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Abstract In this paper, we study the bifurcations and
exact travelingwave solutions of a new two-component
system from the perspective of the theory of dynamical
systems. We obtain all possible bifurcations of phase
portraits of the system under various conditions about
the parameters associated with the planar dynamical
system. Then, we show the existence of traveling wave
solutions including solitary waves, periodic waves and
periodic blow-up waves, and give their exact expres-
sions. These results can help understand the dynamical
behavior of the traveling wave solutions of the system.

Keywords A new two-component system · Traveling
waves · Solitary waves · Periodic waves · Periodic
blow-up waves

1 Introduction

In 2015, Ionescu–Kruse derived a new two-component
(N2C) system, modeling shallow-water waves by a
variational approach in the Lagrangian formalism [6],{
ut + 3uux + vvx = [

v2
(
uuxx + uxt − 1

2u
2
x

)]
x ,

vt + (uv)x = 0,

(1)

where x ∈ R, t ∈ R, u(x, t) represents the depth-
averaged horizontal velocity, and v(x, t) is the free
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upper surface. Ionescu-Kruse [6] also showed that
system (1) has a non-canonical Hamiltonian formu-
lation and found its exact solitary wave solution.
Recently, Dutykh [4] showed the existence of solitary
and cnoidal-type solutions of system (1) through the
method of the so-called phase-plane analysis. How-
ever, Ionescu-Kruse and Dutykh just focused on the
existence of some classical solitary solutions of sys-
tem (1) [4] and obtained only one expression of the
solitary-type solutions of system (1) [6] under spe-
cific initial condition and parameters condition. One
may consider whether there are other expressions and
other types of traveling wave solutions. Moreover, how
about the dynamical behavior of these traveling wave
solutions under general initial conditions and arbitrary
parameters conditions? Driven by this motivation, in
this paper, we study the travelingwave solutions of sys-
tem (1) from the perspective of the theory of dynamical
systems [2,3,5,7–11,13–24]. By presenting all possi-
ble bifurcations of phase portraits under different para-
meters conditions corresponding to system (1), we not
only show the existence of traveling wave solutions
including solitary waves, periodic waves and periodic
blow-up waves, under corresponding parameters con-
ditions, but also obtain their exact expressions.

2 Bifurcations of phase portraits

In this section, we present the bifurcations of phase
portraits corresponding to system (1).
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For given constant wave speed c > 0, substituting
u(x, t) = ϕ(ξ), v(x, t) = ψ(ξ) with ξ = x − ct into
system (1), it follows,{

−cϕ′ + 3ϕϕ′ + ψψ ′ =
[
ψ2

(
(ϕ − c)ϕ′′ − 1

2 (ϕ′)2
)]′

,

−cψ ′ + (ψϕ)′ = 0,

(2)

where the prime stands for the derivative with respect
to ξ .

Integrating (2) once leads to{
G − cϕ + 3

2ϕ
2 + 1

2ψ
2 = ψ2

(
(ϕ − c)ϕ′′ − 1

2 (ϕ
′)2

)
,

−cψ + ψϕ = g,

(3)

where both g andG are integral constants, respectively.
From the second equation of system (3), we obtain

ψ = g

ϕ − c
. (4)

Substituting (4) into the first equation of system (3),
it leads to

2g2(ϕ − c)ϕ′′ = g2(ϕ′)2 + (ϕ − c)2(
3ϕ2 − 2cϕ + 2G

)
+ g2. (5)

Letting y = ϕ′, we obtain a planar system⎧⎨
⎩

dϕ
dξ = y,

dy
dξ = g2y2 + (ϕ−c)2

(
3ϕ2−2cϕ+2G

)+g2

2g2(ϕ−c)
,

(6)

with first integral

H(ϕ, y) = g2

ϕ − c
y2 − ϕ3 + cϕ2 − 2Gϕ + g2

ϕ − c
.

(7)

Transformed by dξ = 2g2(ϕ − c)dτ , system (6)
becomes a Hamiltonian system{ dϕ

dτ = 2g2(ϕ − c) y,

dy
dτ = g2y2 + (ϕ − c)2

(
3ϕ2 − 2cϕ + 2G

) + g2.

(8)

Since the first integral of system (6) is the same as
that of the Hamiltonian system (8), system (6) should
have the same topological phase portraits as system (8)
except the straight line l, ϕ = c. Therefore, we should
be able to obtain the topological phase portraits of sys-
tem (6) from those of system (8).

