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Abstract We analyse the model of neurons described
by Hindmarsh–Rose (H–R) system with various cou-
pling schemes. We have examined the scope of syn-
chronization, anti-phase synchronization and ampli-
tude death for linear indirect synaptic coupling of the
H–R neurons. The work is extended to coupling of the
form nonlinear cubic feedback. The coupling between
two neurons usingmemristor is also examined.Amem-
ristor is now identified as the fourth fundamental cir-
cuit element which can be considered as an electri-
cal synapse. Mutual coupling of H–R systems using
cubic flux-controlled memristor exhibits the proper-
ties of bursting and amplitude death. With unidirec-
tional coupling one neuron exhibits tonic spiking or
burstingwhile the other neuron shows amplitude death.
Mutual coupling with quadratic flux-controlled mem-
ristor model shows the possibilities of synchroniza-
tion, oscillation death and other interesting dynamics
like near-death rare spikes. Exponential flux-controlled
memristor coupling in H–R neuron presents synchro-
nization and oscillation death. We have examined the
stability of different coupled systems and the Lyapunov
exponent plots. It is shown that among different mem-
ristor couplings in H–R neurons, cubic flux-controlled
memristor has got highest Lyapunov exponent. The
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1 Introduction

Coupling between same variables of two or more non-
linear systems may lead to synchronization. This has
been observed in many physical [1], chemical [2], eco-
logical [3] and biological systems [4]. This phenom-
enon has found many applications in cryptography
and secure communication. Also recent works have
shown that coupling nonlinear elements can invoke
interesting phenomena, such as hysteresis, phase lock-
ing, phase shifting, phase flip, amplitude death [5] and
oscillation death [6]. Studies show that synchroniza-
tion is desirable in cases of quantum devices such
as a laser, collective radiation of electrons, in behav-
iour of insects, and in numerous other instances such
as Josephson junction arrays and coupled spin torque
nano-oscillators.

Neural synchrony is believed to be an important
mechanism underlying many phenomena in the human
brain, including the formation of neuronal assemblies
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[7]. In the brain, synchronization is often associated
with epileptic form of behaviour [8]. Recent studies [9]
show that when an indirect feedback coupling through
an environment or an external system is applied to
neurons there is a tendency for anti-synchronization,
amplitude death and in-phase and out-of-phase syn-
chronization [10]. Also the study of synchronization
of synaptically coupled nonlinear oscillators [11] and
chimera and study of spatio-temporal dynamics of bio-
logical systems [12] are important.

The nonlinear dynamics of a neuron can generate
deterministic chaos under some conditions [13]. The
coupling schemes for different neurons such as dynami-
cal coupling, time-delay feedback coupling, conjugate
coupling, diffusive coupling [14], nonlinear coupling
[15], memristor coupling [16], repulsive mean field
interaction and damping effect by an environment [9]
can be applied to study amplitude death, oscillation
death and various other dynamical evolutions of neu-
ron systems.

Oscillationquenching in the formof amplitudedeath
(AD) and oscillation death (OD) is known to appear in
oscillatory systems under different coupling schemes.
This emergent behaviour in coupled oscillators occurs
when they drive each other to a stable equilibrium. In
the case of AD, all the coupled oscillators are stabi-
lized to one equilibrium state which may be the ori-
gin or any other fixed point. But the coupled sys-
tems are stabilized to multiple equilibrium states in
the case of OD. This strange phenomenon was, at
first, explained as an effect of large parameter mis-
match [17] on coupled oscillatory systems. Later, AD
was also observed in two identical oscillators when
a critical propagation delay [18] is introduced in the
coupling. Recent studies [19] unify the mechanism of
quenching of oscillation in coupled oscillators, either
by a large parameter mismatch or by a delay cou-
pling, or by a common lag scenario. There is numeri-
cal as well as experimental evidence for the unknown
kind of lag scenario (the lag increases with coupling,
and at a critically large value of coupling strength,
amplitude death emerges in two largely mismatched
oscillators). Coupling schemes such as conjugate type,
environment coupling [9] and repulsive feedback link
[20] also are found to show the effect of oscillation
quenching.

Recent studies of Wang et al. [21] shows the mixed
synchronization of H–R neurons under adaptive syn-
chronization. They have found the distribution of syn-

chronization and non-synchronization regions in the
two-parameter phase space based on Lyapunov stabil-
ity theory. Electric activities and signal transmissions
among neurons are modulated by autapse. Nowadays
study of functional role of autapse on the dynamics of
neuronal activities is also an interesting research area.
The autapse can induce synchronization, and itwill reg-
ulate the collective behaviour of neuronal network like
a central pacemaker so that all neurons can be regu-
lated to oscillate under identical rhythm [22]. Dynam-
ics of electrical activities in a neuron [23], study of
pattern selection and control in neural networks and
effect of noise are well discussed by Ma and Tang
[24]. They also study effect of electromagnetic radi-
ation on H–R neurons, by introducing an additive vari-
able magnetic flux to original neuron model. Also by
imposing time-delayed feedback current in membrane
of H–R neuron, its electrical activities are regulated
and thus pattern selection in neuronal network is made
possible [25].

Synchronization of two nonlinear oscillator sys-
temswhen coupled through amemristor-like nanoscale
device is also an interesting research area [26].
Recently, its applications on neuromorphic computing,
device modelling, signal processing, etc., are reported.
It is possible to emulate short-term synaptic dynam-
ics with memristive devices where memristor has full
potential for building biophysically realistic neural
processing systems [27]. When memristor functions as
a novel neuro-fuzzy computing system [28], it can be
used for creating artificial brain. Themechanismunder-
lying the emergence of synchronization between two
memristor coupledHindmarsh–Rose oscillatory neural
cells is also interest of study.

