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Abstract In a bistable system excited by the com-
bination of a weak low-frequency signal and a noise,
the noise can induce a resonance at the subharmonic
frequency which is smaller than the driving frequency.
This kind of noise-induced resonance is similar to the
well-known stochastic resonance. Here, we verify the
noise-induced resonance at the subharmonic frequency
which equals 1/3 multiple of the driving frequency, by
a numerical study of the response of the overdamped
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and underdamped bistable systems, respectively. More
importantly, the noise-induced resonance at the sub-
harmonic frequency may be stronger than the classical
stochastic resonance which occurs at the driving fre-
quency. This indicates that we cannot ignore the sub-
harmonic frequency component in the response, oth-
erwise we may miss some important information. By
adjusting the excitation signal and the system parame-
ters, we can make the noise-induced resonance at the
subharmonic frequency to be stronger or weaker than
the classic stochastic resonance. The results shown in
this paper constitute a complement to the stochastic
dynamics of a random system.

Keywords Subharmonic frequency · Noise ·
Stochastic resonance

1 Introduction

The response of the random system is a noteworthy
issue in the engineering and scientific fields. If the
nonlinear system is excited by the combination of a
noise and a weak low-frequency harmonic signal, the
response at the driving frequency can be enhanced by
the noise with an appropriate intensity. This constitutes
the well-known phenomenon of the stochastic reso-
nance [1]. When the stochastic resonance occurs, the
energy of the noise is transferred to the weak signal,
and the input–output achieves optimal synchronization
[2]. The stochastic resonance theorywas originally pro-
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posed and developed by Benzi et al. [3–5] and Nicolis
et al. [6–8] in the context of the study of the climatic
change. Stochastic resonance has been a rather hot topic
in the last 30years [9–11]. It has been investigated in
various disciplines, such as optics [12], chemistry [13–
15], biology [16–18], neuroscience [19–21], medicine
[22,23], mechanical engineering [24,25]. In general,
there are three basic ingredients for the stochastic res-
onance to occur, i.e., a nonlinear term, a noise and a
weak input signal. The nonlinearity may arise from a
nonlinear term in the system, e.g., a cubic term in a
simple bistable system. It may be also originated from
the coupling of the noise and the signal [26,27], or
a parametric excitation [28,29]. The weak input sig-
nal may be in a periodic or aperiodic form. When the
signal is aperiodic, the aperiodic stochastic resonance
may occur in a nonlinear system when tuning the noise
which is included in the excitations [30,31], even in
absence of a weak input signal. The stochastic reso-
nance may also occur at the natural frequency of the
system. This constitutes the stochastic coherence phe-
nomenon [32,33].

According to nonlinear dynamics, there are many
other subharmonic and superharmonic frequencies in
the response besides the driving frequency [34–36].
Although the stochastic resonance is a typical nonlinear
phenomenon, most of the former works on stochastic
resonance are studied based on the linear response the-
ory [1,37]. Specifically, when the weak input signal is
periodic, most of the works are always concentrated
on the response at the frequency of the input signal. In
other words, only the driving frequency is considered
in these studies. Moreover, there are also a few works
that have considered the nonlinear contributions to the
stochastic resonance in the nonlinear response theory
framework [38,39]. They have found that the noise
can induce the resonance at the higher-order harmonics
which are oddmultiples of the driving frequency. How-
ever, to our knowledge, there are few references consid-
ering the noise-induced resonance at the subharmonic
frequency which is smaller than the driving frequency.
In many situations, the subharmonic components in the
response might have a profound impact on the system
[40–43]. Hence, it is necessary to study the response at
the subharmonic frequency in the noise excited system.
In particular, the effect of the noise on the response at
the subharmonic frequency should be investigated. If
the noise can induce the resonance at the subharmonic
frequency, this would be a complement to the stochas-

tic dynamics theory. This constitutes the main goal and
motivation of this paper.