To study the singular points and their properties of
system (8), let

f (ϕ) = (ϕ − c)2
(
3ϕ2 − 2cϕ + 2G

)
+ g2, (9)

then we have

f ′(ϕ) = 2(ϕ − c)
(
6ϕ2 − 6cϕ + c2 + 2G

)
, (10)

and

f ′′(ϕ) = 2
(
18ϕ2 − 24cϕ + 7c2 + 2G

)
. (11)

Obviously, f ′(ϕ) has three zero points as follows,

ϕ̂0 = c, ϕ̂± = 1

6

(
3c ± √

3Δ
)

, (12)

where Δ = c2 − 4G > 0. Additionally, we easily get
f (c) = g2, f ′(c) = 0 and f ′′(c) = 2

(
c2 + 2G

)
.

On the ϕ−axis, system (8) has at most four singular
points denoted by Si (ϕi , 0), i = 1, 2, 3, 4. There exists
no singular point of system (8) on the line l, ϕ = c.

To state conveniently, denote

θ+ � f (ϕ̂+) − g2 = c4 − 8c2G + 4G2

12

−c(c2 − 4G)
√
c2 − 4G

3
√
3

, (13)

θ− � f (ϕ̂−) − g2 = c4 − 8c2G + 4G2

12

+c(c2 − 4G)
√
c2 − 4G

3
√
3

. (14)

Wegive the number and relative positions of singular
points of system (8) in the following lemma.

Lemma 1 1. If G < − c2
2 , then we have Δ > 0 and

f ′′(c) < 0, which implies ϕ̂− < c < ϕ̂+.

(a) If f (ϕ̂−) < 0, f (ϕ̂+) < 0, i.e., g2 < −θ+, sys-
tem (8) has four singular points Si (ϕi , 0), i =
1, 2, 3, 4, satisfying ϕ1 < ϕ̂− < ϕ2 < c <

ϕ3 < ϕ̂+ < ϕ4.
(b) If f (ϕ̂−) < 0, f (ϕ̂+) > 0, i.e., −θ+ <

g2 < −θ−, system (8) has two singular points
Si (ϕi , 0), i = 1, 2, satisfying ϕ1 < ϕ̂− < ϕ2 <

c < ϕ̂+.

2. If G = − c2
2 , then we have Δ = 0 and 0 = ϕ̂− <

c = ϕ̂+. If f (ϕ̂−) < 0, i.e., g2 < −θ−, system (8)
has two singular points Si (ϕi , 0), i = 1, 2, satisfy-
ing ϕ1 < ϕ̂− = 0 < ϕ2 < c = ϕ̂+.

3. If − c2
2 < G < c2

4 , then we have Δ > 0 and
f ′′(c) > 0, which implies ϕ̂− < ϕ̂+ < c. If
f (ϕ̂−) < 0, i.e., g2 < −θ−, system (8) has
two singular points Si (ϕi , 0), i = 1, 2, satisfying
ϕ1 < ϕ̂− < ϕ2 < ϕ̂+ < c.
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Fig. 1 Phase portraits of system (6). aG < − c2
2 and g2 < −θ+.

b G < − c2
2 and −θ+ < g2 < −θ−, or − c2

2 ≤ G < c2
4 and

g2 < −θ−

Proof Lemma 1 follows from the analysis of signs of
Δ and f ′′(c). ��
Remark 1 Note that f (ϕ̂+)− f (ϕ̂−)= c(c2−4G)

√
c2−4G

3
√
3

,

hence the case that f (ϕ̂−) > 0, f (ϕ̂+) < 0, will never
happen, as long as G < c2

4 .

Let λ(ϕ, y) be the characteristic value of the lin-
earized systemof system (8) at the singular point (ϕ, y).
Then we have

λ2(ϕi , 0) = 2g2(ϕi − c) f ′(ϕi ). (15)

From (15), we see that the sign of f ′(ϕi ) and the
relative position of the singular point Si (ϕi , 0), i =
1, 2, 3, 4 with respect to the singular line l, ϕ = c can
be used to determine the dynamical properties (saddle
points, centers and degenerate saddle points) of the sin-
gular points according to the theoryof planar dynamical
systems.

Therefore, based on the above analysis, we obtain
all possible bifurcations of phase portraits of system (6)
in Fig. 1.

