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Abstract This study is the natural continuation of a
previous paper of the authors González-Carbajal and
Domínguez in J. Sound Vib. (Under revision), where
the possibility of finding Hopf bifurcations in vibrat-
ing systems excited by a nonideal power source was
addressed. Herein, some analytical tools are used to
characterize these Hopf bifurcations, deriving a sim-
ple rule to classify them as supercritical or subcritical.
Moreover, we find conditions under which the aver-
aged system can be proved to be always attracted by a
limit cycle, irrespective of the initial conditions. These
limit cycle oscillations in the averaged system corre-
spond to quasiperiodic motions of the original system.
To the authors’ knowledge, limit cycle oscillations have
not been addressed before in the literature about non-
ideal excitations. Through supporting numerical sim-
ulations, we also investigate the global bifurcations
destroying the limit cycles. The analytical results are
verified numerically.
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1 Introduction

Vibrations caused by unbalanced rotating machinery
are very frequently encountered in mechanical engi-
neering [2,3]. This might be an undesired consequence
of manufacturing errors and tolerances [4], which can
endanger the performance of turbines, blowers, pumps,
etc. On the other hand, there are also applicationswhere
rotors are purposely unbalanced to generate a useful
vibration, as is the case of the feeding, conveying and
screening of bulk materials or the vibrocompaction of
quartz conglomerates.

In the analysis of these unbalance-induced oscilla-
tions, it is often necessary to take into account how
the motion of the energy source is affected by vibra-
tion [5–8]. In these situations, where there is a signifi-
cant two-way interaction between exciter and vibrating
structure, the excitation is said to be nonideal.

The study of nonideal excitations begun with the
experimental work of Sommerfeld [9]. He used a setup
consisting in an unbalanced electric motor mounted
on an elastically supported table, monitoring the input
power and the amplitude and frequency of the response.
Some anomalous phenomena were found, like jumps
in the oscillation amplitude and ranges of frequency
where no stationary motion could be obtained. These
unexpected issues, known as ‘the Sommerfeld effect’,
could not be explained by an ideal model, i.e. assuming
that rotation was not affected by vibration.

Someyears later,Kononenko [10] proposed an inter-
pretation for the Sommerfeld effect, by considering a
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model which included the nonideal coupling between
motor and structure, and applying averaging techniques
to the equations of motion. According to Kononenko,
the Sommerfeld effect is due to the torque on the rotor
produced by vibration of the unbalanced mass.

Rand et al. [11] reported the detrimental effect of a
nonideal power source in dual-spin spacecrafts, which
could endanger one of themanoeuvres of the spacecraft
when placed in orbit.

Although the most usual analytical approach to the
problem is based on averaging procedures, Blekhman
proposed an alternative approximation to the stationary
solutions by using the method of ‘Direct Separation of
Motions’ [12].

El-Badawi [13] analysed a model where the vibrat-
ing structure had an intrinsic nonlinearity, in addition
to the nonlinearity due to the nonideal coupling with
the energy source.

For a more detailed exposition of the state of the art
concerning nonideal systems, see [5].

A simple nonlinear mechanical system, excited by
a nonideal unbalanced motor, was analytically and
numerically studied in [1]. In that reference, thanks to
a novel combination of two different perturbation tech-
niques, the authors found conditions under which the
systemexhibited aHopf bifurcationwhich had not been
addressed before in the literature. This paper intends
to be a direct continuation of [1], analysing in detail
the appearance of Hopf bifurcations and their conse-
quences.

It is well-known that Hopf bifurcations lead to the
appearance of limit cycle oscillations (LCOs). Notice-
ably, the existence of LCOs as a consequence of non-
idealness of the energy source has not been addressed
before in the literature, to the best of the authors’ knowl-
edge.

The analytical study of bifurcations and limit cycles
conducted in this paper, which is manageable for a
2D system, would be virtually unfeasible for a higher-
dimensional system. As a matter of fact, the Poincaré–
Bendixson (P–B) theorem, which is used herein to
prove the existence of stable limit cycles, is only valid
for 2D systems. These considerations suggest that the
perturbation approach conducted in [1], which reduces
the system dimension from 4 to 2, is particularly appro-
priate.

Finally, it is convenient to position the present paper
within the literature, showing its similarities and dif-
ferences with respect to other published works.

First, it should be noted that the Hopf bifurcation
investigated in this paper is conceptually different to
that reported in [14]. The reason is that while we study
here the fixed points of an averaged system, repre-
senting stationary motions of the motor, Dantas et al.
analysed in [14] the fixed points of the original system,
corresponding to the motor at rest.

It should be stressed that the present paper is mainly
based on analytical results, which are also validated by
means of numerical simulations. This makes it signif-
icantly different to many other works, where conclu-
sions are directly drawn from numerical experiments
[15–17].

This paper studies a mechanical system which is
very similar to that analysed by Fidlin in [18]. How-
ever, he considered a motor characteristic with small
slope, while our assumption is the opposite. Actually,
the slope of the motor characteristic curve is a chief
parameter of the problem. The system exhibits dif-
ferent behaviours and requires different mathematical
approaches, depending on the order of magnitude of
this slope.

The mechanical system that we investigate is also
akin to that studied by Rand et al. in [11,19]. How-
ever, they considered no damping and a motor driven
by a constant torque. Due to these differences, both the
perturbation approach and the conclusions about the
motion of the system presented in this work are sub-
stantially different to those reported in [11,19].

