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Abstract In this article, an eco-epidemiological sys-
tem with weak Allee effect and harvesting in prey pop-
ulation is discussed by a system of delay differential
equations. The delay parameter regarding the time lag
corresponds to the predator gestation period. Mathe-
matical features such as uniform persistence, perma-
nence, stability, Hopf bifurcation at the interior equi-
librium point of the system is analyzed and verified
by numerical simulations. Bistability between different
equilibrium points is properly discussed. The chaotic
behaviors of the system are recognized through bifur-
cation diagram, Poincare section and maximum Lya-
punov exponent. Our simulation results suggest that
for increasing the delay parameter, the system under-
goes chaotic oscillation via period doubling. We also
observe a quasi-periodicity route to chaos and complex

S. Biswas · S. K. Sasmal · S. Samanta · Md. Saifuddin ·
J. Chattopadhyay (B)
Agricultural and Ecological Research Unit, Indian
Statistical Institute, 203, B. T. Road, Kolkata 700108, India
e-mail: joydev@isical.ac.in

S. Biswas
e-mail: santanubiswas1988@gmail.com

S. K. Sasmal
e-mail: sourav.sasmal@gmail.com

S. Samanta
e-mail: samanta.sudip.09@gmail.com

N. Pal
Department of Mathematics, Visva-Bharati University,
Santiniketan 731235, India
e-mail: nikhilpal.math@gmail.com

dynamics with respect to Allee parameter; such behav-
ior can be subdued by the strength of the Allee effect
and harvesting effort through period-halving bifurca-
tion. To find out the optimal harvesting policy for the
time delay model, we consider the profit earned by har-
vesting of both the prey populations. The effect ofAllee
and gestation delay on optimal harvesting policy is also
discussed.

Keywords Eco-epidemiology · Allee effect · Time
delay ·Harvesting ·Optimal harvesting policy · Saddle
node bifurcation · Bistability · Hopf bifurcation ·
Chaos

1 Introduction

Harvesting of the species and misuse of biological
resources are normal in fishery, forestry, agriculture
and wildlife management. The pioneering work on this
issue was done by Clark [17] Quite a good number
of works were published on harvesting in different
systems such as fishery [14], prey–predator models,
eco-epidemiological models [5] and time delay mod-
els [42]. In ecology, control of disease is one of the
major challenges, and the harvesting is a common pro-
cedure for controlling the disease. A lot of theoretical
studies have been carried out on controlling the dis-
ease with culling as a harvesting policy. Harvesting can
make a system stable or unstable [18]. Chattopadhyay
et al. [13] studied a harvested predator–preymodelwith
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infection in the prey population and concluded that har-
vesting on infected prey prevents the limit cycle oscilla-
tions and may be used as a biological control. Harvest-
ing inboth the susceptible and infectedprey specieswas
studied by Bairagi et al. [5]. They concluded that rea-
sonable harvesting can remove the parasite from their
hosts The authors also concluded that impulsive har-
vesting can control the cyclic behavior and obtain sta-
ble disease-free equilibrium. However, the optimal har-
vesting policy in such a situation is very important and
cannot be ignored as overexploitation can lead to the
extinction of the species. For example, due to overex-
ploitation, the Atlantic cod population collapsed sud-
denly in 1992. In another example, the giant bird Moa
were overexploited to the point of extinction and their
predator giantHaast’s eagle also becomeextinct. These
observations motivate us to study the dynamics under
the optimal harvesting policy by using thePontryagin’s
maximum principle.

Eco-epidemiological models have received much
attention from scientists in recent times. The spread of
disease among predator–prey interacting populations
was first modeled by Hadeler and Freedman [25]; after
that, Chattopadhyay and Arino [11] coined the term
eco-epidemiology for such systems. In recent years,
researchers are paying more enthusiasm to consolidate
these two critical areas of research, i.e., ecology and
epidemiology [4,12,28,62] that have significant bio-
logical importance in nature. Biological application of
such systems in nature was first demonstrated by Gul-
land [24]. The main motives of eco-epidemiological
models are centered around the role of infection on
species mortality, reduction in reproduction rate, char-
acteristics of contamination, change in population size,
spread of epidemic waves, permanence of the disease
and global behavior of the infected species [51].

Recently, substantial research has been done on the
development of the concept for Allee effect, which cor-
responds to the positive correlation between population
size/density and per capita growth rate at low popula-
tion density [1,38,46,48,59]. Complications in find-
ing mates, reproductive facilitation, predation, envi-
ronment conditioning, inbreeding depressions, etc. are
few well-known mechanisms behind this Allee effect.
Allee effects mainly classified into two ways: strong
and weak [20]. Ecologists paid significant attention on
this topic as it relates to species extinction [22,56,58].
Allee effect and disease are both responsible for extinc-
tion of species, and if the disease is combined with the

Allee effects, the interaction between themhas substan-
tial biological significance in nature [29,34,53–55,66].
Many species suffer from the Allee effect and the dis-
ease. For example, the combined effects of a disease
and the Allee effect have been observed in the African
wild dogs [19] and the island fox [3]. As a conse-
quence, researchers have paid significant attention on
Allee effect in eco-epidemiology [7,8,10,52].

Exploitations in multispecies system are interesting
phenomena but not easy to solve both theoretically and
practically. On the other hand, time delay may arise
in many ecological systems and man-made activities
in biology, medicine and other areas (for details see
[35] and the references therein). Ignoring time delay
means ignoring reality; thus, without delays, dynami-
cal models become a worse conjecture of reality. Vari-
ous biological reasons lead to the introduction of time
delays in models of disease transmission. Time delays
used to model the mechanisms in the disease dynam-
ics [30,44] described a simple HIV/AIDS model with
a single class of infective, which incorporates a time
delay due to the long incubation period of the disease.
Incubation period is the period from the point of infec-
tion to the appearance of symptoms of the disease. Time
delay plays an important role in biological systems and
network of neurons. Propagation time delay (between
nodes or in neurons), intrinsic time delay or response
time delay that neuron needs to give the response to
external forcing. For example, appropriate time delay
in autapse of neuron and network can produce com-
plex biological function such as the pacemaker in a
network [21,41,49,67]. Kuang [35] concluded that for
digesting food, the predator requires some time as
time delay. There are numerous research articles on
dynamical behaviors such as periodic oscillation, per-
sistence, bifurcation, chaos of population with delayed
prey–predator systems [9,39,43,47,57,60,63]. To our
knowledge, there are very few works on time delayed
population dynamics in the presence of Allee effect
[7,10,65]. According to the authors, this is the first
noble attempt of considering the time delay effects
for eco-epidemic models under the influence of Allee
effect and harvesting simultaneously in the prey popu-
lation.