In nervous systems neuron encoding, transferring
and integrating information are realized by a series of
action potentials [29]. The theoretical and experimental
studies on chaotic neural dynamics help to understand
higher functions of brain such as adaptation, percep-
tion, episodic memory, learning, awareness, intention-
ality and thought [13]. The studies of dynamical behav-
iour of neurons are relevant in this context.

Neurons communicate by generating action poten-
tials (potential difference through their cell mem-
branes), which propagate along the axon towards the
synapses of other cells. There exist various models,
based on systems of ordinary differential equations,
which describe the dynamics of action-potential gen-
eration for neurons. The equations given by Hodgkin
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and Huxley [30], Fitzhugh [31], Morris and Lecar [32]
and Hindmarsh and Rose [33] are some of the exam-
ples for it. The behaviour of neurons when nonlinear
oscillators are coupled together depends on the detailed
nature and the strength of the coupling.

In this paper, we wish to address how chaos is
employed by neural systems to accomplish biologi-
cally important goals such as synchronization, anti-
synchronization and oscillation quenching mecha-
nisms for neurons. An appropriate rate equation of
neuron model, the Hindmarsh–Rose system is selected
to which different coupling schemes are applied. This
model equation describes actually a nonlinear dynam-
ical system which demonstrates the pulse propagation
in neurons, and is very important from biophysical
perspectives [11]. Here the coupling strength summa-
rizes information distribution between neurons. Lin-
ear coupling, nonlinear feedback coupling and differ-
ent memristor-based couplings are applied to the H–R
neuron systems to study its dynamics.

In this work it is shown that linear coupling, nonlin-
ear feedback coupling and memristor-based coupling
establish a pathway to amplitude death and oscilla-
tion death. Amplitude response, amplitude death and
phase resetting are analysed in the present work which
is having much importance in the study of brain cells.
Our work shows possibilities of anti-phase synchro-
nization with linear synaptic coupling, nonlinear cubic
feedback coupling, and for unidirectional cubic flux-
controlled memristor coupling. The exponential flux-
controlled memristor coupling shows many interest-
ing dynamics like near-death rare spikes. Near-death
experiences (NDEs) are found to occur as a result
of neurobiological alterations in the brain. Cognitive,
emotional and transcendental elements compriseNDEs
[34].

The study of stability is always a central task for
nonlinear differential systems. Here the linear stabil-
ity analysis [9] for the dynamics of H–R neurons
for nonlinear feedback, cubic flux-controlled memris-
tor, quadratic flux-controlled memristor and exponen-
tial flux-controlled memristor is performed. The val-
ues of Lyapunov exponent (LE) are also computed
for the proposed couplings. The neural systems cer-
tainly involve nonlinear mechanisms, so the unpre-
dictable and complex behaviour of neural systems can
be measured by computation of Lyapunov exponents.
If physiological signals have at least one positive Lya-
punov exponent, they reflect an unstable and unpre-

dictable system and are used to define determinis-
tic chaos [35]. The largest LE value close to 1 indi-
cates chaotic behaviour. From our plots it is clear
that among memristor couplings H–R neurons coupled
with cubic flux-controlled memristor exhibits more
chaotic nature. In neural systems this value falls due
to relaxed situations in the brain [35]. This suggest
that when subjects are exposed to external sound or
reflexologic stimuli, the brain goes into more relaxed
state.

2 Linear coupling in H–R neurons

2.1 Indirect synaptic coupled H–R neurons

Hindmarsh–Rose systemmodel of neurons is described
by the equations, which are subjected to linear synaptic
and indirect coupled equations. Here we take two neu-
rons with excitatory synaptic coupling and an indirect
coupling is introduced between them [9].

ẋ1 = x2 − ax31 + bx21 + Iext − x3 + εu

+ω2
Vr − x1

1 + exp (−λ (x4 − θ))

ẋ2 = c − dx21 + x2

ẋ3 = r (s (x1 − x0) − x3)

ẋ4 = x5 − ax34 + bx24 + Iext − x6 + εu

+ω2
Vr − x4

1 + exp (−λ (x1 − θ))

ẋ5 = c − dx24 + x5

ẋ6 = r (s (x4 − x0) − x6)

u̇ = −ku − ε

2

∑

i=1,4

xi (1)

The variable x1 represents the membrane potential
of a neuron, and the variables x2 and x3 are related
ion currents across the membrane. Vr represent the
action potential. Here parameters are chosen as a =
1, b = 3, d = 5, c = 1, Iext = 3.05, k = 1.6, r =
0.006, s = 4. The parameters of the system are cho-
sen such that the individual neurons are in the bursting
state. Here the synaptic coupling is given by the term
ω2

Vr−x1
1+exp(−λ(x4−θ))

and indirect coupling is achieved by
an environment through the term u. The last equation
which governs the dynamics of u represents the active
feedback from both the systems through the environ-
ment [9].
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Fig. 1 Time series of the first variables (x1 and x4) of indirect
and synaptic coupled neurons. a At ε = 1, ω2 = 0, the syn-
chronization behaviour of two neurons is established. b Time

series of indirect and synaptic coupled neurons exhibits anti-
phase synchronization for the values of coupling strengths ε = 0
and ω2 = 1

There is excitatory or inhibitory synaptic coupling
depending upon whether the synapse is fast or slow
[36]. Direct synapses are activated as soon as a mem-
brane potential crosses the threshold value, while the
effect of indirect synapse is to introduce a delay from
the time one oscillator jumps up until the time the other
feels the synaptic input.

2.2 Time series plots for linear indirect synaptic
coupling

The effects of synaptic coupling on the time series
behaviour of neurons are examined. The chaotic behav-
iour of indirect synaptic coupled neurons depends on
the specific values of parameters in the H–R neuron
equation.

2.2.1 Synchronization

Synchronizationbehaviour of two linear indirect synap-
tic coupled H–R neurons is shown through time series
analysis. Here for sufficiently large value of one cou-
pling parameter (ω2), bursts of both neurons become
synchronized as shown in Fig. 1a.