3 Main results and the theoretic derivations of
main results

To state conveniently, let sn(·, ·) be the Jacobian elliptic
function [1], and hi = H(ϕi , 0), i = 1, 2, 3, 4, where
H(ϕ, y) is given in (7). Additionally, from (7), for a
fixed integral constant h, we have

y2 = 1

g2

(
ϕ4 − 2cϕ3 + (c2 + 2G)ϕ2

+(h − 2cG)ϕ − (ch + g2)
)

� Ω(ϕ)

g2
(16)

Our main results will be stated in the following theo-
rems with the proofs following.

For ease of exposition, we have omitted the expres-
sions of v(x, t) with v(x, t) = g

u(x,t)−c in the rest of
article.

Theorem 1 (1) Corresponding to thehomoclinic orbit,
which passes the saddle points S1(ϕ1, 0) in Fig. 1a,
b, there exists solitary wave solution for system (1),
which possesses the explicit expression,

u(x, t) = ϕ1

+ 2(ϕ11 − ϕ1)(ϕ12 − ϕ1)

(ϕ12 − ϕ11) cosh(θ1(x − ct)) + (ϕ11 + ϕ12 − 2ϕ1)
,

(17)

where θ1 = 1
|g|

√
(ϕ11 − ϕ1)(ϕ12 − ϕ1), and ϕ1i ,

i = 1, 2 will be given later.
(2) Corresponding to the homoclinic orbit, which

passes the saddle points S4(ϕ4, 0) in Fig. 1a, there
exists solitary wave solution for system (1), which
possesses the explicit expression,

u(x, t) = ϕ4

− 2(ϕ4 − ϕ42)(ϕ4 − ϕ41)

(ϕ42 − ϕ41) cosh(θ4(x − ct)) + (2ϕ4 − ϕ41 − ϕ42)
,

(18)

where θ4 = 1
|g|

√
(ϕ4 − ϕ42)(ϕ4 − ϕ41), and ϕ4i ,

i = 1, 2 will be given later.

Proof (1) The homoclinic orbit, which passes the sad-
dle points S1(ϕ1, 0) in Fig. 1a, b, can be expressed
as,

y = ± 1

|g| (ϕ − ϕ1)
√

(ϕ12 − ϕ)(ϕ11 − ϕ),

ϕ1 < ϕ < ϕ11 < c < ϕ12, (19)

where ϕ1i , i = 1, 2 can be obtained by letting h =
h1 and Ω(ϕ) = (ϕ12 − ϕ)(ϕ11 − ϕ)(ϕ − ϕ1)

2.
Substituting (19) into the first equation of sys-
tem (6), and integrating along the homoclinic orbit,
it follows that∫ ϕ11

ϕ

ds

(s − ϕ1)
√

(ϕ12 − s)(ϕ11 − s)
= |ξ |

|g| . (20)

From (20), we obtain the solitary wave solu-
tion (17).

(2) The homoclinic orbit, which passes the saddle
points S4(ϕ4, 0) in Fig. 1a, can be expressed as,

y = ± 1

|g| (ϕ4 − ϕ)
√

(ϕ − ϕ41)(ϕ − ϕ42),

ϕ41 < c < ϕ42 < ϕ < ϕ4, (21)

where ϕ4i , i = 1, 2 can be obtained by letting h =
h4 and Ω(ϕ) = (ϕ − ϕ41)(ϕ − ϕ42)(ϕ4 − ϕ)2.
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Substituting (21) into the first equation of sys-
tem (6), and integrating along the homoclinic orbit,
it follows that∫ ϕ

ϕ42

ds

(ϕ4 − s)
√

(s − ϕ41)(s − ϕ42)
= |ξ |

|g| . (22)

From (22), we obtain the solitary wave solu-
tion (18). The proof is completed.

��
Theorem 2 (1) Corresponding to the periodic orbit,

which surrounds the center point S2(ϕ2, 0), in
Fig. 1a, b, system (1) has a periodic wave solu-
tion, which can be expressed as,

u(x, t) =
ϕ̄4(ϕ̄3 − ϕ̄2)sn2

(
x−ct
g1|g| , k2

)
− ϕ̄3(ϕ̄4 − ϕ̄2)

(ϕ̄3 − ϕ̄2)sn2
(
x−ct
g1|g| , k2

)
− (ϕ̄4 − ϕ̄2)

(23)

where g1 = 2√
(ϕ̄4−ϕ̄2)(ϕ̄3−ϕ̄1)

, k22 = (ϕ̄3−ϕ̄2)(ϕ̄4−ϕ̄1)
(ϕ̄4−ϕ̄2)(ϕ̄3−ϕ̄1)

,

and ϕ̄i , i = 1, 2, 3, 4 will be given later.
Moreover, the periodic wave solution (23) tends to
the solitary wave solution (17) when ϕ̄2 → ϕ1.