The combined effect of Allee and harvesting in a
delayed eco-epidemiology may provide some interest-
ing results. To study the dynamics of such complex
system under the optimal harvesting strategy is also
another interesting issue. The rest of the article is orga-
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nized as follows: Sect. 2 deals with the development
of the model. In Sect. 3, we have analyzed the non-
delayedmodel. In Sect. 4, detailedmathematical analy-
sis of our time delayed model has been presented. In
this section, we have discussed many important issues
such as boundedness of delayed model, uniform per-
sistence, permanence, direction and stability of Hopf
bifurcation. The time delayed model shows the chaotic
behavior; the existence of chaotic dynamics has been
discussed in Sect. 5. In Sect. 6, we have discussed the
effect of three important parameters: time lag, inverse
of individual searching efficiency and harvesting effort.
In Sect. 7, we have discussed the optimal harvesting
policy for the time delayed model, to maximize the
profit earned by harvesting the prey species (both sus-
ceptible and infected) only. The article ends with a dis-
cussion.

2 The model

In this section, we develop a delayed eco-epidemiolo-
gical model with Allee effects and the disease in the
prey population.

2.1 General eco-epidemiological model with disease
and weak Allee in prey

We start from the assumption that the disease infects the
prey population and divides it into two disjoint classes,
viz. susceptible (S) and infected (I ), so that the total
population at any time t is N = S+ I . Susceptible pop-
ulation is only capable of reproducing, and the infected
population dies before having the capacity of reproduc-
tion. We also assume that the disease is not vertically
transmitted, but it is untreatable and causes an addi-
tional death.

We assume that the prey population follows the
logistic dynamics with a weak Allee effect in the
absence of disease and predation, and can be described
by the following single species population model dS

dt =
S(1− S) S

S+θ
, where S denotes the normalized healthy

prey population. The term S
S+θ

represents the Allee
effect function (known as the weak Allee function),
which is the probability of finding a mate and θ is the
inverse of the individuals searching efficiency [20]. No
mating occurs at zero population size, and mating is
guaranteed when the population is large (i.e., S

θ+S → 1

as S → +∞). For small prey population density, big-
ger values of θ strengthen the Allee effect and slow
down the per capita growth rate of the prey.

A general predator–prey model where prey is sub-
jected to the weak Allee effects and the disease is
given by the following set of nonlinear differential
equations:

dS
dt = S (1 − S − I ) S

S+θ
− φ(N ) I

N S − g(S, N )P,
dI
dt = φ(N ) I

N S − g(I, N )P − μI,
dP
dt = P

[
cg(S, N ) + γ g(I, N ) − d

]
.

(1)

where all parameters are non-negative: The parameter
d represents the natural death rate of predator; the para-
meter c ∈ (0, 1] is the conversion rate of susceptible
prey biomass into predator biomass; and γ indicates
that the effects of the consumption of infected prey
on predator. The functions φ(N ) and g(S/I, N ) are
the general forms of disease transmission function and
functional responses, respectively.

2.2 Model with gestation delay

Next, we include two important biological components
in the model (1). First, after consumption of prey by
predator, some amount of energy in the form of prey
biomass is converted into predator biomass through
a very complicated internal digestion process of the
predator. This bio-physiological procedure is not basic;
the transformation of prey energy to predator energy
is not immediate, and few procedures are included in
this complex mechanism. To start with, the portion of
prey biomass goes into the digestive system of preda-
tor. Digestion is a convoluted process; a few proteins
are emitted in the digestive system which act one by
one and the prey foods such as starch, protein and fat
are processed and changed intomonosaccharide, amino
acids, fatty acids and glycerol. The digested foods are
absorbed in the digestive system of the predator, and
the prey food is assimilated into the predator’s pro-
toplasm, i.e., transformed into the predator’s energy in
the form of biomass. Thewhole transformation process
requires time; thus, we have considered a constant time
lag τ(>0) for the gestation of predator [15,35,40,64].
The model becomes

dS

dt
= S

S

S + θ
(1 − S − I ) − φ(N )

I

N
S − g(S, N )P,

dI

dt
= φ(N )

I

N
S − g(I, N )P − μI,
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dP

dt
= P [cg(S(t − τ), N (t − τ))

+ γ g(I (t − τ), N (t − τ)) − d
]
. (2)

2.3 Model with predation only on infected prey

We have neglected the predation on susceptible prey by
the predator population and considered that the preda-
tor feeds only on infected prey. This assumption sup-
ports the experimental evidence provided by Lafferty
and Morris [37]. They evaluated that the predation rate
on infected fish, on an average, is 31 times higher than
the predation rate on susceptible fish. In addition, we
have assumed that the consumption of infected prey
contributes positive growth to the predator population.

Therefore, a predator–prey model with the above
assumptions can be described by the following set of
nonlinear differential equations:

dS
dt = S

[
(1 − S − I ) S

S+θ
− β I

]

dI
dt = I [βS − a P − μ]
dP
dt = γ a P(t − τ)I (t − τ) − d P

= αP(t − τ)I (t − τ) − d P.

(3)

For our current study,we have considered disease trans-
mitted through mass action law and predator follows
Holling type I functional response, where β is the dis-
ease transmission rate and a is the predation rate.

2.4 Model with harvesting effort

In this study, we have considered harvesting on the prey
populations (both on susceptible and infected prey),
while the predator population is excluded from the har-
vesting process. The lack of economic viability of such
harvesting, predator conservation, etc. is various rea-
sons for such exclusions. In effect, both the predator
and the harvester are competing for the same resource,
namely the prey population.Considering the harvesting
effects in (3), we get

dS

dt
= S

[
(1 − S − I )

S

S + θ
− β I − q1E

]

dI

dt
= I [βS − a P − μ − q2E]

dP

dt
= αP(t − τ)I (t − τ) − d P (4)

where E is the harvesting effort, q1 and q2 are the
catchability coefficients of the susceptible and infected
preys, respectively. All the variables and parameters
are positive. The variables and parameters used in the
model (4) are presented in Table 1.

The initial conditions for the system (4) take the
form

S(φ) = ψ1(φ), I (φ) = ψ2(φ),

P(φ) = ψ3(φ), − τ ≤ φ ≤ 0,

where ψ = (ψ1, ψ2, ψ3)
T ∈ C+ such that ψi (φ) ≥ 0

(i = 1, 2, 3), ∀ φ ∈ [−τ, 0], and C+ denotes the
Banach space C+

([−τ, 0],R3+
)
of continuous func-

tions mapping the interval [−τ, 0] intoR3+ and denotes
the norm of an element ψ in C+ by

‖ψ‖ = sup
−τ≤φ≤0

{
| ψ1(φ) |, | ψ2(φ) |, | ψ3(φ) |

}
.

For biological feasibility, we further assume that
ψi (0) > 0, for i = 1, 2, 3.

3 Mathematical analysis of the system (4) with no
time lag (τ = 0)

In this section, we have analyzed ourmodel without the
time delay effect. The system (4) without time delay
can be written as

dS
dt = S

[
(1 − S − I ) S

S+θ
− β I − q1E

]
,

dI
dt = I [βS − a P − μ − q2E] ,
dP
dt = P [α I − d] .