2.2.2 Anti-phase synchronization

Anti-phase synchronization property of linear indirect
synaptic coupled neurons (Fig. 1b) is shown through

time series analysis. Here one of the parameters is of
low value and other is of high value.

2.2.3 Amplitude death

For higher values of coupling parameters, amplitude
death of indirect synaptic coupled neurons is estab-
lished through time series analysis of first variables x1
and x4 (Fig. 2). Here oscillation of two neurons comes
to a common steady-state condition.

We have also identified the regions of amplitude
death, synchronization and anti-phase synchronization
in the two neuron system for linear, indirect synaptic
coupling with various values of coupling parameters
(Fig. 3). The regions are identified by correlation analy-
sis [9] where synchronization, anti-phase synchroniza-
tion and amplitude death are found to emerge in. When
one of the control or coupling parameters is set as high,
synchronization or anti-phase synchronization regions
are observed.

Due to rigorous mathematical calculations, stability
analysis of synaptic coupled H–R neuron is not done.

2.3 Lyapunov exponent plot for synaptic coupled
H–R neurons

The Lyapunov exponent (LE) plot for synaptic cou-
pled system is shown in Fig. 4. The increased LE
value reflects greater sensitivity to initial conditions

123



Nonlinear feedback coupling in Hindmarsh–Rose neurons 1883

Fig. 2 Time series plots of
indirect and synaptic
coupled H–R neurons
evolves into amplitude
death condition for higher
values of both of the
coupling/control parameters
ε and ω2
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Fig. 3 Amplitude death,
synchronization and
anti-phase synchronization
regions are shown through
ε − ω2 plot. Regions are
found by varying coupling
strengths. Parameter range
is selected as ε = [0:0.5:5]
and ω2 = [0:0.2:1.2].
Synchronization and
anti-phase synchronization
regions obtained are
depicted through yellow and
dark blue colour in the
above plot. For higher
values of control parameters
amplitude death behaviour
is set in, which is shown by
light green region in the
figure. (Color figure online)
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Fig. 4 Lyapunov exponent
plot for linear synaptic
coupled H–R neurons
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Dynamics of Lyapunov exponents

and characterizes unpredictable variations, while low
value indicates the regularity of the system.

3 Nonlinear feedback coupling in H–R neurons

In this section the dynamical behaviour of two H–R
neurons is examined where cubic nonlinear coupling
is adopted. The excitability in neuron-based excitable
cells is most often associated with the presence of a
cubic nonlinearity in the relevant system of differen-
tial equations. When the nonlinear coupling feedback
term of cubic order is added to the differential equa-
tion representing dynamical evolution of first variable
of H–Rmodel, the two neurons do not achieve full syn-
chronization. But when a quadratic form of membrane
potential is added to the differential equation of fast
current variable x2 or x5 [37], the behaviour of dynam-
ics is interesting. It is found that the coupling strengths
decide the evolution of the system.

In H–R neuron, the recovery variable which is the
current variable x2 is influenced by the outward flow
of potassium ions immediately after the discharge of
action potential. The potassium ion current slows down
the returning of membrane potential to the thresh-

old value, and it also reduces frequency of repeating
discharge. It also allows a delay between excitable
simulate and action discharge. So introduction of the
quadratic form of membrane voltage between two neu-
rons results in a coupling feedback into the flow of
potassium ions. This means a change of potassium ion
concentration affects modulation with respect to the
burst interval of H–R neurons which in turn may affect
chaotic synchronization of two neurons [37].

Consider the nonlinear feedback coupled H–R neu-
rons

ẋ1 = x2 − ax31 + bx21 + Iext − x3 − ε
(
x31 − x34

)

ẋ2 = c − dx21 − x2 + ω2

(
x21 − x24

)

ẋ3 = r (s (x1 − x0) − x3)

ẋ4 = x5 − ax34 + bx24 + Iext − x6 − ε
(
x31 − x34

)

ẋ5 = c − dx24 − x5 + ω2

(
x24 − x21

)

ẋ6 = r (s (x4 − x0) − x6) (2)

Here the membrane potential of a neuron and the
related ion currents across the membrane are rep-
resented by the variables x1, x2 and x3. Parameters
a, b, c, d, r, s and Iext are chosen as a = 1, b =
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3, d = 5, c = 1, r = 0.006, s = 4 and Iext = 3.05,
and initial condition of the system is chosen such that
[x1, x2, x3, x4, x5, x6] are assigned the values [0.3, 0.3,
3.0, 0.2, 0.35, 3.2]where ε andω2 are the coupling para-
meters. Here ε

(
x31 − x34

)
represents nonlinear feed-

back of cubic order. By varying the value of cou-
pling strength, various dynamics of chaotic neurons are
analysed.

3.1 Linear stability analysis

We present an analysis of stability of the steady state of
two H–R neurons coupled by nonlinear cubic feedback
coupling.

ẋ1 = f (x1) + ε
(
x31 − x34

)

ẋ2 = f (x2) + ω2

(
x21 − x24

)
(3)

ẋ4 = f (x4) + ε
(
x31 − x34

)

ẋ5 = f (x5) + ω2

(
x24 − x21

)
(4)

Here ε and ω2 are coupling parameters. Let x̄1, x̄2, x̄4,
x̄5 be the steady state of the system, then f (x1, x̄1) =
0, f (x2, x̄2) = 0, f (x4, x̄4) = 0, and f (x5, x̄5) = 0.

Let η1, η2,, η4, η5 be the infinitesimal perturbations
of the system. As η1, η2,, η4, η5 grows x1, x2,x4 and
x5 move away from steady state and if these perturba-
tion values of η decay to zero, the variable values of
x1, x2, x4 and x5 move towards steady state.