In the present work, we pay much attention to the
noise-induced resonance at the subharmonic frequency
which equals 1/3 multiple of the driving frequency.
The outline of the paper is organized as follows. In
Sect. 2, we study the noise-induced resonance at the
subharmonic frequency in an overdamped bistable sys-
tem which is subjected to a weak low-frequency signal
and a white noise. In Sect. 3, the noise-induced reso-
nance at the subharmonic frequency is investigated in
the underdamped bistable system. The noise-induced
classical stochastic resonance at the driving frequency
will be compared with the noise-induced resonance at
the subharmonic resonance in Sects. 2 and 3. We will
find that the noise-induced resonance at the subhar-
monic frequencymay be stronger than the classical sto-
chastic resonancewhich indicates the importance of the
subharmonic component in the response. Finally, some
discussions and the main conclusions will be given in
Sect. 4.

2 The overdamped bistable system

The overdamped bistable system is a typical system for
the study of stochastic resonance, and we take it here as
an example. The system is described by the following
equation, i.e.,

dx

dt
= ax − bx3 + f cos(ωt) + ξ(t), (1)

where a and b are positive parameters. ξ(t) is the
Gaussian white noise satisfying the statistical prop-
erties 〈ξ(t)〉 = 0 and

〈
ξ(t)ξ(t ′)

〉 = σδ(t − t ′). The
frequency components in the response should contain
the driving frequency ω, the subharmonic frequency
which is smaller than ω, and the superharmonic fre-
quency which is larger than ω [25,27]. The subhar-
monic frequencies and the superharmonic frequencies
are inducedby thenonlinear terms in the system.Beside
these frequencies, there are many other combined fre-
quencies which are generated by the combination of
the driving, subharmonic and superharmonic frequen-
cies. In general, when the response is periodic or quasi-
periodic, only the driving frequency and a few subhar-
monic and superharmonic frequencies are dominant in
the response. The response amplitudes at other frequen-
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cies are small and can be ignored. For a long enough
time t , the mean value of the asymptotic solution of
Eq. (1) can be written in the form

〈x(t)〉as =
∑

xm(kω) cos [kω − ϕm(kω)] , (2)

where k is nonnegative and it can be an integer or a
fraction. When k = 0, it presents the constant compo-
nent in the response. xm(kω) and ϕm(kω) are the mean
response amplitude and the phase lag, respectively, at
the frequency kω. They are obtained by averaging the
inhomogeneous process x(t) with arbitrary initial con-
ditions x0 = x(t0) over the ensemble of different ran-
dom path realizations. In the former references [1,37],
in Eq. (2), k is chosen as nonnegative integers only. It
may miss the subharmonic and the combined compo-
nents in the response. For a single path, the response
amplitude and the phase lag at the frequency kω are
computed by

x̄ =
√
B2
s + B2

c (3)

and

ϕ̄ = tan−1(Bs/Bc), (4)

where Bs and Bc are the sine and cosine components
of the Fourier transform, specifically

Bs = 2

nT

∫ nT

0
x(t) sin(kωt)dt,

Bc = 2

nT

∫ nT

0
x(t) cos(kωt)dt . (5)

In Eq. (5), T = 2π/ω and n is a large enough inte-
ger number, what means that the effect of the initial
condition on the response can be ignored. If only the
driving frequency ω in the response is considered, it
is the classical stochastic resonance problem based on
the linear response theory [1,37]. Else, if the higher-
order harmonics are considered in the response, the
nonlinear contributions to the stochastic resonance are
observed [38,39]. According to Eq. (2), the response
of the system (1) at the subharmonic frequency can be
analyzed in the framework of the nonlinear response
theory. To make the problem simpler, we only con-
sider the subharmonic frequency ω/3 in the following
analysis and choose the mean amplitude at the driving
frequency ω as a comparison. When the noise induces

the resonance at the driving frequency ω, it is simply
the well-known stochastic resonance. When the noise
induces the resonance at the subharmonic frequency
ω/3, it constitutes another noise-induced resonance
phenomenon.

