

5.1 Chaos backstepping control

Here, the presented backstepping control in (44) is
applied to the vehicle to control the appeared chaos in
the vehicle behaviour.As it is shown inFigs. 5 and6, the
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Fig. 13 Tracking performance on heave displacement of tractor
by COBC

vehicle response is chaotic at v = 4.6m/s. Therefore,
the chaos control is carried out for when the vehicle
moves in this velocity. The desired periodic motion is
planned based on v = 0.5m/s in where the vehicle
response is periodic (see Figs. 2, 3, 4). In other to show
better the effectiveness of the controller, it is assumed
that the vehicle moves with v = 4.6m/s and the con-
troller is applied at t = 50 s. The controller gains are
chosen k1 = k2 = k3 = k4 = k5 = k6 = 2. The simu-
lation results for the phase plane portrait and time his-
tory of the heave displacements of tractor and trailer are
depicted inFigs. 7 and 8. Thesefigures show the chaotic
motion converges to the desired periodic motion after
applying the backstepping controller (44).

Also, Figs. 9 and10 illustrate the phase plane portrait
and time history of the pitch displacements of tractor

Fig. 14 Tracking performance on heave displacement of trailer
by COBC

and trailer. As depicted, these displacements reach the
desired periodic trajectories and follow it after applying
the controller.

Figure 11 shows the displacement of the articulation
point. As shown, its motion is periodic after applying
the chaos control. As the results of the phase planes,
Figs. 7, 8, 9 and 10, show, the vehicle motion is peri-
odic bydesigned controller in (44). Therefore, designed
inputs in (44) can remove the chaos from the vehicle
motion and derive towards the periodic motion.

5.2 Chaos optimal backstepping control

In the backstepping method, the controller gains are
generally chosen by trial and error. Although the gains
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Fig. 15 Tracking performance on pitch displacement of the trac-
tor by COBC

values are fairly exact, they are not optimal. So, there is
needed to optimize the gain values. In this section, the
controller gain coefficients are designed by optimizing
and the effects of those values on simulation results are
investigated. Here, the optimization problem is defined
as

Minimize J (ki ) =
∫ t2

t1
‖e‖dt

such that

ki > 0, i = 1, ..., 6 (51)

where e = [ e1 e2 e3 e4 e5 e6 ]T and is obtained
from Sect. 4. Therefore, the controller gain values are
obtained such that the error norm is minimized in inter-
val t1–t2. Here, for solving the optimization problem

Fig. 16 Tracking performance on pitch displacement of the
trailer by COBC

Fig. 17 Tracking performance on articulation point by COBC
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Fig. 18 Tracking performance on heave displacement of tractor

(51), genetic algorithm (GA) is used. The GA method
is widely used in optimization problems [33–35].

An implantation of GA begins with a population of
chromosomes randomly. Each chromosome is evalu-
ated by using the objective function called fitness func-
tion. In order to apply the GA reproductive operations,
two individuals as parents are randomly selected. By
exchanging some of bits between parents, if its prob-
ability reaches, applying the crossover operation will
result in produce two children. Also, a mutation is the
second operator which is applied on the single children
by inverting its bit if the probability reaches. Then, it
can be obtained two populations: parents and children,
the individual who has a good solution is preserved
[36]. The optimization problem (51) is solved byMAT-
LAB software with given parameters values in Table 6.

Fig. 19 Tracking performance on heave displacement of trailer

The fitness function during optimization is shown
in Fig. 12. After optimization, the controller optimal
gains are obtained as k1 = 9.8995, k2 = 13.228, k3 =
6.8823, k4 = 15.3121, k5 = 16.9461, k6 = 12.9362,
and the best fitness value is 0.00622 in iteration number
75.

Now, the chaos backstepping control (44) with
the optimized gains is applied to the vehicle and its
response is analysed. The simulation results of the
chaos optimal backstepping control (COBC) are pre-
sented in Figs. 13, 14, 15, 16 and 17.

Figures 13 and 14 show the phase plane portrait and
time history of the heave displacements of tractor and
trailer, respectively. It can be seen that the behaviour
is chaotic up to t = 50 s, and afterwards the trajecto-
ries follow the desired path and the time history gets
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Fig. 20 Tracking performance on pitch displacement of the trac-
tor

to periodic motion. Also, Figs. 15 and 16 reveal the
effectiveness of proposed controller for controlling the
pitch motions of tractor and trailer. Figure 17 indicates
the time history of articulation point. As shown, the
response is chaotic before t = 50 s. When the con-
troller is applied, the displacement converges to peri-
odic motion with very small amplitude. This goal is
not achievable only by the MR dampers, but due to the
nonlinear nature of these dampers, the vehicle dynamic
behaviour goes to chaotic vibration which is undesir-
able. These results show for reaching the desired peri-
odic behaviour, it is needed that the active controller is
accompanied with MR dampers.