There are also published works where chaotic
behaviour is found in systems excited by nonideal
power sources [17,20]. Nevertheless, this kind of
motion is not possible for the particular case under
study, as long as the assumptions specified in Sect. 2.1
hold. The reason is that at least 3 dimensions are needed
to have chaos, while, as shown in Sect. 2.2, our reduced
system is of dimension 2.

The organization of the paper is as follows. Section 2
briefly recalls the main results of [1], which constitute
the base of this study. Section 3 analytically investi-
gates conditions for the subcriticality or supercriticality
of the Hopf bifurcations. Section 4 uses the Poincaré–
Bendixson theorem to prove that, under appropriate
conditions, every system trajectory is attracted by a
limit cycle. The global bifurcations by means of which
the limit cycles disappear are numerically investigated
in Sect. 5. Section 6 compares numerical solutions of
the reduced and the original system in order to val-
idate the analytical developments and discusses the
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Limit cycles in nonlinear vibrating systems 1379

timescale in which the asymptotic approximation is
valid. Finally, the conclusions of the present study are
summarized in Sect. 7.

2 Brief review of previous developments

2.1 Equations of motion and assumptions

Consider the system depicted in Fig. 1, consisting of
an unbalanced motor attached to the fixed frame by
means of a nonlinear spring—with linear and cubic
components—and a linear damper.

Variable x represents the linearmotion,φ is the angle
of the rotor, m1 is the unbalanced mass with eccentric-
ity r , m0 is the rest of the vibrating mass, I0 is the
rotor inertia (without including the unbalance), b is the
damping coefficient and k and λ are, respectively, the
linear and cubic coefficients of the spring. The equa-
tions of motion for the coupled 2-DOF system are

mẍ + bẋ + kx + λx3 = m1r
(
φ̇2 cosφ + φ̈ sin φ

)

I φ̈ = L
(
φ̇
) + m1r ẍ sin φ, (1)

wherem = m0 +m1, I = I0 +m1r2. A dot represents
differentiation with respect to time, t . Function L

(
φ̇
)

is the driving torque produced by the motor—given by
its static characteristic—minus the losses torque due to
friction at the bearings, windage, etc. We assume this
net torque to be a linear function of the rotor speed

L
(
φ̇
) = C + D

(
φ̇ − ωn

)
, (2)

where ωn is the linear natural frequency of the oscil-
lator, given by ωn = √

k/m. Although L
(
φ̇
)
includes

the damping of rotational motion, we will usually refer

0I

0m

r

k

b
x

φ

λ

Fig. 1 Model of the mechanical system

to it shortly as ‘the motor characteristic’. We further
assume D < 0—the driving torque decreases with the
rotor speed—as is usual for most kinds of motor.

By defining

Rm = m1/m, RI = m1r
2/I

ξ = b

2
√
km

, α = RI Rm

2ξ

c = C

Iω2
n
, d = D

Iωn
, τ = ωnt

u = x

r

2ξ

Rm
, ρ = λr2

k

(
Rm

2ξ

)2

, (3)

the equations of motion can be written in a more con-
venient dimensionless form

ü + u = −2ξ u̇ − ρu3 + 2ξ
(
φ̇2 cosφ + φ̈ sin φ

)

φ̈ = c + d
(
φ̇ − 1

) + αü sin φ, (4)

where a dot now represents differentiation with respect
to dimensionless time, τ .

In order to apply perturbation techniques to system
(4), some assumptions on the order of magnitude of the
system parameters have to be made. Thus, we assume
the damping, the unbalance and the nonlinearity to be
small. We express this by making the corresponding
coefficients proportional to a sufficiently small, positive
and dimensionless parameter ε:

ξ = εξ0, α = εα0, ρ = ερ0. (5)

We also assume that the torque generated by the motor
at resonance

(
φ̇ = 1

)
is sufficiently small:

c = εc0. (6)

Finally, we assume the slope of themotor characteristic
to be of the order of unity, i.e. independent of ε:

d = d0. (7)

This assumption corresponds to what we have called
‘large slope characteristic’. The case of small slope,
with d proportional to ε, is treated in [18].

Taking the proposed scaling (5)–(7) into account
and dropping the subscript ‘0’ for convenience, we can
write (4) as

ü + u = ε
{
−2ξ u̇ − ρu3 + 2ξ

(
φ̇2 cosφ + φ̈ sin φ

)}

φ̈ = d
(
φ̇ − 1

) + {c + αü sin φ} . (8)
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In the next two subsections, we sketch some results
obtained in [1] concerning the behaviour of (8), namely
those which are necessary for the present paper.

2.2 Reduced system

Equation (8) constitutes an autonomous dynamical sys-
tem of dimension 4, with state variables

{
u, u̇, φ, φ̇

}
.

In Ref. [1], some perturbation techniques were applied
to (8), in order render it easier to analyse. Here we
mention the main results of this procedure:

– System (8) exhibits three qualitatively different
behaviours, at three consecutive stages of time.

– The first two stages take place at a timescale τ =
O (1). They can be considered as a fast transient
regime.

– The third stage occurs at a timescale τ = O (1/ε).
During this stage, we have


 ≡ φ̇ = 1 + εσ, (9)

which means that the system is near resonance.