The subharmonic frequency ω/3 is induced by the
cubic term x3 in system (1). For different values of
the driving frequency ω, we plot the mean response
amplitude xm(ω) and xm(ω/3) versus the noise inten-
sity σ in Fig. 1. The stochastic resonance is shown
clearly in this figure. It coincides with the result shown
in previous references. We give the curve of the sto-
chastic resonance only to compare with the noise-
induced resonance at the subharmonic frequency ω/3.
Now we pay more attention to the mean amplitude
xm(ω/3). With the increase in the noise intensity, the
mean amplitude xm(ω/3) increases at first and then
it decreases. There is a particular noise intensity for
the mean amplitude xm(ω/3) to achieve the reso-
nance peak. This is precisely a noise-induced reso-
nance phenomenon, which is similar to the classical
stochastic resonance. In Fig. 1a, b, ω = 0.09 and
ω = 0.15, respectively, the peak value of the mean
value amplitude xm(ω/3) is smaller than the peak
value of xm(ω). The frequency component ω in the
response is predominant in the response for these two
cases. When we take ω = 0.30 and ω = 0.45, as
shown in Fig. 1c, d, the peak value of the mean ampli-
tude xm(ω/3) is larger than that of xm(ω). This is an
important phenomenon, and it indicates that we can-
not breezily ignore the subharmonic components in
the response, since the strength of the subharmonic
component could be stronger than the strength at the
driving frequency in some cases. Also in this figure,
we find that the noise intensity which induces the res-
onance at the subharmonic frequency ω/3 is weaker
than the resonance induced at the driving frequency
ω. With the increase in the driving frequency ω, the
subharmonic frequency ω/3 may be much more evi-
dent in a noise excited nonlinear system. It leads to
the noise-induced resonance at the subharmonic fre-
quency to be stronger than the classical stochastic res-
onance.

In Fig. 2, the effect of the amplitude of the weak
input signal on the classical stochastic resonance and
the noise-induced resonance at the subharmonic fre-
quency ω/3 is clearly shown. For the very weak input
signal, e.g., f = 0.01 in Fig. 2a, the peak value on
the curve xm(ω) − σ is smaller than the peak value
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Fig. 1 Mean amplitude
xm(ω) and xm(ω/3) versus
the noise intensity σ for
different values of ω in the
overdamped bistable
system. The simulation
parameters are
a = 1, b = 1, f = 0.05
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on the curve xm(ω/3) − σ . In other words, the noise-
induced resonance at the subharmonic frequency ω/3
is stronger than the classical stochastic resonance in
this subplot. With the increase of f , the peak value
on the curve xm(ω) − σ will be larger than the peak
value on the curve xm(ω/3) − σ . It indicates that the
classical stochastic resonance turns stronger than the
noise-induced resonance at the subharmonic frequency
with the increase in the amplitude of the low-frequency
input.

In order to clarify the problem further, we inves-
tigate the two kinds of the noise-induced resonance
in Fig. 3. From Fig. 3a–d, we find that we need a
stronger noise to make two kinds of noise-induced res-
onance to occur when we increase the value of a grad-
ually. This is because the potential barrier is given by
�V = a2/(4b). It needs a stronger noise to make the
output across the two potential wells regularly for the
higher potential barrier. With the increase in the para-
meter a, the curve xm(ω) − σ turns faintly. There is
no obvious peak on the xm(ω) − σ curve in Fig. 3c, d.

Another fact in this figure, for a larger value of a, the
noise-induced resonance at the subharmonic frequency
may bemuchmore distinct than the classical stochastic
resonance, such as the curves in Fig. 3c, d. This indi-
cates the importance of the subharmonic component
in the response of a stochastic nonlinear system once
again.