To obtain stability of the steady state of systems, we
write variational equations by linearizing above equa-
tions.

η̇1 = ẋ1 = f (x̄1 + η1)

Using Taylor expansion and neglecting higher-order
terms,

η̇1 = η1 f
′ (x1, x̄1)

From Eqs. (3) and (4) we get

η̇1 = f ′ (x1) η1 + ε
(
η31 − η34

)

η̇4 = f
′
(x4) η4 + ε

(
η31 − η34

)
(5)

Let the synchronization and anti-synchronization ten-
dencies are expressed through the variables ηsyn and
ηanti, respectively. Then ηsyn = η1 − η4 and ηanti =
η1 + η4,

η̇syn = η̇1 − η̇4

η̇anti = η̇1 + η̇4 (6)

So condition for synchronization is obtained as

η̇syn =
[
f

′
(x1) + f

′
(x4)

2

]
ηsyn

+
[
f

′
(x1) − f

′
(x4)

2

]
ηanti

+ ε
(
η31 − η34 − η31 + η34

)

Considering the time average value of f
′
(x1) and

f
′
(x4) is approximately the same and is replaced by

effective constant value τ , the equation changes as

η̇syn = τηsyn (7)

From Eq. (7), it is clear that cubic order feedback alone
doesn’t give a complete synchronization.

Similarly for the other set of variables x2 and x5 the
condition becomes

η̇syn = η̇2 − η̇5

= τηsyn + 2ω2

(
η21 − η24

)
(8)

FromEq. (8), it is clear that synchronization is achieved
through the term 2ω2

(
η21 − η24

)
. This is in agreement

with numerical analysis of the coupling scheme.
Anti-synchronization properties are obtained for the

system through the same analysis described above.

η̇anti = η̇1+η̇4

= τηanti + 2ε
(
η31 − η34

)

= τηanti + 2ε · ηsyn

(
η21 + η1η4 + η24

)
(9)

Second term in the above equation leads to anti-
synchronization.

Similarly, the corresponding equations for variables
x2 and x5 lead to

η̇anti = η̇2+η̇5

= τηanti (10)

From Eqs. (9) and (10) Jacobian matrix is written as

J =
(

τ 0
2ε

(
η21 + η1η4 + η24

)
τ

)

123



1886 S. K. Thottil, R. P. Ignatius

0 200 400 600 800 1000

Time

-1.5

-1

-0.5

0

0.5

1

1.5

2

V
ar

ia
bl

es

X1
X4

0 200 300 400 500 600100

Time

-1.5

-1

-0.5

0

0.5

1

1.5

2

V
ar

ia
bl

es

X1

X4

(a) (b)

X1

X4

Fig. 5 aTime series plots of first variables show synchronization
of coupled neurons. Bursting synchronization of neurons with
nonlinear feedback in cubic order is obtained for ε = 1, ω2 = 1,
and Iext = 3.05. b Time series plots of first variables shows

anti-phase synchronization of coupled neurons with cubic non-
linear feedback with parameter values ε = 0, ω2 = 0.001, and
Iext = 3.00

Jacobin value for Eqs. (5) and (7) is also calculated,
eigenvalues obtained may be real which is positive or
negative, and the corresponding fixed point is of stable
node or unstable node.

Eigen values of the above are

λ = τ ∓
√

τ 2 + 8ετ(η31 − η34) (11)

Anti-synchronization and synchronization tendencies
are effective when corresponding the Lyapunov expo-
nents, i.e. if the real parts of the eigenvalues are nega-
tive. So condition for stability is obtained as η31 > η34.

3.2 Time series plot of coupled neurons with cubic
order feedback

3.2.1 Synchronization

Synchronization of two nonlinear cubic feedback cou-
pled H–R neurons is shown through time series analy-
sis. As nonlinear coupling replaces linear coupling,
the synchronization pattern given in Fig. 1a changes
to behaviour shown in Fig. 5a which shows synchro-
nization of first variables for Iext = 3.05. The bursting
behaviour for synchronization exhibited by the H–R
system is an additional feature shown by the presence
of nonlinear coupling.

3.2.2 Anti-phase synchronization

The anti-phase synchronization of nonlinear cubic
feedback coupled neurons is established through time
series analysis for certain values of coupling parame-
ters and current. Here first variables of two coupled
H–R neurons are showing anti-phase properties, which
are depicted through blue and red colour as shown in
Fig. 5b. The plot is obtained for the parameter values
ε = 0, ω2 = 0.001, and Iext = 3.00.

The regions of synchronization, anti-phase synchro-
nization and amplitude death for different ranges of
control parameters are depicted in Fig. 6. Here control
or coupling parameters are selected in the range ε =
[0:0.5:5] and ω2 = [0:0.2:1.6].

3.3 Lyapunov exponent plot for nonlinear cubic
feedback coupling in H–R neurons

The behaviour of nonlinear cubic feedback coupled
H–R neuron is analysed through Lyapunov exponent
(LE) plot which is found to exhibit similar behaviour
as in Fig. 4. Here the low LE values indicate regularity
of the coupling method. Largest LE is obtained in the
range−1.1834 to−1.1832. It is in agreement with syn-
chronization stability of this system observed by Fang
[37].
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Fig. 6 Anti-phase
synchronization,
synchronization and
amplitude death of cubic
feedback coupled neurons
are examined through
ε − ω2 plot. When the value
of ε = [.9:0.5:5] and
ω2 = [0 : 0.5 : 1.6],
synchronization regions are
observed and is shown by
yellow colour in the figure.
For the range ε =
[0:0.5:0.7] and
ω2 = [0 : 0.5 : 1.6], dark
blue region shows
anti-synchronization. Also
for the values of ε =
[0.75:0.5:0.89] and ω2 =
[0:0.5:0.4], amplitude death
is observed, depicted by
light green. (Color figure
online)
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4 Memristor-based coupling in neurons

In 1971, Chua postulated the fourth basic circuit ele-
ment memristor [38,39] and established a missing con-
stitutive relationship between the electrical charge and
the magnetic flux. Using Lewis Carroll’s portmanteau
naming technique [40], Chua named this hypothetical
nonlinear device as memristor (memory + resistor). It
demonstrated the hysteresis property of the ferromag-
netic core memory and also the dissipative characteris-
tics of a resistor. Clearly, in such devices, the nonlinear
resistance can be memorized indefinitely by control-
ling the flow of the electrical charge or the magnetic
flux [41].