– The system dynamics at the third stage is governed,
with O (ε) precision, by the following 2D reduced
model:

⎧⎨
⎩
ȧ = −εξ (a + sin β)

β̇ = ε
(
c
d + α

2d a sin β − ξ
cosβ
a + 3

8ρa
2
)
⎫⎬
⎭ , (10)

where the new variables are related to the original ones
by{

u = a cos (φ + β)

u̇ = −a sin (φ + β)

}
. (11)

2.3 Equilibrium points and stability

Equilibrium points of system (10), which represent sta-
tionary solutions of the original system (8), can be
obtained with the following graphical construction.
Consider the plane spanned by axis {σ, T }, where σ

is a measure of the rotor speed—see (9)—and T rep-
resents torque on the rotor. Graph Tm versus σ , with

Tm (σ ) ≡ c + dσ. (12)

Then, graph on the sameplot the parametric curve given
by {σv (z, a) , Tv (a)}, with z = ±1, a ∈ (0, 1] and

1z=
1z=−

T

vT

mT

Fig. 2 Equilibrium points of (10)

{
Tv (a) ≡ α

2 a
2

σv (z, a) ≡ 3
8ρa

2 + zξ
√
1−a2
a

}
. (13)

The above procedure gives rise to a plot like that shown
in Fig. 2, where the equilibrium points of (10) corre-
spond to the intersections between the two curves. In
the particular case displayed in Fig. 2, there are three
equilibriumpoints,markedwith circles.Note that curve
Tv is composed of two branches, which collide at the
maximum of the curve. They correspond to the two
possible values of parameter z, as specified in Fig. 2.

The physical interpretation of Fig. 2 is as follows:
Tm is the net torque produced by the motor, while Tv

represents the torque on the rotor due to vibration.
For a particular intersection between the curves{

σeq, Teq
}
, the equilibrium values of {a, β} are given

by

aeq =
√
2Teq
α

, βeq = tan−1
( −aeq

−zReq

)
, (14)

where Req stands for
√
1 − a2eq.

Once the equilibrium points of the reduced system
have been obtained, we turn to the analysis of their
stability. For a 2Dsystem, this reduces to calculating the
trace and determinant of the Jacobianmatrix, evaluated
at the equilibrium point of interest:

Jeq = ε

⎡
⎣

−ξ zξ Req(
− α

2d + 3ρ
4

)
aeq − zξ Req

a2eq
− zαaeqReq

2d − ξ

⎤
⎦,

(15)
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Limit cycles in nonlinear vibrating systems 1381

The conditions for an equilibrium point to be asymp-
totically stable are

C1. tr
(
Jeq

)
< 0 (16)

C2. det
(
Jeq

)
> 0. (17)

After some algebra, these conditions can be expressed
as

C1.
zαaeqReq

4d
+ ξ > 0 (18)

C2.

{ 1
η

− 1
d < 0, i f z = 1

1
η

− 1
d > 0, i f z = −1

}
, (19)

where η denotes the slope of the Tv curve at the con-
sidered equilibrium point and has expression

1

η
= − zξ

αa3eqReq
+ 3ρ

4α
, (20)

as can be deduced from (13).
We now apply conditions (18) and (19) to evaluate

stability regions in different scenarios. The procedure
is as follows. Consider parameters α, ξ, ρ fixed, so that
the Tv curve—see (13)—is fixed too. Consider a pair
of values (c, d) which gives a particular curve Tm (σ ).
The intersections between the two curves represent the
equilibrium points of the system. Select one of them—
if there are more than one—and let parameters (c, d)

vary in such a way that the selected equilibrium point
remains an equilibrium point. In other words, let para-
meters (c, d) vary so as to make the curve Tm (σ )

rotate around the selected equilibrium point, satisfying
restriction d < 0. Finally, use conditions (18) and (19)
to analyse how the stability of the equilibrium point is
affected by the slope d of the motor characteristic.

The procedure described above was followed in [1]
for all possible scenarios (z = ±1, η ≷ 0); nonethe-
less, here we restrict attention to the only case of inter-
est for the present paper, namely that exhibiting a Hopf
bifurcation. Then, consider an equilibrium point satis-
fying

z = 1, dH < η < 0. (21)

where critical slope dH is defined as

U

U

S

d =

Hd d=
T

vT

Fig. 3 Stability regions for an equilibrium point exhibiting a
Hopf bifurcation. S and U label the stable and unstable regions,
respectively

(a) (b)

dd

a a

eqa eqa

Hd

LCOLCO

Hd

Fig. 4 Classification of Hopf bifurcations. a Supercritical, b
subcritical.Thick (thin) lines represent stable (unstable) solutions

dH
(
α, ξ, aeq

) = −αaeqReq

4ξ
. (22)

The stability diagram for this scenario is displayed in
Fig. 3. The critical condition—i.e. the one which pro-
duces the stability change—isC1. In this case, the equi-
librium point loses stability at d = dH through a Hopf
bifurcation, after which we named parameter dH .

3 Classification of the Hopf bifurcations

Clearly, it would be of great interest to characterize the
Hopf bifurcation under study as subcritical or supercrit-
ical. In the former case, an unstable limit cycle coexists
with the stable equilibriumpoint,while in the latter case
there is a stable limit cycle coexisting with the unstable
equilibrium point, as represented in Fig. 4. Subcriti-
cal bifurcations are generally more dangerous in real
applications, since they can give rise to abrupt jumps
in the system behaviour [21].

Characterizing thebifurcations require several trans-
formations of system (10) that are detailed below.
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3.1 Transformation to Cartesian coordinates

We assume the system parameters are such that there
exists an equilibrium point satisfying condition (31)
and, thereby, undergoing a Hopf bifurcation. By defin-
ing change of variables⎧⎨
⎩
x̃ = a cosβ

ỹ = a sin β

⎫⎬
⎭ , (23)

system (10) can be rewritten, at the bifurcation point
(d = dH ), as
⎧⎪⎨
⎪⎩

˙̃x = −ε
[
ξ x̃ + c

dH
ỹ + α

2dH
ỹ2 + 3

8ρ ỹ
(
x̃2 + ỹ2

)]

˙̃y = ε
[
−ξ − ξ ỹ + c

dH
x̃ + α

2dH
x̃ ỹ + 3

8ρ x̃
(
x̃2 + ỹ2

)]
⎫⎪⎬
⎪⎭

.