In Fig. 4, the effect of the parameter b on two kinds
of noise-induced resonance is shown. For larger val-
ues of b, we need a weaker noise to make the noise-
induced resonance at the subharmonic frequency or the
classic stochastic resonance to occur. It is because the
barrier height of the adjacent potential well turns to
be lower with the increase of b. On the xm(ω) − σ

and xm(ω/3) − σ curves, the noise-induced resonance
at the subharmonic frequency appears before the clas-
sical stochastic resonance. The maximal value of the
xm(ω/3) is larger for the smaller value of b.

From Figs. 1, 2, 3 and 4, the noise-induced reso-
nance at the subharmonic frequency ω/3 is compared
with the classical stochastic resonance in the over-
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Fig. 2 Mean amplitude
xm(ω) and xm(ω/3) versus
the noise intensity σ for
different values of f in the
overdamped bistable
system. The simulation
parameters are
a = 1, b = 1, ω = 0.6
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Fig. 3 Mean amplitude
xm(ω) and xm(ω/3) versus
the noise intensity σ for
different values of a in the
overdamped bistable
system. The simulation
parameters are
b = 1, f = 0.05, ω = 0.5
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damped bistable system. More importantly, the noise-
induced resonance at the subharmonic frequency may
be stronger than the classical stochastic resonance for

some cases. This is the reason why the study of the
noise-induced resonance at the subharmonic frequency
is important.
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Fig. 4 Mean amplitude
xm(ω) and xm(ω/3) versus
the noise intensity σ for
different values of b in the
overdamped bistable
system. The simulation
parameters are
a = 1, f = 0.05, ω = 0.5
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3 The underdamped bistable system

The stochastic resonance not only occurs in the
overdamped bistable system. It also occurs in the
bistable system for the underdamped case [44–48]. For
some engineering systems, we need the underdamped
dynamical model to describe the response of the sys-
tem. For example, in an energy harvesting system,
the stochastic resonance usually is used in the under-
damped bistable system to enhance the harvesting effi-
ciency [49,50]. Herein, the underdamped bistable sys-
tem considered is governed by the equation

d2x

dt2
+ δ

dx

dt
− x + x3 = f cos(ωt) + ξ(t), (6)

where δ > 0 is the damping parameter and ξ(t)
is the noise which is the same as the one used in
Eq. (1). According to the nonlinear dynamics theory
[34,36,51], the subharmonic frequency ω/3 exists in
the response of Eq. (6). The effect of the noise on the
response at the subharmonic frequency ω/3 should be
investigated further. In this section, we compare the
classical stochastic resonance and noise-induced res-

onance at the subharmonic frequency in the under-
damped bistable system.

In Fig. 5, the noise-induced resonance at the driving
frequency ω and at the subharmonic frequency ω/3
is plotted for different values of the driving frequency
ω. The classical stochastic resonance and the noise-
induced resonance at the subharmonic frequency do
appear in this figure. By varying the frequency, the
noise-induced resonance at the subharmonic frequency
may be stronger than the classical stochastic resonance.
The noise-induced resonance at the subharmonic fre-
quency in the underdamped bistable system is sim-
ilar to the one found for the overdamped bistable
system.

In Fig. 6, the effect of the damping coefficient on
the noise-induced resonance at the subharmonic fre-
quency is investigated. For the chosen simulation para-
meters, we find that the noise-induced resonance at the
subharmonic frequency turns to be much stronger than
the classical stochastic resonance with the increase in
the damping coefficient. However, for small damping
coefficients, the resonance phenomenon is much more
apparent. For large damping coefficients, the mean
amplitude curves versus the noise intensity turns flat
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Fig. 5 Mean amplitude
xm(ω) and xm(ω/3) versus
the noise intensity σ for
different values of ω in the
underdamped bistable
system. The simulation
parameters are
f = 0.05, δ = 0.5
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when the curve passes through the resonance peak.
From Figs. 5 and 6, we know that the noise-induced
resonance at the subharmonic frequency also appear in
the underdamped bistable system.