Memristor are nanoscale devices. Although mem-
ristor and memristive systems have been introduced
a long time ago by Chua, applications of them have
developed recently after the invention of the nanoscale
HP memristor [42].

A memristor consists of a variable resistance and
has two terminals. In DRAM a memristor can replace
the capacitor which can store one bit of data. Then this
memory is not volatile, has no leakage power and at the
same time ismore stable. Also in comparisonwith flash
memory, this memory has improved speed and scala-
bility. A memristor can also connect electric charge

to magnetic flux. As its resistive value is retained, it
can increase flow of current in one direction and can
decrease flow of current in the opposite direction.

Memristor finds improved applications [43] in logic
circuits and in digital memory. In neuromorphic sys-
tems they can act as basic building blocks where they
behave like biological synapses. Neurons and synapses
act as electronic systems. Besides being the basis of
next-generation ultra dense non-volatile memories, a
nanoscale memristor also has the potential to repro-
duce the behaviour of a biological synapse. As in a liv-
ing creature the weight of a synapse is adapted by the
ionic flow through it, so the conductance of a memris-
tor is adjusted by the flux across or the charge through
it depending on its controlling source [16].

In the following sections we consider two Hind-
marsh–Rose neurons, coupled via a memristive device
mimicking a biological synapse. We investigate how
the dynamics of the memristive element may influence
the synchronization and other interesting properties.

4.1 Memristor controlled by cubic order flux

The proposed memristor is having cubic nonlinearity
which is represented by q (ϕ) = αϕ + βϕ3. It is a
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1888 S. K. Thottil, R. P. Ignatius

smooth continuous cubic function, and the correspond-
ing memductance is W (ϕ) = α + 3βϕ2. It is used as
a memristive coupling term and will act as an artificial
synapse between coupled neuron cells. Hence, they are
responsible for chaotic dynamics of the system. Flux-
controlled memristor is used to emulate the excitatory
and inhibitory synaptic connection between the neu-
rons [16]. It is used as a memristive coupling term and
will act as artificial synapse between coupled neuron
cells.

Consider the memristive mutual coupled H–R equa-
tions as given below

ẋ1 = x2 − ax31 + bx21 + Iext − x3

−
(
α + βu2

)
(x1 − x4)

ẋ2 = c − dx21 − x2

ẋ3 = r (s (x1 − x0) − x3)

ẋ4 = x5 − ax34 + bx24 + Iext − x6

−
(
α + βu2

)
(x4 − x1)

ẋ5 = c − dx24 − x5

ẋ6 = r (s (x4 − x0) − x6)

u̇ = x1 − x4 (12)

The variable x1 represents the membrane potential
of a neuron, and the variables x2 and x3 are related
ion currents across the membrane. Here parameters are
taken as a = 1, b = 3, d = 5, c = 1, r = 0.005, s = 4
and k = 1. x1 and x4 gives the coupling between the
neurons achieved through memristor. u is flux vari-
able due to memristor. Here the memductance term(
α + βu2

)
functions as cubic flux-controlled memris-

tive term and acts as coupling synapse between two
neurons.

4.1.1 Linear stability analysis

We present the analysis of stability of the steady state
of two H–R neurons coupled by cubic flux-controlled
memristor.

ẋ1 = f (x1) − c(∝ +βu2) (x1 − x4)

ẋ4 = f (x4) + c(∝ +βu2) (x1 − x4)

u̇ = (x1 − x4) (13)

Here ∝ and β are coupling parameters and c is a con-
stant. Let x̄1, x̄4 and ū represent the steady state of
the system, then f (x1, x̄1) = 0, f (x4, x̄4) = 0 and
f (u, ū) = 0.

Let η1, η4 and u be the infinitesimal perturbations
of the system. As η1, η4 and z grow, x1, x4 and u move
away from steady state and if the values of η1, η4 and z
decay to zero, x1, x4 and u move towards steady state.

To obtain stability of the steady state of two systems,
we write variational equations formed by linearizing
equation for x1 as

η̇1 = ẋ1 = f (x̄1 + η1)

Using Taylor expansion and neglecting higher-order
terms,

η̇1 = η1 f
′ (x1, x̄1)

η̇1 = f ′ (x1) η1 − c
(
α + βu2

)
(x1 − x4)

η̇4 = f
′
(x4) η4 + c

(
α + βu2

)
(x1 − x4) (14)

Let the synchronization and anti-synchronization ten-
dencies are expressed through the variables ηsyn and
ηanti , respectively. Then ηsyn = η1 − η4 and ηanti =
η1 + η4

η̇syn = η̇1−η̇4 (15a)

η̇anti = η̇1+η̇4 (15b)

From Eqs. (13) and (15a),

η̇syn =
[
f

′
(x1) + f

′
(x4)

2

]
ηsyn

+
[
f

′
(x1) − f

′
(x4)

2

]
ηanti

− 2c
(
α + βu2

)
ηsyn (16)

Considering that the time average value of f
′
(x1) and

f
′
(x4) are approximately the same and replaced by

effective constant value τ , equation changes as

η̇syn = τηsyn − 2c
(
α + βu2

)
ηsyn (17a)

Similarly, we get

η̇anti = τηanti (17b)

u̇ = cηsyn (17c)

From Eq. (17a) Lyapunov exponent is obtained as

λ = τ − 2c(α + βu2) (18)

The synchronization and anti-synchronization ten-
dencies are effectivewhen corresponding theLyapunov
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Fig. 7 Time series plots of
first variables x1 and x4 of
cubic flux-controlled
memristor shows amplitude
death state. When the
parameter values are set as
α = 0.005, β = 0 and
Iext = 3 amplitude death
states of neurons are
emerging out
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exponents, i.e. real part of eigenvalues are negative. So
condition for stability is given as below.

