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Abstract We focus on the coexistence of strange non-
chaotic attractors (SNAs) and a novel mixed attractor
in a periodically driven three-degree-of-freedom vibro-
impact system with symmetry. SNAs are character-
ized by the local largest Lyapunov exponent and the
phase sensitivity property. The Poincaré map P is the
twofold composition of a six-dimensional implicit map
Q, implying the symmetry of the vibro-impact system.
Since the map Q can capture two conjugate attractors,
it is used to investigate the dynamics of the system.
With a suitable parameter combination, the Poincaré
map P of the vibro-impact system exhibits Neimark–
Sacker–pitchfork (NS-P) bifurcation. It is shown that
dense phase-locking regions exist in a small parameter
interval near thisNS-P bifurcation point. Three types of
attractors alternate in this small interval: two conjugate
phase-locked periodic attractors, two conjugate SNAs
and a special type of mixed attractor. As the force fre-
quency ω is increased gradually, many phase-locking
regions disappear, and the coexistence of two conjugate
SNAs takes place instead, which is accompanied by a
quick decrease in the width of phase-locking. If two
conjugate strange nonchaotic limit sets are suddenly
embedded in a chaotic one, a special mixed attractor is
caused by a new intermittency accompanied by sym-
metry restoring bifurcation. This symmetry restoring
bifurcation is the result of the collision between two
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conjugate strange nonchaotic limit sets and a symmet-
ric limit set.
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1 Introduction

Grebogi et al. [1] first reported an interesting and
unusual attractor named strange nonchaotic attractors
(SNAs) that exist typically in quasiperiodically forced
systems. SNAs are strange in the geometrical sense, but
are nonchaotic in the dynamical sense. Corresponding
to regular motion, they do not show sensitivity with
respect to changes in the initial conditions, i.e., all
their Lyapunov exponents are negative. However, typ-
ical trajectories experience arbitrarily long time inter-
vals of expansion similar to those for chaotic attractors.
There are various mechanisms which have been pro-
posed for the birth of SNA in quasiperiodically forced
systems, including blowout bifurcation [2], symme-
try breaking and tori-collision [3,4], fractalization of a
torus [5–8], intermittency routes [9–12], boundary cri-
sis [13,14], interior crisis [15,16], band-merging tran-
sitions [17], bubbling route [18,19]. Feudel et al. [20]
show that for the quasiperiodically forced circle map at
sufficiently large forcing, a positive Lebesgue measure
set in parameter space corresponding to SNA is inter-
spersed with regions of two-frequency quasiperiodic
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phase-locking. The study of the width of the largest
phase-locking region with zero rotation number sug-
gests that the phase-locking regions in parameter space
are connectedwith the appearance of the SNA. Further-
more, the influence of the quasiperiodic force on the
shape of the phase-locking regions in parameter space
was studied in Ref. [21]. It is shown that on the bound-
ary of the phase-locking regions a collision of stable
and unstable invariant curve takes place. This colli-
sion leads to the birth of SNAs or three-frequency torus
motion. SNAsmay be created as the shape of the phase-
locking regions turns from tongue-like to leaf-like with
the increasing of the forcing. Since SNAs studied in [1–
21] all exist in quasiperiodically forced systems, we are
facing an interesting and unavoidable question: is the
external quasiperiodic force the necessary condition for
the birth of SNAs? That is, can SNAs be observed in
other systems that are not driven by quasiperiodically
force? Grebogi et al. [1] proposed a conjecture that, in
general, continuous time systems which are not exter-
nally driven at two incommensurate frequencies should
not be expected to have SNAs except possibly on a set
of measure zero in the parameter space. An apparent
SNA in an autonomous four-dimensional mapping was
reported in [22]. However, the accurate calculation of
the largest Lyapunov exponents shows that this claim
on the observation of a SNA in the autonomous system
is not confirmed [23]. Recently, it is shown that SNA
can be observed near a codimension three bifurcation
point in a periodically driven nonlinear vibro-impact
system [24]. The author argues that the creation of SNA
is the result of the collision of doubled torus with some
unstable periodic orbits. In this paper, we observe the
coexistence of SNAs near a NS-P bifurcation point in a
periodically driven vibro-impact system with symme-
try. It is shown that the appearance of SNAs is closely
related to a quickdecrease in thewidth of phase-locking
regions, which coincides well with themechanism sug-
gested in Ref. [20,21]. The SNA is characterized by the
local largest Lyapunov exponent and the phase sensi-
tivity property.