Fig. 21 Tracking performance on pitch displacement of the
trailer

Fig. 22 Tracking performance on articulation point
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Fig. 23 Norm of the disturbance forces

5.3 Robustness of COBC

In this section, the robustness of the proposed COBC is
studied. In theworst case, the randomdisturbance force
is applied as an arbitrary excitation force during a time
interval [52 53]. The COBC is applied with the same
previous gains and the same initial conditions. The sim-
ulation results are shown in Figs. 18, 19, 20, 21 and 22.
In these figures, the tracking performance of the vehicle
is depicted. It can be seen that the vehicle’s responses
converge to the desired trajectory despite the exist-
ing disturbance. Therefore, the proposed controlling
system has good robustness in tracking performance.
Also, the control action on articulation point shows the
appropriate robustness encountering the external dis-
turbance. Figure 23 shows the disturbance force norm
in the presence of external disturbances. Therefore,
these results depict the control approach proposed in
this paper is robust against the external disturbances.

6 Conclusion

In this paper, the active chaos control of a heavy artic-
ulated vehicle equipped with MR dampers was stud-
ied. MR dampers are used to semi-active control of
the vehicle vibration. These dampers can reduce the
amplitude of the free oscillations and dynamic tire
forces, and improve the ride quality of the passengers
[22,24]. However, nonlinear features of these dampers
can lead to the chaotic behaviour of the vehicle. In
this paper, firstly the nonlinear dynamic behaviour of

half-truck model was studied. The irregular regions
were detected by utilizing the bifurcation diagrams and
Poincaré maps. Then, the active controller was pro-
posed to control the chaotic behaviours. The control
law was derived based on the backstepping method.
The simulation results showed the chaotic motion of
the vehicle reaches to the periodic desired motion and
follows it by the proposed controller. In order to mini-
mize the error norm, chaos optimal backstepping con-
trol was proposed and the optimal gains were obtained
by the genetic algorithm. The main contributions of
this paper are summarized as: considering the nonlin-
ear features of MR dampers and their influences on
dynamic behaviour of the heavy articulated vehicle and
optimal backstepping control design for eliminating
the chaotic behaviours. The obtained results showed,
by using the optimal gain values, the controller per-
formance was extremely enhanced. Also, the simula-
tion results of the robustness showed the vehicle body
displacements converge to periodic desired motion in
spite of the existing external disturbance. Therefore, the
proposed controller removed the chaos from the vehi-
cle motion and forced it to move towards the periodic
motion.

Appendix: Nomenclature

Ci Suspension damper rate of i th axle, i = F :
tractor steering, i = R: tractor drive, i = T :
trailer

C4 Damper coefficient of articulation point
Fd−F Viscous damper force
FMR−i MR damper dynamic force to i th axle, i = R:

tractor drive, i = T : trailer
IC Tractor pitch inertia
IT Trailer pitch inertia
K4 Spring stiffness of articulation point
Ki Suspension spring stiffness of i th axle, i = F :

tractor steering, i = R: tractor drive, i = T :
trailer

KU i Unsprung mass spring stiffness, i = F : tractor
steering, i = R: tractor drive, i = T : trailer

L1 Length between the steer tractor axle and the
tractor CG

L2 Length between the drive tractor axle and the
tractor CG

L3 Length between the articulation point and the
tractor CG

L4 Length between the articulation point and the
trailer CG
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L5 Length between the trailer axle and the trailer CG
MC Tractor mass
MT Trailer mass (fully loaded)
MUi Unsprung masses, i = F : tractor steering, i = R:

tractor drive, i = T : trailer
XC Heave displacement of tractor
XT Heave displacement of trailer
XU i Heave displacement of unsprung mass, i = F :

tractor steering, i = R: tractor drive, i = T :
trailer

XWi Road excitation to i th axle, i = F : tractor
steering, i = R: tractor drive, i = T : trailer

X4 Articulation point displacement
θC Pitch displacement of the tractor
θT Pitch displacement of the trailer

Xd
C Desired heave displacement of tractor

Xd
T Desired heave displacement of trailer

θdC Desired pitch displacement of the tractor

θdT Desired pitch displacement of the trailer
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