(24)

3.2 Displacement of the origin

In order to characterize the bifurcation, it is conve-
nient to locate the origin of the coordinate system at the
equilibrium point under investigation. Then, we define
change of variables
{
x = x̃ − aeq cosβeq

y = ỹ − aeq sin βeq

}
. (25)

Using the new coordinates, system (24) takes the form

⎧⎪⎨
⎪⎩
ẋ = ε

{
−
[
ξ + 3

4ρa3R
]
x −

[
3
4ρa4 + ξ

(
2a
R − R

a

)]
y + 3

8ρa2x2 +
[
2ξ
aR + 9

8ρa2
]
y2 + 3

4ρaRxy − 3
8ρy

[
x2 + y2

]}

ẏ = ε
{[

3
4ρa2R2 − ξ R

a

]
x +

[
ξ + 3

4ρa3R
]
y − 9

8ρaRx2 − 3
4ρaRy2 −

[
2ξ
aR + 3

4ρa2
]
xy + 3

8ρx
[
x2 + y2

]}

⎫⎪⎬
⎪⎭
(26)

where aeq and Req are shortly written as a and R,
respectively, in order tomake the expressionmoreman-
ageable. This abbreviated notation will also be used in
equation (28) and in the “Appendix 1”.Note that system
(26) is of the form{
ẋ
ẏ

}
= ε

{
A
{
x
y

}
+ h (x, y)

}
(27)

where matrix A is given by

A =
⎡
⎣−

(
ξ + 3

4ρa3R
)

−
{
3
4ρa4 + ξ

(
2a
R − R

a

)}

3
4ρa2R2 − ξ R

a ξ + 3
4ρa3R

⎤
⎦(28)

and vector h (x, y) contains the nonlinear terms of the
system.

3.3 Transformation to the real eigenbasis of matrix A

We define a new change of variables using the real
eigenbasis of matrix A:{
x
y

}
= T

{
z1
z2

}
, (29)

where the columns of matrix T are the real and imagi-
nary parts of the complex conjugate eigenvectors of A,
denoted by υ1,2:

v1,2 =
{
c1
c2

}
± i

{
ω0

0

}
→ T =

[
c1 ω0

c2 0

]
, (30)

with

c1 = ξ + 3

4
ρa3eqReq

c2 = ξ
Req

aeq
− 3

4
ρa2eqR

2
eq

ω0 =
√√√√
(
1 − 4a2eq

a2eq

)
ξ2 − 3

4
ρξaeqReq. (31)

System (26),written in terms of the newvariables, takes
the form{
ż1
ż2

}
= ε

{[
0 −ω0

ω0 0

]{
z1
z2

}
+
{
f (z1, z2)
g (z1, z2)

}}
,

(32)

where functions f and g, containing the nonlinear
terms of the system, can be written as:

f (z1, z2) =
3∑

i+ j=2

1

i ! j ! fi j z
i
1z

j
2

g (z1, z2) =
3∑

i+ j=2

1

i ! j !gi j z
i
1z

j
2 (33)

Coefficients fi j and gi j are specified in the Appendix.

3.4 Transformation to normal form

The final step to characterize the bifurcation includes
transformation in complex form, near-identity trans-
formation and transformation in polar coordinates [22].
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Limit cycles in nonlinear vibrating systems 1383

This is a standard procedurewhose details can be found
in [21,23].After these last transformations, system (32)
can be written in its normal form

ṙ = εδr3, (34)

which governs the radial dynamics at the bifurcation.
As shown in [23], coefficient δ can be computed as

16δ =

⎧
⎪⎨
⎪⎩

f30 + f12 + g21 + g03
+ 1

ω0
[ f11 ( f20 + f02) − g11 (g20 + g02)]

+ 1
ω0

[ f02g02 − f20g20]

⎫
⎪⎬
⎪⎭

.

(35)

In summary, we can say that, after a large number of
variable transformations, system (10) can be written
as (34), from which we deduce that the bifurcation is
supercritical (subcritical) if δ < 0 (δ > 0).

Despite the fact that coefficients fi j and gi j are of
rather complicated form, we find—with the aid of soft-
ware for symbolic computation—that the condition for
supercriticality or subcriticality can be expressed in a
surprisingly simple manner:

Supercrit. ⇒ δ < 0 ⇒ ρ < − 8ξ

3aeqReq

Subcrit. ⇒ δ > 0 ⇒ ρ > − 8ξ

3aeqReq
(36)

It is worth noting that conditions (36) admit a very clear
graphical interpretation. Consider a curve Tm which
intersects Tv at the equilibrium point under consider-
ation and also at the highest peak of curve Tv . Let dP
denote the slope of this particular motor characteristic,
as depicted in Fig. 5.