β >
τ

2cu2
− α (19)

These synchronization conditions are compatible with
the numerical computations. Also the anti-synchron-
ization properties are not exactly observed for memris-
tor coupled systems. It is also evident from Eq. (17b).

4.1.2 Time series plots with cubic flux-controlled
memristor

Bidirectional coupling In bidirectional coupling both
the neurons are influenced by a memristor of cubic
orderflux. Synchronization andamplitudedeathbehav-
iour are exhibited by the system as described below.

Synchronization behaviour in bidirectional coupling

Synchronization of H–R neurons coupled by cubic
flux-controlled memristor shows chaotic bursting syn-
chronization for the parameters a = 1, b = 3, d =
5, c = 1, α = 0.05, β = 0.5 and Iext = 3. Time series
plots of first variables x1 and x4 shows synchronization

pattern where the number of spikes per burst is irregu-
lar. The dynamics exhibited are very similar to that of
coupled neurons with cubic order feedback, and it is as
shown in Fig. 5a.

Amplitude death

As the values of α, β and current are changed, time
series plots of cubic flux-controlled memristor cou-
pled H–R neurons shows the amplitude death state as
shown in Fig. 7. Here first variables of coupled H–R
neurons come to a common steady state which was
unstable otherwise. The parameter values are set as
α = 0.005, β = 0 and Iext = 3.

Unidirectional coupling

In unidirectional coupling only one neuron is trig-
gered by a memristor of cubic order flux while the
other neuron is not influenced by coupling. In the sce-
nario represented by Eq. (12), as the bidirectional cou-
pling is replaced with unidirectional coupling of cubic
flux-controlled memristor, the x1 variable (the mem-
brane potential of first neuron) is not influenced by the
term

(
α + βu2

)
(x1 − x4). The dynamics observed are

shown in Figs. 8–11.
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Fig. 8 Time series plots of
first variables x1 and x4
shows synchronization
pattern in unidirectional
coupled cubic
flux-controlled memristor.
The parameters are chosen
as α = 0.001, β = 0.02,
and Iext = 2.8 where tonic
synchronization pattern of
neurons is exhibited
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Synchronization behaviour in unidirectional coupling

Synchronization pattern of two H–R neurons coupled
with unidirectional cubic flux-controlled memristor
is shown (Fig. 8) through time series analysis. Here
bursting synchronization of bidirectional coupling is
replacedby the tonic spiking in unidirectional coupling.
As the neuron is stimulated, the inhibitory ion currents
will dominate the stimulating current and correspond-
ing membrane potential will decrease. Persistence of
this activity leads to tonic spiking. The plot is obtained
for the parameter values α = 0.001, β = 0.02 and
Iext = 2.8.

Tonic spiking of one neuron and the inactive state of
the other neuron in unidirectional coupling

Time series analysis of two H–R neurons coupled with
unidirectional cubic flux-controlled memristor leads
to tonic spiking for one of the neurons and inactive
or death states for the uncoupled neuron as shown in
Fig. 9.

Bursting and death of neuron

As the parameters are changed, the tonic spiking gives
way to bursting for the coupled neuronwhile the uncou-
pled neuron remains in the resting state for H–R neu-

rons coupled with unidirectional cubic flux-controlled
memristor. The dynamics are established through time
series plots (Fig. 10) for the parameter values α =
0.02, β = 0 and Iext = 5.

Anti-phase dynamics

For still other parameter values it is interesting to
report anti-phase synchronization of two H–R neu-
rons with unidirectional coupled cubic flux-controlled
memristor as shown in Fig. 11. Here bursting behav-
iour of two neurons shows anti-phase dynamics. To
obtain the desired plot, parameter values are set as
α = 0.02, β = 0.3 and Iext = 2.8.

4.1.3 Lyapunov exponent plot

The dynamics of Lyapunov exponents for H–R neu-
rons coupled with cubic flux-controlled memristor are
shown in Fig. 12. It is observed that largest LE value is
close to 1 (0.9727). Positive value of LE’s obtained due
to coupling has much importance. The arterial blood
pressure time series and ocular aberration dynamics of
human eye exhibit positive Lyapunov exponents. So
our coupling scheme can be referred to some neural
base system analysis.
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Fig. 9 Time series plots of
the first variables x1 and x4
of the two coupled neurons.
Here the coupling is
unidirectional through
flux-controlled memristor.
With parameter values
d = 2.82, α = 1, β = 0.01
and Iext = 4 tonic spiking is
shown up for one neuron
and inactive or death state is
exhibited by the uncoupled
neuron
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Fig. 10 Time evolution of
first variables x1 and x4 for
unidirectional coupled cubic
flux-controlled memristor.
As the parameter is changed
to α = 0.02, β = 0 and
Iext = 5, coupled neuron
exhibits the bursting but the
other neuron seems to be
inactive
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4.2 Memristor controlled by quadratic flux

In this section, the properties of memristor controlled
by quadratic flux with varying coupling strengths and
external currents are studied. For the quadratic flux-

controlled memristor [45] studied in this section, the
memristance can be expressed as:

M (φ) = αφ2 + βφ + γ (20)
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Fig. 11 Time series plots of
first variables x1 and x4
shows anti-phase
synchronization in
unidirectional coupling by
cubic flux-controlled
memristor. Anti-phase
dynamics obtained above
have some similarity with
that of time series plot of
firing pattern of autaptic
neuron [44]. Parameters are
chosen as
α = 0.02, β = 0.3 and
Iext = 2.8
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Fig. 12 Lyapunov
exponent plot for H–R
neurons coupled by cubic
flux-controlled memristor
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Dynamics of Lyapunov exponents

We can see that M (φ) is linear flux-controlled as α =
0. Memristor of this type has been researched widely,
so we focus on the influence of quadratic type coupling
in H–R neuron.