There are symmetry-increasing bifurcations in the
discrete dynamics of symmetric mappings [25], in
which two (or more) chaotic attractors merge to form
a single chaotic attractor with symmetry. As the con-
trol parameter crosses a crisis, two attractors may both
simultaneously touch the basin boundary separating
their two basins [26]. This also means that two attrac-
tors collide with saddle unstable orbits on the basin

boundary [27,28]. After the crisis, the characteristic
behavior is an intermittent switching between behav-
iors characteristic of attractors before merging. The
termcrisis-induced intermittency is used to describe the
characteristic temporal behavior which occurs for this
crisis. It is shown that bifurcations might otherwise be
called symmetry breaking; symmetry creation via col-
lision and symmetry creation via explosion are all the
result of a collision between conjugate attractors (i.e.,
attractors that related to each other by the symmetry)
and a symmetry limit set [29]. In this paper, we reveal a
special mixed attractor which is caused by a new inter-
mittency accompanied by symmetry restoring bifurca-
tion in a periodically driven vibro-impact system. This
mixed attractor contains three components: two conju-
gate strange nonchaotic limit sets and a chaotic one.

Study on the dynamics of the vibro-impact system
has important significance for the optimization design
and noise control in the mechanical system. Because of
the existence of the impact, vibro-impact systems are
strongly nonlinear. Vibro-impact systems can exhibit
abundant dynamical behaviors and offer a good plat-
form for nonlinear dynamics and nonsmooth dynam-
ics. References [30–33] considered the single-degree-
of-freedom vibro-impact system and investigated the
existence of periodic motion and its stability, bifurca-
tion and chaotic behavior. Formulti-degree-of-freedom
vibro-impact system, two or more bifurcation types
may coexist at the bifurcation point, which leads to
various codimension two bifurcations. These bifurca-
tion types interact with each other, which has impor-
tant effects on the local dynamics of the vibro-impact
system. Using the center manifold-normal form theory
and numerical simulations, Refs. [34–37] studiedmany
codimension twobifurcations systematically, including
Hopf-flip bifurcation, Hopf–Hopf bifurcation, Hopf
bifurcation in various strong resonance cases, and
Neimark–Sacker–pitchfork (NS-P) bifurcation. When
the control parameter varies to some critical point, the
oscillator of the vibro-impact system will impact with
the impact side by zero velocity. This phenomenon in
vibro-impact systems is known as “grazing.” At the
grazing point, the Poincaré map of the system is dis-
continuous, and some nontypical bifurcations can be
induced by such nonsmooth factor [38–47]. For some
other studies on the dynamics of vibro-impact systems
in recent years, see [48–62]. In this paper, we consid-
ered the periodically driven vibro-impact system with
symmetry discussed in [37,60,61]. In this paper, we

123



Coexistence of strange nonchaotic attractors and a special mixed attractor 1189

show that dense phase-locking regions exist in a small
parameter interval near a Neimark–Sacker–pitchfork
(NS-P) bifurcation point. Three types of attractors alter-
nate in this small interval: two conjugate phase-locked
periodic attractors, two conjugate SNAs and a special
type of mixed attractor. The relationship of these three
types of attractors is also discussed.

The paper is organized as follows: Sect. 2 represents
the mechanical model, the expressions of the virtual
implicit Poincaré map Q and the computation of the
Jacobi matrix. In Sect. 3, for six-dimensional map Q,
phase sensitivity property and localLyapunovexponent
are introduced to characterize SNA. In Sect. 4, sym-
metric fixed point and symmetric limit set are defined,
and symmetry restoring bifurcation of limit set is dis-
cussed. In Sect. 5, by numerical simulations, we study
the coexistence of SNAs and a special type of mixed
attractor caused by a new intermittency near the NS-P
bifurcation point. Conclusions are given in Sect. 6.