In order to obtain dP , let us write the coordinates
of the two points defining the straight line. First, the

T

vT ( )=m PT d d

Fig. 5 Definition of slope dP

-3 -2 -1 0 1 2 3
0

0,2

0,4

0.6

σ

T

-6 -4 -2 0 2 4
0

0.2

0.4

σ

T

(a) (b)

PdHd

vT

Pd
Hd

vT

Fig. 6 Examples of a subcritical and b supercritical bifurca-
tions. a ξ = 1, α = 1, ρ = −2, aeq = 0.3, b ξ = 1, α = 1,
ρ = −15, aeq = 0.4

highest peak of curve Tv can be shown to correspond
to a = 1. Substituting this condition in (13), we obtain

σ = 3

8
ρ, T = α

2
(37)

On the other hand, the (σ, T ) coordinates of the equi-
librium point under study are directly given in (13):

σ = 3

8
ρa2eq + ξ

Req

aeq
, T = α

2
a2eq (38)

Then, from (37) and (38), the expression of dP can be
readily obtained:

1

dP
= 3ρ

4α
− 2ξ

αaeqReq
, (39)

By comparing (39) and (22), conditions (36) can be
expressed as

Supercritical ⇒ dH < dP

Subcritical ⇒ dH > dP . (40)

This last manner of characterizing the bifurcation is
certainly appealing from a graphical point of view,
since the basic information about the bifurcation can
be directly observed from the torque–speed curves, as
shown in Fig. 6 for two particular examples.

4 Conditions under which all system trajectories
are attracted towards a limit cycle

In Sect. 3, a simple condition has been obtained to
ascertain whether the Hopf bifurcation under study is
subcritical or supercritical, which in turn allows pre-
dicting the kind of limit cycle generated by the bifur-
cation (see Fig. 4). Although this distinction is rele-
vant, it is based on a local analysis and, consequently,
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1384 J. González-Carbajal, J. Domínguez

it only gives local information about the system behav-
iour. This is so in two senses: the analysis of Sect. 3
provides insight into the system dynamics

– for values of d close enough to dH (results are local
in the parameter space) and

– for trajectories close enough to the investigated
equilibrium point (results are local in the phase
plane).

In view of the aforementioned limitations, this section
addresses a new global result that complements those
of Sect. 3.

First, let us briefly recall the Poincaré–Bendixson
theorem, which is an essential result from the global
theory of nonlinear systems [24]. The theorem can be
stated, in short terms, as follows.

Consider a 2D dynamical system and a closed,
bounded region R of the phase plane which does not
contain any equilibrium points. Then, every trajectory
which is confined in R—it starts in R and remains in R
for all future time—is a closed orbit or spirals towards
a closed orbit as t → ∞. For a more rigorous and
detailed exposition of the theorem, see [24].

Let us show that, under certain circumstances, the
P–B theorem can be used to prove that all trajectories
of the system under study are attracted towards a limit
cycle.

First, it can be easily deduced from (10) that

a > 1 ⇒ ȧ < 0. (41)

Let us use variables a and β as polar coordinates on
the phase plane, according to (13), and let D denote
a circle centred at the origin of the phase plane with
a radius slightly greater than 1; say 1.01. From (41),
we can say that every trajectory starting outside region
D will enter D and remain inside for all subsequent
time. Obviously, trajectories starting inside D will also
remain inside forever. This kind of behaviour would
present D as a suitable candidate for the role of region
R in the P–B theorem, if it were not for the presence
of equilibrium points inside D.

Let us now consider the following particular situa-
tion:{
The system has only one equilibrium point
z = 1, dH < d < η < 0

}
(42)

whose torque curves are depicted in Fig. 7. We sup-
pose that the only equilibrium point of the system is

σ

T

vT

d
Hd

Fig. 7 Schematic view of the torque curves corresponding to
conditions (42)

on the right branch of curve Tv and undergoes a Hopf
bifurcation. It is also assumed that the actual slope of
the motor characteristic is d > dH and, therefore, the
equilibrium is unstable.

First, let us prove that the equilibrium point is a
repeller. Since we already know that the equilibrium is
unstable, we only need to prove that it is not a saddle.
Let Jeq be the Jacobianmatrix of system (10), evaluated
at the equilibrium point. Taking into account that a sad-
dle point has two real eigenvalues λ1, λ2 with different
signs, we can state

If det
(
Jeq

) = λ1 λ2 > 0, (43)

then the equilibrium is not a saddle.
With some simple algebra, it can be shown that, for

z = 1, condition det
(
Jeq

)
> 0 can bewritten as d < η.

Then, it is clear that, for an equilibrium point satisfying
(42), we have det

(
Jeq

)
> 0. Thus, the equilibrium is a

repeller.
Now, let us construct a new region Q, defined as D

minus a circle of infinitesimal radius around the equilib-
rium point. From the above considerations—all trajec-
tories enter D, and the equilibrium point is a repeller—
it is clear that the flow on the boundary of Q is directed
inwards, as depicted in Fig. 8.

In summary, we have obtained a closed, bounded
region Q of the phase plane which contains no equilib-
rium points and such that all trajectories of the system
enter Q and remain inside forever. Then, all conditions
of the P–B theorem are fulfilled, and we can assure
that any trajectory of the system is attracted towards
a closed orbit as t → ∞, if it is not a closed orbit
itself.
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Region 

Equilibrium 
Point

1 01= .a

x

y

Fig. 8 Flow on the boundary of region Q (dashed), under con-
ditions (42)

Finally, let us note that although the P–B theorem
does not guarantee that all trajectories tend to the same
closed orbit, all of our numerical simulations show the
presence of only one stable limit cycle, namely that
created by the Hopf bifurcation. This suggests that,
for a system verifying (42), all the system dynamics
is attracted towards a unique limit cycle.

5 Global bifurcations of the limit cycles

In Sect. 3, the creation of LCOs through Hopf bifurca-
tions has been investigated. Now, we turn to the oppo-
site question: once a limit cycle is born, does it exist
for every d > dH in the supercritical case—for every
d < dH in the subcritical case—or is it destroyed at any
point? In the latter case, it would also be interesting to
know the dynamical mechanism which makes the limit
cycle disappear.