(5)

The system (5) has the following boundary equilibria:

E0 = (0, 0, 0), E1
i = (Si , 0, 0),

E2 =
⎛

⎝μ + q2E

β
,

(
μ+q2E

β

) (
1 − μ+q2E

β

)
− q1E μ+q2E

β
− q1Eθ

μ+q2E
β

+ βθ + μ + q2E
, 0

⎞

⎠ = (S2, I2, 0).
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Table 1 Variables and
parameters used in the
model (4)

Variables/parameters Biological meaning Default values

S Density of susceptible prey –

I Density of infected prey –

P Density of predator –

θ Inverse of the individuals searching efficiency 0.1

β Rate of infection 0.395

a Attack rate of predator 0.1

μ Death rate of infected prey 0.001

α The total effect to predator by consuming infected prey 0.85

d Natural death rate of predator 0.1

E Harvesting effort 0.01

q1 Catchability coefficients of the susceptible prey species 1

q2 Catchability coefficients of the infected prey species 1

τ Gestation time period of predator –

where Si are the roots of

S2
i + Si (q1E − 1) + q1Eθ = 0.

Si exists, if 1 > q1E and S1= (1−q1E)+
√

(1−q1E)2−4q1Eθ)

2 ,

S2 = (1−q1E)−
√

(1−q1E)2−4q1Eθ)

2 .
The system (5) has two interior equilibria E∗

1 =(
S∗
1 , I ∗

1 , P∗
1

)
and E∗

2 = (
S∗
2 , I ∗

2 , P∗
2

)
, where I ∗

2 =
d
α

= I ∗
1 , P∗

1 = 1
a

(
βS∗

1 − μ − q2E
)
, P∗

2 = 1
a

(
βS∗

2
−μ − q2E) and S∗

1 , S∗
2 are the roots of the quadratic

equation

(
S∗)2 + S∗

(
(β + 1)

d

α
+ q1E − 1

)

+
(

βθ
d

α
+ q1Eθ

)
= 0.

The interior equilibria exist if 1− (β +1) d
α

−q1E > 0

and both of the solutions satisfy S∗
1 >

μ+q2E
β

, S∗
2 >

μ+q2E
β

. Now,

S∗
1 = B11−

√
B2
11−4C11

2 and S∗
2 = B11+

√
B2
11−4C11

2 ,

(6)

where B11 = (
1 − (β + 1) d

α
− q1E

)
and C11 =(

βθ d
α

+ q1Eθ
)
.

Proposition 1 (Local stability of equilibria for the
model (5)) The local stability of equilibria for the
Model (5) is summarized in Table 2.

Proof Wehave not given the detailed proof in thisman-
uscript (our analysis is similar to the analysis given in
[10]). ��

For the set of parameter values in Table 1, we obtain
the interior equilibrium point E∗

1 = (0.0056, 0.1176,
0.0121) which is an unstable equilibrium and E∗

2 =
(0.8303, 0.1176, 3.2696) is a stable focus as we see
that all the trajectories initiating inside the region of
attraction approach toward the equilibrium point E∗

2 =
(0.8303, 0.1176, 3.2696) (see Fig. 1). Different initial
values are chosen as [0.3, 0.1, 0.2], [0.25, 0.2, 0.7],
[0.22, 0.40, 1], [0.75, 0.05, 1.2] and [0.1, 0.60, 2] and
draw the phase portrait of the system (4) in Fig. 1.

3.1 Saddle node bifurcation

Both S1 and S2 exist if (1 − q1E)2 − 4q1Eθ > 0. For
(1−q1E)2 −4q1Eθ < 0, E1

1 and E1
2 vanishes. So, we

can say that depending on the values of E and θ both
of these equilibria exist. For
(

1√
(q1E)

− √
(q1E)

)2

4
= θ,

we observe saddle node bifurcation for the equilibria
E1
1 and E1

2 .
Similarly, saddle node bifurcation between two inte-

rior equilibria E∗
1 and E∗

2 exists for

123



1558 S. Biswas et al.

Table 2 Local stability of
equilibria for the model (5)

LAS locally asymptotically
stable

Equilibria Existence condition Stability condition

E0 Always exists Always LAS

E1
i 1 > q1E and (1− q1E)2 > 4q1Eθ LAS if βSi < μ + q2E and

q1E + S2i
Si +θ

> (1− Si )(1− θ2

(Si +θ)2
)

E2 μ+q2E
β

(
1 − μ+q2E

β

)
>

q1E μ+q2E
β

+ q1Eθ

LAS if
− S22

S2+θ
−β I2 + (1−S2−I2)S2(S2+2θ)

(S2+θ)2
<

q1E &

α

(
μ+q2E

β

)(
1− μ+q2E

β

)
−q1E(θ+ μ+q2E

β
)

μ+q2E
β

+βθ+μ+q2E
<

d

E∗
2 S∗

2 >
μ+q2E

β
and

(
1 − (β + 1) d

α
− q1E

)
> 0 and

B2
11 > 4C11

Always LAS when it exists

E∗
1 S∗

1 >
μ+q2E

β
and

(
1 − (β + 1) d

α
− q1E

)
> 0 and

B2
11 > 4C11

Unstable

Fig. 1 Stability of the
interior equilibrium for the
non-delayed model (5), with
default parameter values as
in Table 1, with different
initial conditions

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8
0

1

2

3

4

5

6

SI

p

E
2
* =(0.8303,0.1176,3.2696)

E
1
* =(0.0056,0.1176,0.0121)

(
1 − (β + 1) d

α
− q1E

)

(
β d

α
+ q1E

) = θ.

3.2 Bistability

In this subsection, we investigate the possibility ofmul-
tistability of our model system. We see that the model
may be bistable with or without the interior equilib-

rium. Bistability is a phenomenon where the system
converges to two different equilibria for the same para-
metric region based on the variation of the initial condi-
tions. Here we observe that the system (5) shows three
types of bistability (see Fig. 2): one is in the presence
of interior equilibrium, and the other two are in the
absence of interior equilibrium. Any trajectory starting
from the interior of R3+ either converges to E2, E1

1 or
E0 when interior equilibrium does not exist (depend-
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Fig. 2 Bistability region of
the system (5). The magenta
region shows the bistability
of E0 and E∗

2 , the yellow
region shows the bistability
of E0 and E2, and the red
region indicates the
bistability of E0 and E1

1 . In
the white region, only E0 is
stable. (Color figure online)

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

θ

E

Table 3 Sufficient
condition for bistability for
system (5)

Attractor(s) Sufficient condition Biological implications

E0 ∪ E1
1 E0 is always stable;

E1
1 is stable for 1 > q1E ,
βS1 < μ + q2E ,
(1 − q1E)2 > 4q1Eθ and

q1E + S21
S1+θ

> (1− S1)(1− θ2

(S1+θ)2
).

No interior equilibrium; here, we observe
that this type of bistability occurs
depending on the harvesting effort and
Allee parameter (see Fig. 3a)

E0 ∪ E2 E0 is always stable;

E2 is stable forμ+q2E
β

(1 − μ+q2E
β

) >

q1E μ+q2E
β

+ q1Eθ ,

− S22
S2+θ

−β I2 + (1−S2−I2)S2(S2+2θ)

(S2+θ)2
<

q1E and α I2 < d.