ẋ1 = x2 − ax31 + bx21 + Iext − x3

−
(
αφ2 + βφ + γ

)
(x1 − x4)

ẋ2 = c − dx21 − x2
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Fig. 13 Phase portrait of
second variables x2 and x5
shows synchronization
pattern for the system of
neurons coupled by
memristor controlled by
quadratic flux.
Synchronization is observed
for the parameters
α = 2, β = 1, γ = 1 and
Iext = 2
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ẋ3 = r (s (x1 − x0) − x3)

ẋ4 = x5 − ax34 + bx24 + Iext

− x6 −
(
αφ2 + βφ + γ

)
(x4 − x1)

ẋ5 = c − dx24 − x5

ẋ6 = r (s (x4 − x0) − x6)

u̇ = x1 − x4 (21)

The variable x1 represents the membrane potential
of a neuron, and the variables x2 and x3 are related
ion currents across the membrane. Here parameters are
taken as a = 1, b = 3, d = 5, c = 1, r = 0.005, s = 4
and k = 1. The term M (φ) = αφ2 + βφ + γ acts as
quadratic memristive function and is used as coupling
term.

4.2.1 Linear stability analysis

As in Sect. 4.1.1, we can do linear stability analysis of
quadratic flux-controlled memristor. Then the condi-
tion for stability in quadratic flux-controlled memristor
is

β >

(
τ − A

2Cϕ
− αϕ

)
(22)

4.2.2 Phase portraits and time series plots of
memristor coupled neurons controlled by
quadratic flux

Synchronization Synchronization of two H–R neurons
coupled with quadratic flux-controlled memristor is
shown through the x2 − x5 plot. Parameter values are
selected as α = 2, β = 1, γ = 1 and Iext = 2. Here
two neurons behave in the same way and full synchro-
nization is achieved as shown in Fig. 13.

Oscillation death Time series of two variables x1
and x4 of H–R neurons coupled with quadratic flux-
controlled memristor shows oscillation death for the
parameter values α = 1, β = 0, γ = 1 and Iext = 1.4.
The coupled two neurons takes a stable rest state as
depicted in Fig. 14.

Near-death spikes For some parameter values an inter-
esting dynamic is exhibited by the H–R neurons which
are coupled via quadratic flux-controlled memristor.
Rare spikes are observed with time variation of vari-
ables of two neurons before death (near-death rare
spikes [46–48]). Experimentally, it is observed that
a few moments before death, the patients experience
a burst in brain wave activity, with the spikes occur-
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Fig. 14 Time series plots of
first variables x1 and x4 of
neurons with quadratic
flux-controlled memristor.
With parameter values
α = 1, β = 0, γ = 1 and
Iext = 1.4, oscillation
deaths of neurons which are
coupled by memristor
governed by quadratic flux
are shown
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Fig. 15 Time series plots of
first variables x1 and x4 of
neurons with quadratic
flux-controlled memristor.
Dynamics obtained for
parameter values
α = 5, β = 1, γ = 0 and
Iext = 4 and
α = 2, β = 1, γ = 0 and
Iext = 3 show phenomena
like near-death rare spikes
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ring simultaneously for two coupled neurons and with
approximately of same intensity and of same duration.
In Fig. 15 the behaviour is shown around the time slot
125.

Thenear-death spikes are supported by experimental
observation [46–48]. Experimentalists implanted sev-
eral electrodes across the brains of nine rats to measure
their brain waves—rhythmic pulses of neural activity
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Fig. 16 Lyapunov exponent
plot for H–R neurons
coupled with quadratic
flux-controlled memristor
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depending on their frequency. The rats were sedated
with anaesthetic drugs, and then killed with either
by a lethal injection that stopped their hearts, or by
a fatal dose of carbon dioxide, after the hearts have
stopped,most of these brainwavesweakenedwith time.
But one set of waves, the low-gamma waves produced
when neurons fire between 25 and 55 times per sec-
ond, became stronger for a brief period. The activity
in different parts of their brains also become more syn-
chronized. Their low-gammawaveswere synchronized
when theywere in their near-death state thanwhen they
were anaesthetized or awaken [46–48].

4.2.3 Lyapunov exponent plot

Lyapunov exponent plot for H–R neurons coupled with
quadratic flux-controlledmemristor dynamics is shown
through Fig. 16. Sensitivity to initial condition of sys-
tems and its regularity are examined through plot.

4.3 Memristor controlled by exponential flux

The cubic flux-controlled memristor have limitations
in situations which demand a larger current [49] and is
not compatible with terminal voltage fluctuations. Here
the memductance or memristance always keep increas-
ing or decreasing until polarity of voltages or current
reverses. The proposed exponential model obeys sta-
ble variation law of the memductance (memristance)

under various excitation voltages [49], and hence, this
model meets large current situations. So the memristor
controlled by exponential flux is chosen for coupling.

A novel model of the flux-controlled memristor is
selected as below

q (φ) = kb
(
abq − 1

)
(23)

where a > 0 and kba > 0. Then, the memductance
function of this memristor can be given by

W (φ) = abqk ln a (24)

when b < 0, above equation model is a decremented
flux-controlled memristor, that is, it’s memductance is
monotonically decreasing (increasing) when the sup-
ply voltage is positive (negative). On the contrary,
when b > 0, equation represents an incremental flux-
controlled memristor.