The aim of this section is to analyse the global
dynamics of the system, tracking the evolution of
the limit cycles in order to find out how they are
destroyed—if they are destroyed at all. Since this task
is in general too complex to be carried out analytically,
we resort to numerical computation.

5.1 The subcritical case

Consider the following set of parameter values

ξ = 1, α = 1, ρ = 0, aeq = 0.3, z = 1. (44)

-2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

σ

T

Hd
Pd

Cd

vT

Fig. 9 Torque curves corresponding to parameters (44)

By using equations (22) and (39), we can obtain slopes
dH and dP , depicted in Fig. 9.

dH = −0.0715, dP = −0.1431 (45)

According to criterion (40), the Hopf bifurcation is
found to be subcritical. Thus, as represented in Fig. 4,
an unstable limit cycle is known to exist for d < dH ,
within a certain neighbourhood of dH . We are inter-
ested in tracking the evolution of this limit cycle as
slope d decreases. By numerically integrating system
(10), through a Runge–Kutta algorithm, for different
values of d, the limit cycle is found to disappear at
d = dC—see Fig. 9—with

dC = −0.0795. (46)

The dynamical mechanism whereby the limit cycle
is destroyed, which turns out to be a homoclinic bifur-
cation [21], is shown in Fig. 10. Let us follow the evo-
lution of the phase portrait. From Fig. 10a to Fig. 10b,
the Hopf bifurcation takes place: the focus becomes
stable, while an unstable limit cycle is born around it.
In Fig. 10c, the cycle has swelled considerably and
passes close to saddle point S. The homoclinic bifur-
cation occurs when the cycle touches the saddle point
(d = dC ), becoming a homoclinic orbit. In Fig. 10d,
we have d < dC and the loop has been destroyed.

It is worth noting that when the unstable limit cycle
exists—namely for dC < d < dH—it acts as a frontier
between the domains of attraction of the two stable
equilibrium points of the system—see Fig. 10b, c.

Many other cases exhibiting a subcritical bifurca-
tion, which are not shown here, have also been numeri-
cally solved. In all of them, the unstable limit cycle has
been found to disappear through a homoclinic bifurca-
tion.
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Fig. 10 Phase portraits corresponding to parameters (44). The
equilibrium points are marked with stars. The dashed loop rep-
resents the unstable limit cycle. a d = −0.070, b d = −0.073,
c d = −0.078, d d = −0.081
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Fig. 11 Torque curves corresponding to parameters (47)

5.2 The supercritical case

Consider the following set of parameters:

ξ = 1, α = 2, ρ = −10, aeq = 0.5, z = 1.

(47)

Equations (22) and (39) yield the values of slopes dH
and dP , depicted in Fig. 11.

dH = −0.2165, dP = −0.1650 (48)

Criterion (40) allows characterizing the bifurcation as
supercritical. Then, as represented in Fig. 4, we can
assure that a stable limit cycle encircles the unstable
equilibrium for d > dH , within a certain neighbour-
hood of dH . As a matter of fact, the results of Section 4
can be used here to investigate the range of slopes d for
which the limit cycle exists.

Consider the curve Tm which intersects Tv at the
equilibrium point under study and is tangent to curve
Tv at another point. Let dT stand for the slope of that
particular torque curve, as displayed in Fig. 11. Then,
it is straightforward to show that, for dH < d < dT ,
conditions (42) are fulfilled and, consequently, we can
assure that all system trajectories tend to a periodic
orbit. In the case under analysis, we have

dT = −0.1697. (49)

Note that the Poincaré–Bendixson theorem gives suffi-
cient, but not necessary, conditions for the existence of
a stable periodic orbit. Thus,we cannot deduce from the
theorem whether the limit cycle survives or not when
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d > dT . To the end of answering this question, we
resort again to a numerical resolution of system (10),
for increasing values of d. The results are displayed in
Fig. 12.

Let us track the evolution of the phase portrait. In
Fig. 12a, we have d < dH and all system trajectories
are attracted towards the only equilibrium point of the
system. Figure 12b corresponds to dH < d < dT . The
Hopf bifurcation has occurred and, therefore, the focus
has lost its stability at the same time that a stable limit
cycle has appeared around it. Note that, in Fig. 12b,
conditions (42) hold. Consequently, all system trajecto-
ries are attracted towards a periodic orbit. This scenario
belongs to the general picture shown in Fig. 8.

The numerical resultsmentioned above are only use-
ful to confirm the analytical developments of previ-
ous sections. By contrast, Fig. 12c does provide new
information about the global dynamics of the system. It
shows that the stable limit cycle is destroyed through a
saddle-node homoclinic bifurcation [21], which occurs
at d = dT . This means that the cycle disappears exactly
when conditions (42) are not fulfilled anymore. The
mechanism is as follows. At d = dT , a new equilib-
riumpoint, which immediately splits into a saddle and a
node, is created through a saddle-node bifurcation. This
new equilibrium appears precisely on the limit cycle,
transforming it into a homoclinic orbit.What we find at
d > dT , as observed in Fig. 12c, is that the limit cycle
has been replaced by a couple of heteroclinic orbits
connecting the saddle and the node.