No interior equilibrium; this type of
bistability (see Fig. 3b) is very crucial as
it is related to all species or predator
extinction depending on the initial
conditions

E0 ∪ E∗
2 E0 is always stable;

E∗
2 exists if S∗

2 >
μ+q2E

β
, B2

11 > 4C11

and
(
1 − (β + 1) d

α
− q1E

)
> 0.

Different initial conditions lead to all
species coexistence or extinction (see
Fig. 3c)

ing on the parameter space), or converges to E0 or E∗
2

when interior equilibrium exists. We summarize the
bistability criterion of the system (5) as follows (also
see Table 3).

Note:Role of Allee effect on the existence of interior
attractor of (5): Without Allee effect, the system (5)
has one interior equilibria which is always stable (proof
is not given), while in the presence of the Allee effect
the system (5) can have either two interior equilibria
or no equilibria, depending on the Allee parameter θ .
So, from the above-described dynamics, we can con-
clude that Allee effect can generate or destroy interior
attractors.

4 Mathematical analysis of the time delayed model
(4)

In this section, we have analyzed the model (4). Here,
we have performed permanence, local stability analysis
of equilibria, the direction and stability of Hopf bifur-
cation of the delay differential Eq. (4).

4.1 Uniform persistence of the system

We first present the conditions for uniform persistence
of the system (4). We denote by R

3+ = {(S, I, P) ∈
R
3 : S ≥ 0, I ≥ 0, P ≥ 0} the non-negative quadrant
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(a)

−2
0

2
4

6
8

10

−0.5

0

0.5

1

1.5

2
−0.5

0

0.5

1

1.5

2

SI

P

E
1
1=(0.5236,0,0)

E0=(0,0,0)

(b)

−5

0

5

10

−1

0

1

2
0

0.5

1

1.5

2

SI

P

E0=(0,0,0)

E2=(0.6354,0.0516,0)

(c)

0
0.2

0.4
0.6

0.8
1

−0.5

0

0.5

1
−1

0

1

2

3

4

SI

P

E
2
* =(0.83,0.11,3.26)

E0=(0,0,0)

Fig. 3 a Bistability between E0 and E1
1 , b bistability between E0 and E2 and c bistability between E0 and E∗

2

and by int(R3+) =
{
(S, I, P) ∈ R

3 : S > 0, I >

0, P > 0
}
.

Definition System (4) is said to be uniformly persis-
tent if a compact region D ⊂ int (R3+) exists such that
every solution Ξ(t) = (S(t), I (t), P(t)) of the system
(4)with initial conditions eventually enters and remains
in the region D.

4.2 Boundedness of the solution of the delayed
system (4)

The first equation of the system (4) can be written as

dS
S =

[
(1 − S − I ) S

S+θ
− β I − q1E

]
dt.

Integrating between the limits 0 and t , we have

S(t) = S(0) exp{ ∫ t
0

[
(1 − S − I ) S

S+θ
− β I − q1E

]
ds
}
.

Similarly from the second and the third equation of the
system, we have

I (t) = I (0) exp
{ ∫ t

0 [βS − a P − μ − q2E] ds
}

and
P(t) = P(0) exp{ ∫ t

0

[
α I (s − τ)P(s − τ) 1

P(s) − d
]
ds
}

where S(0) = S0 > 0, I (0) = I0 > 0 and P(0) =
P0 > 0. Therefore, S(t) > 0, I (t) > 0 and P(t) > 0.

Proposition 2 All the solutions of the system (4) start-
ing in int(R3+) are uniformly bounded with an ultimate
bound.

For detailed proof see “Appendix.”

4.3 Permanence

We use the uniform persistence theory for infinite
dimensional systems [26], to prove permanence of the
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system (4). Let X be a complete metric space. Suppose
that X0 is open and dense in X and X0 ∩ X0 = Φ.
Assume that T (t) is a C0 semigroup on X satisfying

T (t) : X0 → X0, T (t) : X0 → X0. (7)

Let Tb(t) = T (t)
∣
∣

X0
and let Ab be the global attractor

for Tb(t). To investigate the permanence of the system
(4), the following lemmas are useful.

Lemma 1 [26] If T (t) satisfies (7) and we have the
following:

(i) there is a t0 ≥ 0 such that T (t) is compact for
t ≥ t0;
(ii) T (t) is a point dissipative in X;
(iii) Âb = ∪x∈Abω(x) is isolated and thus has an
acyclic covering M̂, where M̂ = {M1, M2, . . . , Mn};
(iv) W s(Mi ) ∩ X0 = Φ for i = 1, 2, . . . , n.

Then X0 is a uniform repeller with respect to X0,
i.e., there is an ε > 0 such that for any x ∈ X0,
lim

t→∞ in f d(T (t)x, X0) ≥ ε, where d is the distance of

T (t)x from X0.

Lemma 2 [62] Consider the following differential
equation:

ẋ(t) = Ax(t − τ) − Bx(t)

where A, B, τ > 0; x(t) > 0, for −τ ≤ t ≤ 0. Then
we have

(i) if A < B, then lim
t→∞ x(t) = 0;

(ii) if A > B, then lim
t→∞ x(t) = +∞.

Theorem 1 (Permanence of the model (4)) System (4)
is permanent provided

(i) μ+q2E+aε1
β

(1 − μ+q2E+aε1
β

) > q1E μ+q2E+aε1
β

+
q1Eθ, where ε1 is sufficiently small and
(ii) α(I2 − ε2) > d where I2 =(

μ+q2E
β

)(
1− μ+q2E

β

)
−q1E

μ+q2E
β

−q1Eθ

μ+q2E
β

+βθ+μ+q2E
.

Proof Wehave not given the detailed proof in thisman-
uscript (our analysis is similar to the analysis given in
[10]). ��

4.4 Local stability analysis

Let Ẽ = (
S̃, Ĩ , P̃

)
be any equilibrium point of the

system (4). The linearized system of the system (4) at

Ẽ = (
S̃, Ĩ , P̃

)
is

ẋ(t) = (βθ Ĩ−S̃2)
S̃+θ

x(t) − S̃
S̃+θ

(βθ + S̃(1 + β))y(t),

ẏ(t) = β Ĩ x(t) − a Ĩ z(t),
ż(t) = y (t − τ) α P̃ + z (t − τ) α Ĩ − dz(t).