Consider the exponential flux-controlledH–Rmodel
equations as

ẋ1 = x2 − x31 + b1x
2
1 + Iext − x3 − abqkb

ln a (x1 − x4)

ẋ2 = c − dx21 − x2

ẋ3 = r (s (x1 − x0) − x3)

ẋ4 = x5 − x34 + b1x
2
4 + Iext − x6 − abqkb

ln a (x4 − x1)

ẋ2 = c − dx24 − x5
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Fig. 17 a Three-dimensional x1, x2, x3 plot shows dynamics of
the system. b Time series plots of first variables x1 and x4 of
neurons which are coupled through a memristor controlled by

exponential flux. When external current is set to Iext = 3, tonic
spike synchronization of neurons is obtained

ẋ3 = r (s (x4 − x0) − x6)

u̇ = x1 − x4 (25)

The variable x1 represents the membrane potential
of a neuron, and the variables x2 and x3 are related
ion currents across the membrane. The term abqkb ln a
is a function that acts as exponential flux-controlled
memristor. The parameters take values a = e, b1 =
3, c = 1, d = 5, r = 0.005, b = 50 log (0.5) , k = 10.
With the variation of external current, various dynamics
are obtained as in Sect. 4.3.2.

4.3.1 Linear stability analysis

For exponentially flux-controlled memristor coupling
with H–R neurons, the condition for stability is found
to be

τ < 2abqkb ln a (26)

For decremental flux-controlled memristor (b < 0) the
condition for stability is reversed.

4.3.2 Phase portraits and time series plots of
memristor coupled neurons controlled by
exponential flux

Synchronization Phase portrait plots of second vari-
ables x2 and x5 of two H–R neurons coupled with
exponential flux-controlled memristor show synchro-
nization similar to that of H–R neurons coupled by
quadratic flux-controlled memristor (Fig. 13).

Response to external current The response of mem-
brane potential of two coupled neurons with respect
to time is examined in detail which is shown in Fig.
17. When the external current is set to Iext = 3, as
the neuron is stimulated the membrane potential will
change. Initially due to stimulating ionic currents, the
membrane potential will increase. After a certain point,
the inhibitory ionic currents will dominate the stimulat-
ing currents and the membrane potential will decrease
which results in a spike which represents action poten-
tial. If this behaviour is persistent, then it is called tonic
spiking.

Bursting synchronization As the external current is
changed bursting synchronization is resulted and the
corresponding phase space plot of two H–R neurons
coupled with exponential flux-controlled memristor
shows (Fig. 18) interesting dynamics.

Oscillation death Time series plots of first variables x1
and x4 of two H–R neurons coupled with exponential
flux-controlled memristor show oscillation death for
certain parameter values. If the parameter values a, b, d
and Iext are chosen as a = 1, b = 0.01, d = 2.82 and
Iext = 3.8, the two neurons approach a stable rest state
as in the case of quadratic flux-controlled memristor as
shown in Fig. 14.

4.3.3 Lyapunov exponent plot

Dynamics of Lyapunov exponent of H–R neurons cou-
pled with exponential flux-controlled memristor are
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Fig. 18 a Dynamical behaviour of system shown through three-
dimensional x1, x2, x3 plot. b Time series plots of first variables
x1 and x4 shows bursting synchronization of neurons where cou-

pling is due to memristor which is controlled by exponentially
varying flux and here external current is set to Iext = 4

Fig. 19 Lyapunov exponent
plot for H–R neurons
coupled with exponentially
flux-controlled memristor
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Dynamics of Lyapunov exponents

shown in Fig. 19. Higher value reflects greater sen-
sitivity, and low values represents regularity.

Among different memristor coupling, cubic flux-
controlled memristor coupling in H–R neurons shows
more chaotic behaviour since it has largest Lyapunov
value which is close to one (1).

5 Conclusion

The present work describes the possibilities of linear
and nonlinear coupling in neurons. It has implications

for the analysis and characterization of neuronal inter-
actions.

Linear models of effective connectivity in brain
assume that the multiple inputs to a brain region are
linearly separable. This assumption does not allow
activity-dependent connections. This problem is over-
come by adopting nonlinear models that include non-
linear interactions among inputs. These interactions
can be considered as a context- or activity-dependent
modulation of the influence that one region exerts over
another [50].
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The present work establishes the fact that indirect
synaptic coupling dynamics of H–R neurons exhibits
the properties like synchronization, anti-phase syn-
chronization and amplitude death. As feedback cou-
pling is varying in a cubic order, synchronization and
anti-synchronization regions are observed.

In this study different memristor-based couplings
are also taken into account. Both bidirectional and uni-
directional couplings of cubic flux-controlled memris-
tor in H–R neurons are examined. Mutual coupling of
two neurons governed by H–R equations exhibits the
properties of synchronization with tonic spiking and
bursting. It also exhibits the property of amplitudedeath
for certain values of coupling parameters. The unidi-
rectional coupling shows tonic spiking or bursting for
one of the neurons and death-like phenomenon for the
uncoupled neuron depending upon the coupling coef-
ficient and external current.

Memristor coupling of quadratic order shows the
behaviour of synchronization, oscillation death and
other interesting dynamics like near-death rare spikes
for the neurons. Memristor controlled by exponential
flux also showed the synchronization and oscillation
death, but near-death rare spikes are found to be absent.

We have done the linear stability analysis for various
couplings in H–R neurons. Lyapunov exponent plots
are also examined in each case. It is observed that H–R
neurons coupled with cubic flux-controlled memristor
shows more chaotic nature.

The present work is on the effect of different cou-
pling schemes in biological neuron model. The rich
dynamical behaviour exhibited by the coupled systems
depend upon system parameter values. We also intend
to extend the work to latest developments in the field
of memristor, such as spintronic memristor, and to its
potential applications in neuromorphic circuits.
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