We have found that, for the particular set of para-
meters (47), conditions (42) are necessary and suffi-
cient for the existence of a stable limit cycle. Thus, the
periodic orbit never coexists with any other attractor
of the system. Nevertheless, it should be stressed that
this is not always the case. In fact, we have also found
caseswhere the stable limit cycle is destroyed through a
homoclinic bifurcation, just like in the subcritical case.
In these situations, the global bifurcation occurs at cer-
tain slope dC > dT and, therefore, the limit cycle coex-
ists with a stable equilibrium for dT < d < dC .

As an example, consider a case with dH satisfying
dT < dH < dP . Clearly, according to (40), the Hopf
bifurcation is supercritical. However, it is not possible
for the limit cycle to be destroyed through a saddle-
node homoclinic bifurcation, because the saddle and
the node are created before the limit cycle. In fact, in
these cases, we have found the closed orbit to die in the
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Fig. 12 Phase portraits corresponding to parameters (47). The
equilibrium points are marked with stars. The solid loop rep-
resents the stable limit cycle a d = −0.22, b d = −0.19, c
d = −0.169

123



1388 J. González-Carbajal, J. Domínguez

0 5000 10000 15000
-1

-0.5

0

0.5

1

τ

u,
 a

Original System
Reduced System

0 5000 10000 15000
0

0.2

0.4

0.6

0.8

1

τ

Ω

Original System
Reduced System

0 5000 10000 15000

0.996

0.998

1

1.002

1.004

τ

Ω

Original System
Reduced System

(c)

(b)

(a)

Fig. 13 Comparison of numerical solutions of the original and
reduced systems for parameters (47) and d = −0.19. a Displace-
ment, b rotor speed (full view), c rotor speed (close-up around
resonance)

same way as the unstable limit cycle shown in Fig. 10,
i.e. through a homoclinic bifurcation due to the pres-
ence of a saddle point.

In summary, the simulations carried out suggest that,
while unstable limit cycles are destroyed by homo-
clinic bifurcations, the stable ones can disappear either
through homoclinic bifurcations or saddle-node homo-
clinic bifurcations.

6 Numerical validation and discussion

All the analytical and numerical analysis carried out
thus far has dealt with the behaviour of system (10).
Nonetheless, it should be recalled that (10) represents
the reduced system, i.e. an asymptotic approximation
to the original system (8). Thus, it would be convenient
to verify whether the obtained results hold also for the
original system. The aim of this section is to compare
numerical solutions of the original and reduced systems
in order to validate the proposed approach.

Consider again the set of parameters given at (47)
and a motor characteristic with slope d = −0.19,
which corresponds to the phase portrait exhibited in
Fig. 12b. With these parameters, the original system of
equation (8) is numerically solved for ε = 0.001 and
initial conditions⎧⎪⎪⎨
⎪⎪⎩

u0 = 0.1
u̇0 = 0
φ0 = 0
φ̇0 = 0

⎫⎪⎪⎬
⎪⎪⎭

. (50)

The reduced system (10) is numerically integrated as
well for comparison. As explained in [1], the initial
conditions for the original system

{
u0, u̇, φ0, φ̇0

}
and

those for the reduced systems
{
a0, β∗

0

}
are related by

a0 =
√
u20 + u̇20

β∗
0 = tan−1

(−u̇0
u0

)
− φ0 + φ̇0−1

d .
(51)

Introducing (50) in (51) yields
{
a0 = 0.1, β∗

0 = 5.263
}
. (52)

With these sets of initial conditions, the obtained results
for both systems are represented in Fig. 13, exhibiting
very good agreement.

It is worth stressing that, as depicted in Fig. 13, a
new kind of behaviour has been found for the mechan-
ical system under study, which consists in a vibratory
motion of the structure with slowly oscillating ampli-
tude, due to the nonideal interaction between exciter
and vibrating system. The periodic solutions of the
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averaged system correspond to quasiperiodic solutions
of the original one.

This type of motion had not been addressed before,
to the authors’ knowledge, in the literature about non-
ideal excitations. Note that the LCOs give rise, in this
case, to very large variations of the amplitude. Thus, the
effect of the studied instability may be of great impor-
tance in real applications.

We also perform numerical validation of the results
concerning subcritical Hopf bifurcations. To this end,
consider again parameters (44) and a slope of themotor
characteristic d = −0.078, which corresponds to the
phase portrait displayed in Fig. 10c. In this scenario,
as pointed out in Sect. 5.1, the unstable limit cycle is
the boundary which separates the basins of attraction
of the two attracting equilibrium points present in the
system.

Two sets of initial conditions, I.C. (1) and I.C. (2),
are selected, outside and inside the limit cycle, respec-
tively:

I.C. (1)

{
a0 = 0.1
β∗
0 = −2.8

}
, I.C. (2)

{
a0 = 0.2
β∗
0 = −2.8

}
.

(53)

Then, by using relations (51), we can compute corre-
sponding initial conditions for the original system:

I.C. (1)

⎧
⎪⎪⎨
⎪⎪⎩

u0 = 0.1
u̇0 = 0
φ0 = 2.8
φ̇0 = 1

⎫
⎪⎪⎬
⎪⎪⎭

, I.C. (2)

⎧
⎪⎪⎨
⎪⎪⎩

u0 = 0.2
u̇0 = 0
φ0 = 2.8
φ̇0 = 1

⎫
⎪⎪⎬
⎪⎪⎭

.

(54)

Note that this step has not a unique solution, because
different sets of original initial conditions can produce
the same reduced initial conditions.

The obtained numerical solutions are shown in
Fig. 14, for ε = 0.001. A good agreement between
solutions of both systems is observed. Clearly, the two
considered sets of initial conditions lead the system to
different attractors.