(8)

So, the characteristic equation of the delayed system (4)
around any equilibrium point Ẽ = (S̃, Ĩ , P̃) is given
by

det

⎡

⎢⎢⎢
⎢⎢
⎣

(βθ Ĩ−S̃2)
S̃+θ

− λ − S̃
S̃+θ

(βθ + S̃(1 + β)) 0

β Ĩ −λ −a Ĩ

0 e−λτ α P̃ e−λτ α Ĩ − d − λ

⎤

⎥⎥⎥
⎥⎥
⎦

= 0. (9)

In previous section,we observe that in the absence of
the delay, the interior equilibrium E∗

1 = (S∗
1 , I ∗

1 , P∗
1 )

is unstable, while the other interior equilibria E∗
2 =

(S∗
2 , I ∗

2 , P∗
2 ) is locally stable. Hence, in the present

section, we study the stability analysis of the delayed
system around the interior equilibria E∗

2 .
The following transcendental equation represents

the characteristic equation at the interior equilibrium
E∗
2 = (

S∗
2 , I ∗

2 , P∗
2

)
of the dynamical system (4).

λ3 + B1λ
2+B2λ + B3=

[
B4λ

2 + B5λ + B6
]
e−λτ .

(10)

where

B1 = − (βθ I2∗ − S2∗2)
S2∗ + θ

+ d,

B2 = − (βθ I2∗ − S2∗2)
S2∗ + θ

d

+β I2
∗ S2∗

S2∗ + θ
(βθ + S2

∗(1 + β)),

B3 = β I2
∗ S2∗

S2∗ + θ
(βθ + S2

∗(1 + β))d,

B4 = α I2
∗,

B5 = −α I2
∗ (βθ I2∗ − S2∗2)

S2∗ + θ
− aα I2

∗ P2
∗,

B6 = βα I2
∗ I2

∗ S2∗

S2∗ + θ
(βθ + S2

∗(1 + β))

+ aα I2
∗ P2

∗ (βθ I2∗ − S2∗2)
S2∗ + θ

. (11)

For the delay induced system (4), it is known that if
all the roots of the corresponding characteristic equa-
tion (10) have negative real part, then the equilibrium
point E2

∗ will be asymptotically stable. The classical
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Routh–Hurwitz criterion cannot be used to determine
the stability of the dynamical system as the charac-
teristic equation (10) is a transcendental equation and
has infinitely many roots. We need the sign of the real
parts of the roots of the characteristic equation (10), to
investigate the nature of the stability.

Let λ(τ) = ζ(τ ) + iρ(τ) be the eigenvalue of the
characteristic equation (10); substituting this value in
Eq. (10), we obtain real and imaginary parts, respec-
tively, as

ζ 3 − 3ζρ2 + B1

(
ζ 2 − ρ2

)
+ B2ζ + B3

=
[{

B4(ζ
2 − ρ2) + B5ζ + B6

}

cos ρτ (2B4ζρ + ρB5) sin ρτ
]
e−ζ τ , (12)

and

3ζ 2ρ − ρ3 + 2B1ζρ + B2ρ

= [(2B4ζρ + B5ρ) cos ρτ

−{
(
ζ 2 − ρ2

)
B4ζ B5 + B6} sin ρτ

]
e−ζ τ . (13)

A necessary condition to change the stability of E2
∗ is

that the characteristic equation (10) should have purely
imaginary solutions. We set ζ = 0 in (12) and (13).
Then we get,

B3 − B1ρ
2 =

(
−B4ρ

2 + B6

)
cos ρτ + ρB5 sin ρτ,

(14)

B2ρ − ρ3 = B5ρ cos ρτ −
(
−B4ρ

2 + B6

)
sin ρτ.

(15)

Eliminating τ by squaring and adding the equations
(14) and (15), we get the algebraic equation for deter-
mining ρ as

ρ6 +
(

B2
1 − 2B2 − B2

4

)
ρ4

+
(

B2
2 − 2B1B3 − B2

5 + 2B4B6

)
ρ2

+
(

B2
3 − B2

6

)
= 0. (16)

Substituting ρ2 = θ in Eq. (16), we obtain a cubic
equation given by

k(θ) = θ3 + σ1θ
2 + σ2θ + σ3 = 0, (17)

where

σ1 =
(

B2
1 − 2B2 − B2

4

)
, σ2

=
(

B2
2 − 2B1B3 − B2

5 + 2B4B6

)
, σ3

=
(

B2
3 − B2

6

)
.

Now σ3 < 0 implies that (17) has at least one positive
root. The following theorem gives a criterion for the
switching in the stability behavior of E2

∗.

Theorem 2 Suppose that E2
∗ exists and is locally

asymptotically stable for (4) with τ = 0. Also let
θ0 = ρ2

0 be a positive root of (17).

1. Then there exists τ = τ ∗ such that the interior equi-
librium point E2

∗ of the delay system (4) is asymp-
totically stable when 0 ≤ τ < τ ∗ and unstable for
τ > τ ∗.

2. Furthermore, the system will undergo a Hopf bifur-
cation at E2

∗ when τ = τ ∗, provided Z(ρ)X (ρ)−
Y (ρ)W (ρ) > 0.

Proof The proof is similar to the analysis given in [10].
��

4.5 The direction and stability of Hopf bifurcating
periodic solutions

We already know that the system (4) will undergo Hopf
bifurcation at endemic equilibrium E∗ = (S∗, I∗, P∗)
when τ passes through τ ∗ (for our convenience we
assume that E∗ = E∗

2 ). In this section, we investi-
gate the direction, stability and period of Hopf bifur-
cating solutions at τ = τ ∗ for system (4) by using the
techniques of normal form theory and center manifold
theorem introduced by [27].

We have not given the detailed analysis for the direc-
tion and stability of the Hopf bifurcation in this man-
uscript (our analysis is similar to the analysis given
in [10]). From the detailed analysis, we can compute
the following quantities, which determine the direc-
tion, stability and the periods of the bifurcating periodic
solutions of Hopf bifurcation.

C1(0) = i

2ρ0τ ∗

(
g20g11−2|g11|2−1

3
|g02|2

)
+1

2
g21,

μ2 = − Re{C1(0)}
Re{λ́(τ ∗)} ,

β2 = 2Re{C1(0)},
τ2 = − I m{C1(0)} + μ2 I m{λ́(τ ∗)}

ρ0τ ∗ .

It is well known that μ2 and β2 determine the direc-
tion of Hopf bifurcation and stability of bifurcating
periodic solutions. If μ2 > 0 (<0), and β2 < 0 (>0),
then the Hopf bifurcation is supercritical (subcritical),
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Fig. 4 Waveform plot and
phase plane for the delayed
system (4), with the time
delay τ = 1(<τ∗ = 3.2)
and the other parameter
values are fixed as in
Table 1. The first row left
figure is the time series for
the susceptible prey; the
first row right figure is the
3D phase portrait of the
stable interior of (4) 0 500 1000 1500 2000
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bifurcating periodic solutions exist for τ > τ ∗ (τ < τ ∗)
and are orbitally stable (unstable). τ2 determines the
periods of the bifurcating periodic solutions and the
period increases (decreases) if τ2 > 0(<0).