(2) Corresponding to the periodic orbit, which sur-
rounds the center point S3(ϕ3, 0), in Fig. 1b, sys-
tem (1) has a periodic wave solution, which can be
expressed as,

u(x, t) =
ϕ̃1(ϕ̃3 − ϕ̃2)sn2

(
x−ct
g2|g| , k3

)
− ϕ̃2(ϕ̃3 − ϕ̃1)

(ϕ̃3 − ϕ̃2)sn2
(
x−ct
g2|g| , k3

)
− (ϕ̃3 − ϕ̃1)

(24)

where g2 = 2√
(ϕ̃4−ϕ̃2)(ϕ̃3−ϕ̃1)

, k23 = (ϕ̃3−ϕ̃2)(ϕ̃4−ϕ̃1)
(ϕ̃4−ϕ̃2)(ϕ̃3−ϕ̃1)

,

and ϕ̃i , i = 1, 2, 3, 4 will be given later. Moreover,
the periodic wave solution (24) tends to the solitary
wave solution (18) when ϕ̃3 → ϕ4.

Proof (1) The periodic orbit, surrounding the center
point S2(ϕ2, 0), in Fig. 1a, b, can be expressed as,

y = ± 1

|g|
√

(ϕ̄4 − ϕ)(ϕ̄3 − ϕ)(ϕ − ϕ̄2)(ϕ − ϕ̄1),

ϕ̄1 < ϕ̄2 < ϕ < ϕ̄3 < c < ϕ̄4, (25)

where ϕ̄i , i = 1, 2, 3, 4 can be obtained by letting
h = h1 andΩ(ϕ) = (ϕ̄4−ϕ)(ϕ̄3−ϕ)(ϕ− ϕ̄2)(ϕ−
ϕ̄1).
Substituting (25) into the first equation of sys-
tem (6), and integrating along the periodic orbit,
it follows that∫ ϕ̄3

ϕ

ds√
(ϕ̄4 − s)(ϕ̄3 − s)(s − ϕ̄2)(s − ϕ̄1)

= |ξ |
|g| .
(26)

From (26), we obtain the periodic waves (23).
Moreover, when ϕ̄2 → ϕ1, we immediately have
ϕ̄1 → ϕ1, ϕ̄3 → ϕ11, and ϕ̄4 → ϕ12, from which
k2 → 1 and g1 → 2√

(ϕ11−ϕ1)(ϕ12−ϕ1)
follow. There-

fore, the periodic wave solution (23) becomes

u(x, t)

= ϕ12(ϕ11 − ϕ1) tanh2(
θ1
2 (x − ct)) − ϕ11(ϕ12 − ϕ1)

(ϕ11 − ϕ1) tanh2(
θ1
2 (x − ct)) − (ϕ12 − ϕ1)

,

(27)

which is exactly the solitary wave solution (17)
through simple calculation.

(2) The periodic orbit, surrounding the center point
S3(ϕ3, 0), in Fig. 1b, can be expressed as,

y = ± 1

|g|
√

(ϕ̃4 − ϕ)(ϕ̃3 − ϕ)(ϕ − ϕ̃2)(ϕ − ϕ̃1),

ϕ̃1 < c < ϕ̃2 < ϕ < ϕ̃3 < ϕ̃4, (28)

where ϕ̃i , i = 1, 2, 3, 4 can be obtained by letting
h = h1 andΩ(ϕ) = (ϕ̃4−ϕ)(ϕ̃3−ϕ)(ϕ− ϕ̃2)(ϕ−
ϕ̃1).
Substituting (28) into the first equation of sys-
tem (6), and integrating along the periodic orbit, it
follows that∫ ϕ

ϕ̃2

ds√
(ϕ̃4 − s)(ϕ̃3 − s)(s − ϕ̃2)(s − ϕ̃1)

= |ξ |
|g| .
(29)

From (29), we obtain the periodic waves (24).
Moreover, when ϕ̃3 → ϕ4, we immediately have
ϕ̃1 → ϕ41, ϕ̃2 → ϕ42, and ϕ̃4 → ϕ4, from which
k3 → 1 and g2 → 2√

(ϕ4−ϕ42)(ϕ4−ϕ41)
follow. There-

fore, the periodic wave solution (24) becomes

u(x, t)

= ϕ41(ϕ4 − ϕ42) tanh2(
θ4
2 (x − ct)) − ϕ42(ϕ4 − ϕ42)