2 Mechanical model, virtual implicit Poincaré map
Q and Jacobi matrix

A three-degree-of-freedom system with symmetric
two-sided rigid constraints is shown in Fig. 1 [37,60,
61]. The system has three masses M1, M2, M3. M2

is a horizontal shaft with two stops and is connected
to rigid plane via linear spring K2 and linear viscous
dashpot C2. M1 and M3 are connected to M2 via lin-
ear springs K1 and K3, and linear viscous dashpots

Fig. 1 Three-degree-of-freedomvibro-impact systemwith sym-
metry

C1 and C3, respectively. The excitation on mass Mi

(i = 1, 2, 3) is harmonic with amplitude Pi . For small
forcing amplitudes, the system undergoes simple oscil-
lations and behaves as a linear system. However, as the
amplitudes increased, M3 begins to collide with two
stops of M2, and the system becomes strongly nonlin-
ear. The impact is described by a coefficient of resti-
tution r . C1, C2 and C3 are assumed as proportional
damping.

According toNewton’s second law, between any two
consecutive impacts, the control equation of motions is

M1 Ẍ1= P1 sin(�T+τ)−C1(Ẋ1− Ẋ2)−K1(X1−X2)

M2 Ẍ2= P2 sin(�T+τ)+C1(Ẋ1− Ẋ2)+K1(X1−X2)

−C2 Ẋ2−K2X2+C3(Ẋ3− Ẋ2)+K3(X3−X2)

M3 Ẍ3= P3 sin(�T+τ)−C3(Ẋ3− Ẋ2)−K3(X3−X2)

⎫
⎪⎪⎬

⎪⎪⎭

,

(1)

and the nondimensional differential equation ofmotion
is given by

MŸ + 2ζCẎ + KY = P f sin(ωt + τ), (2)

where Y = [x1, x2, x3]T, M = diag[um1 , um2 , um3 ], P

= [u f1, u f2 , u f3 ]T,C=
⎡

⎣
uc1 −uc1 0
−uc1 uc1+uc2 +uc3 −uc3
0 −uc3 uc3

⎤

⎦,

K =
⎡

⎣
uk1 −uk1 0
−uk1 uk1 + uk2 + uk3 −uk3
0 −uk3 uk3

⎤

⎦ . The nondi-

mensional variables and parameters are: t = T
√

K3
M3

,

ζ = C3
2
√
K3M3

, ω = �

√
M3
K3

, f = P3
P0
, umi = Mi

M3
,

uki = Ki
K3

, uci = Ci
C3
, u fi = Pi

P3
, xi = Xi K3

P0
, where

P0 = ∑3
i=1 |Pi |, i = 1, 2, 3.

AsM3 collideswith the left and the right stops ofM2,
the nondimensional displacements of two masses sat-
isfy |x2 − x3| ≡ h, where h = K1H

P0
. Newton’s impact

model is used for the process of impact. The veloc-
ity of Mi at time t is denoted by yi (t) = ẋi (t). Let
yi− = ẋi−, yi+ = ẋi+ be the nondimensional veloci-
ties of Mi before and after impact, respectively. After
each impact, the velocities ofM2 andM3 change as fol-
lows according to the impact law and the momentum
conservation rule:

y2+ = δ11y2− + δ12y3−,

y3+ = δ21y2− + δ22y3−, (3)
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where δ11 = μ(um2 − r), δ12 = μ(1 + r), δ21 =
μum2(1 + r), δ22 = μ(1 − um2r), and μ = 1

1+um2
.

The three differential equations in Eq. (2) are cou-
pling, and M, K and C are all symmetric matrixes.
The three undamped natural frequencies are the posi-
tive roots of the following frequency equation [63]:

ud = um1um2um3ω
6 − (uk1um2um3

+ um1ukum3 + um1um2uk3)ω
4

+ (uk1ukum3 + uk1um2uk3 + um1ukuk3

− um1u
2
k3 − u2k1um3)ω

2 − uk1u2uk3 = 0 (4)

where uk = uk1 + uk2 + uk3. Equation (4) is a
cubic equation about ω2. Then ω2

i (i = 1, 2, 3) can
be solved firstly, and the three positive roots ωi are
obtained subsequently.