From our analytical findings, it is observed that E∗
2

is locally asymptotically stable for τ < τ ∗ = 3.20.
Figure 4 shows that the system (4) is stable focus for
τ = 1 < τ ∗. Interior equilibrium point E∗

2 looses its
stability as τ passes through its critical value τ ∗ and
the system (4) experiences Hopf bifurcation. From 4.5,
the nature of the stability and direction of the periodic
solution bifurcating from the interior equilibrium E∗

2
at the critical point τ ∗ can be computed. Through sim-
ulations, we compute that

C1(0) = −3.4661 − 0.9500i, μ2 = 588.89,

β2 = −6.9323, τ2 = 11.972.

It shows the existence of bifurcating periodic solu-
tion, and it is supercritical and stable as evident from
Fig. 5. Figure 5 shows that the limit cycle is stable
around the coexisting equilibrium point E∗

2 . The solu-
tions starting from two different initial values converge
to the limit cycle oscillation for τ = 3.28.

5 Chaotic behavior in our model dynamics (4)

In this section, the time series diagram, phase plane
diagram and bifurcation diagram of the system (4) are
drawn to describe the feasibility of different complex
dynamical behaviors such as one periodic and two peri-
odic limit cycles and chaos.

We fix the parameter values as in Table 1 and vary
the time delay parameter to investigate the different
complex dynamics of our model (4). For our model (4),
the equilibrium E∗

2 is locally asymptotically stable for
the delay parameter τ < 3.20 (= τ ∗). If we increase

the parameter beyond τ ∗, then at τ = 4 > τ∗, the
system (4) shows the limit cycle oscillation of period
one (see Fig. 6). If we further increase the time delay
parameter τ , then the system (4) will show the limit
cycle oscillation of period two for τ = 11.2 (see Fig. 7).

We observe that system (4) shows the chaotic behav-
ior for τ = 18 (see Fig. 8). To establish the chaotic
dynamics, we have plotted the maximum Lyapunov
exponent with time in Fig. 9a, corresponding to Fig. 8.
WeuseWolf algorithm [61] to calculatemaximumLya-
punov exponents. A Poincare map of a typical chaotic
regime is shown in Fig. 9b. The scattered distribution
of the sampling points implies the chaotic behavior of
the system.

6 Effects of the time delay (τ), inverse of individual
searching efficiency (θ) and harvesting effort (E)

In this section, we will discuss the effects of the three
important model parameters: (a) effects of time lag τ ,
(b) effects of the inverse of individual searching effi-
ciency θ and (c) the effects of the harvesting effort. We
produce three bifurcation diagrams with respect to τ ,
θ and E for our model (4) to clearly depict our results,
by fixing the other parameter values as in Table 1.

6.1 Effect of time lag

First we draw the bifurcation diagram with respect to
time delay τ for 0 < τ ≤ 18.5, with the parameter
values θ = 0.1, E = 0.01 and the remaining para-
meters are fixed as in Table 1. The bifurcation dia-
gram with respect to time delay τ drawn in Fig. 10
reports the complex dynamical behavior of the model
(4) with period doubling bifurcation. The system (4)
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Fig. 5 The system (4)
shows Hopf bifurcation
behavior and existence of
stable supercritical
bifurcating periodic solution
around the interior
equilibrium E∗

2 at τ = 3.28.
The other parameter values
are kept same as in Table 1
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Fig. 6 Waveform plot and
phase plane for the delayed
system (4), with the time
delay τ = 4 and the other
parameter values are fixed
as in Table 1. Figure
indicates the existence of
limit cycle
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Fig. 7 Existence of two
periodic solutions around
the interior equilibrium E∗

2
for the system (4), with the
time delay
τ = 11.4(>τ ∗ = 3.2),
where the other parameter
values are same as in
Table 1
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undergoes from stable focus to limit cycle oscillation,
limit cycle oscillation to chaotic oscillation for further
increase the delay parameter. Figure 10 shows that for
τ ∈ [0, 3.2) the interior equilibrium E∗

2 is stable, for
τ ∈ [3.2, 11.2) it shows limit cycle oscillations, and
for τ ∈ [11.2, 18.5] it exhibits higher periodicity and
chaotic oscillations.

6.2 Effect of Allee parameter

Next, we draw the bifurcation diagram with respect to
the parameter θ for θ ∈ (0, 1.28] where τ is fixed at
18, E = 0.01 and the remaining parameters are fixed
as above. The complex dynamic behavior including
chaos of the delayed system with respect to θ is evi-
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Fig. 8 Solution curves and
the phase plane showing
chaotic attractor at τ = 18
for the model (4) and the
other parameter values are
fixed as in Table 1
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Fig. 9 Maximum Lyapunov exponents and Poincare section to show the chaotic behavior of the system (4). a Chaotic behavior of the
system (4). b Poincare plot {S=0.83} in the I–P plane for the system (4)

dent from Fig. 11. We observe that for θ ∈ (0, 0.05),
system exhibits limit cycle and for θ ∈ [0.05, 0.44)
the system (4) shows higher periodicity and chaotic
oscillations through quasi-periodicity route. For fur-
ther increasing the strength of Allee parameter invokes
a period-halving bifurcation and controls the chaotic
oscillations. The system (4) shows two-period oscilla-
tion and limit cycle behavior for θ ∈ (0.44, 0.78), and
θ ∈ (0.78, 1.28], respectively. Further increment of θ

results extinction of all the species.

6.3 Effect of harvesting effort

We fix the parameter values τ = 18, θ = 0.1 and the
other parameters are fixed as above and vary the para-
meter E. For the gradual increase of the parameter E ,

the system (4) switches its stability from chaotic oscil-
lation to limit cycle oscillation, limit cycle oscillation
to stable focus through the period-halving bifurcation.
When E ∈ [0, 0.04), we observe higher periodicity
and chaotic oscillations. For E ∈ [0.04, 0.1), we notice
limit cycle behavior. Figure 12 shows that the system
is stable for E ∈ [0.10, 0.15].

For clear visualization, we draw the stability region
for themodel (4), with respect to θ and E when τ = 18.
In Fig. 13, the whole region is divided into several dis-
tinct parts where we observe that the system (4) is
stable in the green region; black region shows limit
cycle oscillation, period doubling in the yellow region,
chaotic oscillation in the blue region; predator extinc-
tion in the red region, infected prey and predator extinc-
tion in the cyan region and white region shows the
extinction of all species.
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Fig. 10 Bifurcation diagrams with respect to τ for the system (4), when the other parameters are fixed as in Table 1. a Bifurcation
diagram for the susceptible prey; b bifurcation diagram for the infected prey; and c bifurcation diagram for the predator
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Fig. 11 Bifurcation diagrams with respect to θ for the system (4). When the other parameters are fixed as in Table 1 and τ = 18. a
Bifurcation diagram for the susceptible prey; b bifurcation diagram for the infected prey; and c bifurcation diagram for the predator
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Fig. 12 Bifurcation diagrams with respect to E for the system (4). When the other parameters are fixed as in Table 1 and τ = 18. a
Bifurcation diagram for the susceptible prey; b bifurcation diagram for the infected prey; and c bifurcation diagram for the predator