Finally, it is convenient to consider the timescale in
which the considered solutions of the reduced system
are valid, which is a critical point in any perturbation
analysis. It was shown in [1] that this time validity is,
at least, τ = O (1/ε). In fact, for the stable LCOs con-
sidered in this paper, we have an even stronger result.
From the averaging theory, it is known that a solution
of the averaged system which tends to an asymptoti-
cally stable periodic orbit is valid on τ ∈ [0,∞ ) for
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Fig. 14 Comparison of numerical solutions of the original (solid
line) and reduced (dashed line) systems for parameters (44) and
d = −0.078. a Displacements, b rotor speed

all variables except the angular one, i.e. the variable
which measures the flow on the closed orbit [25]. This
is equivalent to saying that we can uniformly approxi-
mate the closeness to the limit cycle, but not the posi-
tion on it. The reason is that any small deviation on the
frequency is accumulated over the cycles, giving rise
to large errors after a sufficient number of periods (see
Fig. 13).

7 Conclusions

This paper is concerned with the analytical and numer-
ical analysis of a nonlinear mechanical system, excited
by an unbalanced motor. The main contributions of the
present study are summarized as follows.
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– The Hopf bifurcations found in [1] have been ana-
lytically investigated, in order to characterize them
as subcritical or supercritical. A very simple crite-
rion, with clear graphical interpretation, has been
obtained to distinguish both types of bifurcations.

– The Poincaré–Bendixson theorem has been used to
find conditions under which all trajectories in the
averaged system are attracted towards a periodic
orbit, corresponding to a quasiperiodic solution of
the original system.

– The global bifurcations destroying the stable and
unstable limit cycles have been numerically inves-
tigated. These simulations suggest that unstable
LCOs are destroyed through homoclinic bifurca-
tions, while stable LCOs can be destroyed either
through homoclinic bifurcations or through saddle-
node homoclinic bifurcations.

– When there exists an unstable limit cycle, the sys-
tem exhibits two stable equilibrium points, whose
domains of attraction are clearly delimited by the
periodic orbit.

– The presence of LCOs in the problem under
study has been confirmed by numerically solv-
ing the original system of equations. An excellent
agreement between the solutions of the original
and reduced systems has been found. In addition,
numerical results show that LCOs can produce very
significant variations in the vibration amplitude,
which suggests that the addressed instability might
be of great relevance in real applications.
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Appendix 1: coefficients fi j and gi j

The coefficients of functions f (z1, z2) and g (z1, z2)
in (33) have the following expressions.

f20 = −3ρaR

4c2

(
3c21 + c22

)
− 2c1

(
2ξ

aR
+ 3

4
ρa2

)

(55)

f02 = −9ρaRω2
0

4c2
(56)

f11 = −3

4
ρω0a

(
a + 3R

c1
c2

)
− 2ξω0

aR
(57)

f30 = 9ρc1
4c2

(
c21 + c22

)
(58)

f03 = 9ρω3
0

4c2
(59)

f21 = 3ρω0

4c2

(
3c21 + c22

)
(60)

f12 = 9c1ρω2
0

4c2
(61)

g20 =
(
c21 + c22

)

ω0

{
9ρa

4

(
R
c1
c2

+ a

)
+ 4ξ

aR

}
(62)

g02 = 3ρω0a

4

(
a + 3R

c1
c2

)
(63)

g11 = 3

2
ρa2c1 + 3ρaR

4c2

(
3c21 + c22

)
+ 2ξc1

aR
(64)

g30 = − 9ρ

4ω0c2

(
c21 + c22

)2
(65)

g03 = −9c1ρω2
0

4c2
(66)

g21 = −9c1ρ

4c2

(
c21 + c22

)
(67)

g12 = −3ρω0

4c2

(
3c21 + c22

)
(68)

where aeq and Req have been shortly written as a and
R, respectively.

References

1. González-Carbajal, J., Domínguez, J.: Nonlinear vibrating
systems excited by a nonideal energy source with a large
slope characteristic. J. Sound Vib. (Under revision)

2. Abbasi, A., Khadem, S.E., Bab, S., Friswell, M.I.: Vibra-
tion control of a rotor supported by journal bearings and an
asymmetric high-static low-dynamic stiffness suspension.
Nonlinear Dyn. 85(1), 525–545 (2016)

3. Boyaci, A., Lu, D., Schweizer, B.: Stability and bifurca-
tion phenomena of Laval/Jeffcott rotors in semi-floating ring
bearings. Nonlinear Dyn. 79, 1535–1561 (2015)

4. Shabana, A.A.: Theory of Vibration (an introduc-
tion). Springer, New York (1996). doi:10.1007/
978-1-4612-3976-5

5. Balthazar, J.M., Mook, D.T., Weber, H.I., R, B., Fenili, A.,
Belato, D., Felix, J.L.P.: An Overview on non-ideal vibra-
tions. Meccanica 38, 613–621 (2003)

6. Munteanu, L., Chiroiu, V., Sireteanu, T.: On the response
of small buildings to vibrations. Nonlinear Dyn. 73, 1527–
1543 (2013)

7. Dimentberg, M.F., Mcgovern, L., Norton, R.L., Chapde-
laine, J., Harrison, R.: Dynamics of an unbalanced shaft
interacting with a limited power supply. Nonlinear Dyn.
13(2), 171–187 (1997)

123

http://dx.doi.org/10.1007/978-1-4612-3976-5
http://dx.doi.org/10.1007/978-1-4612-3976-5


Limit cycles in nonlinear vibrating systems 1391

8. Awrejcewicz, J., Starosta, R., Sypniewska-Kamińska, G.:
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