(ϕ4 − ϕ42) tanh2(
θ4
2 (x − ct)) − (ϕ4 − ϕ41)

,

(30)

which is exactly the solitary wave solution (18)
through simple calculation.
Thus, the proof is completed. ��

Theorem 3 (1) Corresponding to the twoorbits,which
have the same Hamiltonian with that of the cen-
ter point S2(ϕ2, 0), in Fig. 1a, b, system (1) has
two periodic blow-up wave solutions, which can
be expressed as,

u(x, t) = ϕ2

+ 2(ϕ22 − ϕ2)(ϕ2 − ϕ21)

(2ϕ2 − ϕ21 − ϕ22) − (ϕ22 − ϕ21) sin(ϑ2 − θ2(x − ct))
,

(31)
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where ϑ2 = arcsin
(
2ϕ2−ϕ21−ϕ22

ϕ22−ϕ21

)
, θ2 =

1
|g|

√
(ϕ22 − ϕ2)(ϕ2 − ϕ21), and ϕ2i , i = 1, 2 will

be given later.
(2) Corresponding to the two orbits, which have the

same Hamiltonian with that of the center point
S3(ϕ3, 0), in Fig. 1a, system (1) has two periodic
blow-up wave solutions, which can be expressed
as,

u(x, t) = ϕ3

+ 2(ϕ32 − ϕ3)(ϕ3 − ϕ31)

(2ϕ3 − ϕ31 − ϕ32) − (ϕ32 − ϕ31) sin(ϑ3 − θ3(x − ct))
,

(32)

where ϑ3 = arcsin
(
2ϕ3−ϕ31−ϕ32

ϕ32−ϕ31

)
, θ3 =

1
|g|

√
(ϕ32 − ϕ3)(ϕ3 − ϕ31), and ϕ3i , i = 1, 2 will

be given later.

Proof (1) The two orbits, which have the sameHamil-
tonian with that of the center point S2(ϕ2, 0), in
Fig. 1a, b, can be expressed as,

y = ± 1

|g| (ϕ − ϕ2)
√

(ϕ − ϕ22)(ϕ − ϕ21),

ϕ21 < ϕ2 < c < ϕ22 < ϕ, (33)

where ϕ2i , i = 1, 2 can be obtained by letting h =
h2 and Ω(ϕ) = (ϕ − ϕ22)(ϕ − ϕ21)(ϕ − ϕ2)

2.
Substituting (33) into the first equation of sys-
tem (6), and integrating along the two orbits, it
follows that∫ +∞

ϕ

ds

(s − ϕ2)
√

(s − ϕ22)(s − ϕ21)
= |ξ |

|g| . (34)

From (34), we obtain the periodic blow-up wave
solutions (31).

(2) The two orbits, which have the same Hamiltonian
with that of the center point S3(ϕ3, 0), in Fig. 1a,
can be expressed as,

y = ± 1

|g| (ϕ − ϕ3)
√

(ϕ − ϕ32)(ϕ − ϕ31),

ϕ31 < c < ϕ3 < ϕ32 < ϕ, (35)

where ϕ3i , i = 1, 2 can be obtained by letting
h = h3 andΩ(ϕ) = (ϕ −ϕ32)(ϕ −ϕ31)(ϕ −ϕ3)

2.
Substituting (35) into the first equation of sys-
tem (6), and integrating along the two orbits, it
follows that∫ +∞

ϕ

ds

(s − ϕ3)
√

(s − ϕ32)(s − ϕ31)
= |ξ |

|g| .
(36)

From (36), we obtain the periodic blow-up wave
solutions (32). ��

4 Conclusions

In this paper, through all possible bifurcations for the
system under different parameters constraint condi-
tions, we not only show the existence of several types
of traveling wave solutions including solitary waves,
periodic waves and periodic blow-up waves, under cor-
responding parameters conditions, but also obtain their
exact explicit expressions. Compared to the results
in [4,6], our work extends the results in the follow-
ing aspects. First, we show the existence of differ-
ent types of traveling wave solutions and give their
exact explicit expressions, compared to the only one
expression of the solitary and cnoidal-type solutions
[4,6]. Moreover, the solutions in [4,6] were obtained
under specific initial condition and parameter con-
dition, while we consider the dynamical behaviors
of the traveling wave solutions under general initial
conditions and arbitrary parameters conditions. Addi-
tionally, the motivation and extension in this article
drive us to study other mathematical physics equations
[12,25–27].
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