7 Optimal harvesting policy

In this section, we study the optimal harvesting policy
for both the non-delayed and delayed model. Exploita-
tion can change the behavior of the system in sev-
eral ways. It can reduce population size or density
to a level close to or below an Allee threshold or

increases the Allee effect strength. For example, in an
Irish sea, at least four species of skate and shark have
been exploited to extinction [6]. Naturally optimal har-
vesting policy is very much needed for such system.
So, we formulate an optimal harvesting policy which
ensures species conservation and maximizes the profit
[23,33,36].
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Fig. 13 Stability region of the system (4) when τ = 18. The sys-
tem is stable in the green region, black region shows limit cycle
oscillation, period doubling in the yellow region, chaotic oscil-

lation in the blue region, predator extinction in the red region,
infected prey and predator extinction in the cyan region andwhite
region shows the extinction of all species

Here, we study the optimal harvesting policy by con-
sidering the profit earned by harvesting with conserva-
tion of prey population. We assume that price function
is inversely proportional to the available prey popula-
tion. Let c be the constant harvesting cost per unit effort,
p1 and p2 are constant price per unit biomass of the S
and I species, v1 and v2 are economic constraints and
δ denotes the continuously compounded annual rate
of discount. Infected prey (I ) has less demand, so we
assume that p2 < p1.

Wenow formulate the problemof optimal harvesting
policy for

J (E) =
∫ T

0
[(p1 − v1q1E S)q1E S

+(p2 − v2q2E I )q2E I − cE]e−δtdt,

subject to the system (4) and the effort constraint 0 ≤
E ≤ Emax. Here, Emax is the maximum effort capacity
of the harvesting industry. The objective of the problem
is to find the optimal harvesting effort E∗ such that

J (E∗) = max
E∈U

J (E)

where U is the control set defined by

U = {E : E is measurable and 0 ≤ E ≤ Emax}.

To find the maximum value of J (E), we set x(t) =
(S(t), I (t), P(t)) and xτ (t) = (Sτ (t), Iτ (t), Pτ (t)),
where Sτ (t) = S(t − τ), Iτ (t) := I (t − τ), Pτ (t) :=
P(t −τ), and define the Hamiltonian H(t) = H(x, xτ ,

E, λ)(t) for the control problem as follows:

H = [(p1−v1q1E S)q1E S+(p2−v2q2E I )q2E I−cE]

+λS

[
S

[
(1 − S − I )

S

(S + θ)
− β I − q1E

]]

+λI [I [βS − a P − μ − q2E]]

+λP [αP(t − τ)I (t − τ) − d P] .

The variables λS, λI , λP are adjoint variables and
the transversality conditions areλS(T ) = 0,λI (T ) = 0
and λP (T ) = 0.

Theorem 3 There exists an optimal control E∗ for t ∈
[0, T ] such that

J (S(t), I (t), P(t), E∗) = max
E∈U

J (S(t), I (t), P(t), E)

subject to the differential equation (4) and there exists
adjoint variables λS, λI , λP with the transversality
conditions as λS(T ) = 0, λI (T ) = 0, λP (T ) = 0.

Proof For details, see [23,32,33,36]. ��

7.1 Characterization of the optimal control

In order to derive the necessary condition for the opti-
mal control, Pontryagin’s maximum principal with
delay given in [68] was used. The state equations are
given by:

x(t) = H(x, xτ , E, λ)(t),

the optimality condition is

0 = HE (x, xτ , E, λ)(t),
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and the adjoint equation is

−dλ

dt
(t) = Hx (x, xτ , E, λ)(t)

+χ[0 T −τ ]λ(t + τ)Hxτ (x, xτ , E, λ)(t),

where HE , Hx and Hxτ denote the derivative with
respect to E, x and xτ , respectively. Now we apply
the necessary conditions to the Hamiltonian H .

The condition for the optimal control canbeobtained
from the relation Eδ = p1q1S+p2q2 I−c−λSq1S−λI q2 I

2(v1q2
1 S2+v2q2

2 I 2)
.

The adjoint equations are

dλS

dt
= λS(t)δ

−[p1q1E − 2v1q2
1 E2S]

−λS(t)

[
S(1 − S − I )

(S + 2θ)

(S + θ)2

− S2

S + θ
− β I − q1E

]

−λI (t)β I
dλI

dt
= λI (t)δ − [p2q2E − 2v2q2

2 E2 I ]
+ λS(t)βS − λI (t) [βS − a P − μ − q2E]

−χ[0 T −τ ]λP (t + τ)αP(t − τ)

dλP

dt
= λP (t)δ − λP (t)d

+ λI (t)aI − χ[0 T −τ ]λP (t + τ)α I (t − τ).(18)

The optimal harvesting effort at any time t is given
by

E∗ =

⎧
⎪⎨

⎪⎩

Emin,
dH
dE < 0

Eδ,
dH
dE = 0

Emax,
dH
dE > 0.

(19)

The numerical solutions of the considered optimal
problem completely determined using Runge–Kutta
fourth-order forward–backward procedure. The suc-
cessive steps are displayed as follows:

Let there exists a step size h > 0 and τ = mh,
T = nh. We obtain the following partition: t−m <

−τ < · · · . < t0 < · · · · · · < T · · · · · · < tn+m . Then
we have ti = t0 + ih.

1. For i = −m, . . . ., 0 do Si = S0; Ii = I0; Pi =
P0; E∗

i = 0 End for
For i = n, . . . ., n + m do λS = 0; λI = 0; λP = 0
End for

2. For i = 0, . . . ., n − 1 using the initial condition
S0, I0, P0 solve the state equation according to the

DDE with the values for E∗ forwardly.
Using the transversality condition λS(T ) = 0,
λI (T ) = 0, λP (T ) = 0, with the computed val-
ues of state variables and E∗ evaluate the values of
adjoint variables λS, λI , λP .

3. Update E∗ using the rule E∗ = min{Emin,

max{Eδ, Emax}}.
4. If the solutions of the variables (excluding the con-

trol variable) are convergent then the last iteration
is the complete solution. Otherwise, return to step
2.

We illustrate this with a numerical example. For
this purpose, we choose the parameter values to be
β = 0.75; μ = 0.001; d = 0.1; a = 0.4; θ =
0.1; α = 0.2; T = 10; ε = 0.05; p1 = 1.2; p2 =
0.1; q1 = 1; q2 = 1; v1 = 2; v2 = 2; c =
0.1; S(0) = 1; I (0) = 0.05; P(0) = 1. We assume
that 0 ≤ E ≤ 1. Now we solve the optimal control
problem numerically using Runge–Kutta fourth-order
iterative method. For the state variables, first we solve
the system (5) by forward Runge–Kutta fourth-order
procedure and then using that state values we solve
the system (18) by using the backward fourth-order
Runge–Kutta procedure (when τ = 0).

In Fig. 14, we represent the solution curves of the
three state variables in the presence of the harvesting.
Figure 15 represents the variation of adjoint variables.
Final values of the adjoint variables are 0. As harvest-
ing effort increases, the biomass of prey and preda-
tor population decreases. From Fig. 16, we observe
that the optimal harvesting effort is maximum when
θ = 0.5. The optimal effort Eδ varies with θ . Biolog-
ically, we can say that if θ increases, then numerically

S
S+θ

decreases and as a result maximum optimal har-
vesting effort increases.