4 Discussions and conclusions

At first, we give a discussion on the difference between
the classical stochastic resonance and thenoise-induced
resonance on the subharmonic frequency. Besides the
mean amplitude, there are some other indexes to quan-
tify the classical stochastic resonance, such as the
signal-to-noise ratio, the spectral amplification, the res-
idence time distribution. Among them, the residence
time distribution which describes to a good approxima-
tion the first-passage time between the potential wells
is an important index for the classical stochastic res-
onance. According to the former work, the classical
stochastic resonance achieves the optimal state when
the residence time distribution shows the first peak at
Tω/2, where Tω is the period of the input signal. In the
residence time distribution plot, the second peak may
locate at 3Tω/2. However, we cannot confirm the exis-
tence of the subharmonic frequency ω/3 according to

the second peak in the residence time distribution plot
because the second peak only indicates that the sys-
tem needs to wait another full period to achieve the
optimal synchronization. This fact has been specially
pointed out in Refs. [1,2]. Hence, the residence time
distribution or the first-passage time cannot be used as
an index to quantify the noise-induced resonance at the
subharmonic frequency.

Then,wegive a discussionon the difference between
the noise-induced resonance and the traditional nonlin-
ear resonance in mechanics. As we know, the mecha-
nism of the stochastic resonance is different from the
traditional resonance theory. The stochastic resonance
occurs as a cooperation of the noise and the weak
low-frequency signal. The optimal input–output syn-
chronization is achieved when the stochastic resonance
occurs. It is different from the traditional primary res-
onance in the field of mechanics. Specifically, when
the primary resonance occurs, the driving frequency
is reached at approximately the natural frequency of
the linear system which is obtained from the lineariza-
tion of the corresponding nonlinear system. However,
when the stochastic resonance occurs, the driving fre-
quency may be far away from the natural frequency of
the considered system. On the same principle, we can-
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Fig. 6 Mean amplitude
xm(ω) and xm(ω/3) versus
the noise intensity σ for
different values of δ in the
underdamped bistable
system. The simulation
parameters are
f = 0.05, ω = 0.42
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not confound the noise-induced resonance at the sub-
harmonic frequency with the traditional subharmonic
resonance. In a nonlinear system, when the driving fre-
quency approximately equals 1/3 multiple the natural
frequency of the system, the subharmonic resonance
may occur. However, when the noise induces the res-
onance at the subharmonic frequency, the driving fre-
quency may also be far away from 1/3 multiple the nat-
ural frequency. Due to these reasons, we cannot name
the noise-induced resonance at the subharmonic reso-
nance as the noise-induced 1/3 subharmonic resonance.

Finally, we provide some conclusions of this paper.
In most of the previous works, for a nonlinear system
excited by the combination of a weak low-frequency
signal and the noise, the noise-induced resonance is
mainly focused on the driving frequency and only a
fewworks consider the superharmonic frequency. They
correspond to the classical stochastic resonance in the
linear response theory and the stochastic resonance
in the nonlinear response regime, respectively. In this
paper, we consider the response amplitude of a random
bistable system at the subharmonic frequency. We find
that the noise can induce a resonance at the subhar-
monic frequency. The noise-induced resonance at the
subharmonic frequency may be stronger than the clas-
sical stochastic resonance. We show this new kind of

nonlinear resonance in the overdamped bistable system
and the underdamped bistable system, respectively, by
using numerical methods. We make the bold forecast,
besides the two systems studied in this paper, that the
noise-induced resonance at the subharmonic frequency
should also be found in other nonlinear systems. As a
consequence, the results under the nonlinear stochastic
theory may be very different from the results obtained
from the linear response theory. If we only consider the
driving frequency in the response, we may miss some
important information. Hence, we believe that it is nec-
essary to consider the noise-induced resonance at the
subharmonic frequency in random systems.
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