Next, we assume the same parameter values as
Fig. 14 and 0 ≤ E ≤ 1. Using the above-described
method in subsection 7.1, we investigate optimal har-
vesting policy for the model (4). For τ = 1, the optimal
trajectories for the system (4) with initial population
densities (S(0), I (0), P(0)) are shown in Fig. 17. The
variations of adjoint variables are also drawn in Fig. 18.
Optimal harvesting effort is hugely dependent on ges-
tation delay τ which is evident from Fig. 19.Maximum
value of optimal harvesting increases as gestation delay
τ increases. The optimal harvesting effort increases
monotonically and assumes it’smaximumvalue in each
case.
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Fig. 14 Diagrams for the state variables with control for the system (5). a Diagram for the susceptible prey; b diagram for the infected
prey; and c diagram for the predator
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Fig. 15 Figures for the adjoint variables of the system (5)
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Fig. 16 Variation of the optimal effort E with respect to time
with different θ for the system (5)

8 Discussion

Themodel (4) has two interior equilibria E∗
1 and E∗

2 , in
which first one is always unstable and the another one
is stable. We discuss the saddle node bifurcation and
bistability between different equilibria for the model

(5). For our model (4), the delay parameter (τ ) plays
an important role. Time delay can switch the stability
of the equilibrium point form stable to unstable; that
is, for some critical value τ ∗, the positive equilibrium
E∗
2 is stable when τ < τ ∗, and it becomes unstable

as τ crosses through its critical magnitude from lower
to higher values. It is demonstrated that the model (4)
encounters the Hopf bifurcation as the delay parameter
τ crosses the critical value τ ∗. Further increasing of
the delay parameter beyond the bifurcation point leads
to complex dynamic behavior, including chaos. The
explicit formulae which determine the stability, direc-
tion and other properties of bifurcating periodic solu-
tion are investigated, by using normal form and center
manifold theorem. Finally, by using numerical simula-
tions, we illustrate our analytical results. We also draw
the various stability regions for the model (4), with
respect to θ and E when τ = 18.

From environmental perspective, chaos has themost
extreme natural significance. Numerous hypothetical
studies uncover essential biological community’s high-
light, for example, consistency, species constancy [2]
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Fig. 17 Diagrams for the state variables with control for the system (4). a Diagram for the susceptible prey; b diagram for the infected
prey; and c diagram for the predator
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Fig. 18 Figures for the adjoint variables of the system (4) when τ = 1
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Fig. 19 Variation of the optimal effort E with respect to time
with different τ for the system (4)

and bio-differences [31] can be influenced by chaos.
Different chaos control plans have been investigated,
till now. In [34,53,69], the authors concluded thatAllee
effect may be a destabilizing force in prey–predator
systems. We have shown that higher values of time
delay make the system chaotic, and chaos can be con-

trolled by the harvesting effort E . In our model (4),
the non-linearity induced by Allee effect can produce
chaotic oscillations but the changes in the strength of θ

may reduce/remove the chaotic behavior of the system.
The dynamical behavior of θ is not same as in [10].
Clearly, if the Allee parameter increases, the system
loses stability and becomes chaotic. It is worth noting
that we draw the bifurcation diagram by plotting the
maximum and minimum values of the time series solu-
tions of the system (4). We observe that the system (4)
enters into the chaotic regime through quasi-periodicity
route [50]. The impact of the Allee effect on the stabil-
ity of population models show a diverse effect which
entirely relies on the assumption of the relating model.
Harvesting makes the coexistence equilibria stable for
the system (4) and can control chaotic dynamics of the
system. Continuous harvesting will make the system
disease-free (also predator-free). The system has the
ability to recover if P-class are not made extinct by
excessive exploitation of their food supply.

We assume that the selling price of the infected prey
(I ) is less than the price of susceptible fish (S). Large
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amount of infected prey is harmful for the economic
condition of harvesters. Also if q1 and q2 increase with
the advancement of technology, while the remaining
parameters are fixed, then the density of prey popula-
tion shifts to a lower level. Further increment of q1 and
q2 makes the prey population extinct. In this article,
we consider the economic loss of harvesters due to the
unwilling harvesting of infected prey species. Using
the Pontryagin’s maximum principle, the optimal har-
vesting policy has been discussed.We find that optimal
harvesting policy is dependent on both gestation delay
and Allee effect.

A large number of empirical evidences for drastic
global reduction of valuable fish stocks are available. In
fisheries, undisciplinedharvesting diminish the popula-
tion at the point where depensatory process dominates.
Long ago fishery scientists are acquainted with the pos-
sibility ofAllee effects (depensatory) inmarine popula-
tions [45] and demanded enquiry of the “depensatory
process.” In fisheries, strong and weak Allee effects
are known as critical and pure depensation, respec-
tively [16]. First time we develop a management prob-
lem considering an eco-epidemiological model with
weak Allee effect and harvesting in prey population.
One practical example for our model (4) is Antarctic
krill-whale community. The Antarctic krill population
is being increasingly harvested and the prime source
of food of whales is krill. We use gestation delay to
make our model (4) more realistic. Exploitation can
affect system with Allee effects in several ways. It can
reduce population density to a level close to or below an
Allee threshold or increase theAllee effect strength [6].
We observe that, for our model (4), prey density should
be greater than μ+q2E

β
for existence of all the species.

Effective harvesting helps to protect biological balance
within the ecosystem which is our prime goal. Optimal
harvesting policy is an important tool to maximize the
profit earned by exploitation while ensuring the exis-
tence of all the species. Figures 14 and 17 indicate the
existence of all the species with optimal harvesting pol-
icy. Our findings indicate that over exploitation implies
the extinction of the population, and a proper harvest-
ing policy should ensure the feasibility of the biomass
which is in line with reality.
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Appendix

We can write the first equation of the system (4) as

dS

dt
= S

[
(1 − S − I )

S

S + θ
− β I − q1E

]
.

So,

dS

dt
≤ S(1 − S),

∴ lim sup
t→∞

S(t) ≤ 1.

Let V1 = S + I , taking its time derivative along the
solution of the system (4), we have

V̇1 = S(1−S−I )
S

S+θ
− a P I − μI−q1E S − q2E I,

≤ 1 − S − I.

∴ V̇1 + V1 ≤ 1 ⇒ lim
t→∞ V1(t) ≤ 1.

So,

lim
t→∞ I (t) ≤ 1.

Define a function V2 = 1
a I (t − τ) + 1

α
P(t), taking

its time derivative along the solution of the system (4),
we have

V̇2 ≤ βS(t − τ)I (t − τ) − μ

a
I (t − τ) − d

α
P(t),

≤ β − min{μ, d}V2.

∴ lim
t→∞ P(t) ≤ M,

where M = βα
min{μ,d} . Hence, proposition follows.
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