The dominant mode matrix can be obtained as [63]

ϕ = [ϕ1,ϕ2,ϕ3] , (5)

where ϕi =
[

uk1(−um3ω
2
i +uk3)

uk3(uk1−um1ω
2
i )

−um3ω
2
i +uk3

uk3
1

]T

, (i =
1, 2, 3). Let the dominant mass matrix be MP =
ϕT Mϕ = diag

[
MP1 MP2 MP3

]
, and the dominant

stiffness matrix be KP = ϕT Kϕ. Then the normal
mode matrix is expressed as

ψ =
[

ϕ1√
MP1

ϕ2√
MP2

ϕ3√
MP3

]
. (6)

As shown in Ref. [63], because M and C are both
symmetric matrixes, the property of orthogonality of
any two modes exists. Making the change of vari-
able Y = ψZ, based on the relations of orthonor-
mality, the corresponding mass matrix is ψT Mψ =
I (i.e., identity matrix), and the stiffness matrix is
ψT Kψ = � = diag

[
ω2
1 ω2

2 ω2
3

]
. Since C1, C2 and

C3 are assumed to be mass-proportional and stiffness-
proportional, Eq. (2) can be decoupled as

IZ̈ + CŻ + �Z = P̄ sin(ωt + τ), (7)

where C = 2ζ�, P̄ = ψTP f .
Let ψi j denote the element of ψ, based on the solu-

tions of Eq. (7), the general solution of Eq. (2) is given
by [63]

xi (t) =
3∑

j=1

ψi j {e−η j t [a j cos(ωd j t) + b j sin(ωd j t)]

+ A j sin(ωt + τ) + Bj cos(ωt + τ)}, (8a)

yi (t) = ẋi (t) =
3∑

j=1

ψi j {e−η j t

× [
(−η j a j + ωd j b j ) cos(ωd j t)

+ (−η j b j − ωd j a j ) sin(ωd j t)
]

+ A jω cos(ωt + τ) − Bjω sin(ωt + τ)} (8b)

where η j = ζω2
j , ωd j =

√
ω2

j − η2j , j = 1, 2, 3. And

a j and b j are integration constants determined by the
initial conditions, A j and Bj are amplitude constants:
A j = δ(ω2

j − ω2)P̄j , Bj = −2δη jω P̄j , where δ =
1

(2η jω)2+(ω2
j−ω2)2

and P̄j is the element of P̄.

The Poincaré section �0 is chosen at the moment
after impacting at the left stop, where x2 − x3 ≡ h.
The Poincaré map P is a composition of following four
submaps: (1) P1: the map from the instant after impact-
ing at the left stop to the instant before impacting at the
right stop; (2)P2: themap of impacting at the right stop;
(3) P3: the map from the instant after impacting at the
right stop to the instant before impacting at the left stop;
(4) P4: the map of impacting at the left stop. Hence, the
Poincarémap can be expressed as:P = P4◦P3◦P2◦P1,
where the symbol “◦” denotes the composition of two
maps.

LetQu denote themap from the instant after impact-
ing at the left stop to that after impacting at the right
stop (i.e., Qu = P2 ◦ P1) and Qv denote the map from
the instant after impacting at the right stop to that after
impacting at the left stop (i.e., Qv = P4 ◦ P3), then
P = Qv ◦ Qu . Let the coordinates of map point be
(x1, x2, x3, y1, y2, y3), where yi = ẋi is the velocity
of Mi ; Eq. (2) can be rewritten as Ẋ = F(X, t). Based
on the expressions of F(X, t), two relations F(X, t +
2π
ω

) = F(X, t) and F(−X, t + π
ω
) = −F(X, t) exist.

Defining a transformation:R : (X, t) �→ (−X, t+ nπ
ω

),
where n is an odd integer, we have

RF(X) = F(RX). (9)

Introducing a map Q = R−1 ◦ Qu , it has been proved
in [37] that

Qv = R ◦ Qu ◦ R−1, (10)

then the Poincaré map can be expressed as :

P = Qv ◦ Qu = R ◦ Qu ◦ R−1 ◦ Qu

= R2 ◦ (R−1 ◦ Qu)
2 = Q2. (11)
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Now we give the expressions of map Q. Since Q =
R−1 ◦ Qu and Qu = P2 ◦ P1, according to Eqs. (3) and
(8), the map Q can be expressed as

Q : R6 → R6 :
x1(n + 1) = f1(x1(n), x2(n), y1(n), y2(n), y3(n), τ (n))

= −
3∑

j=1

ψ1 j {e−η j t [a j cos(ωd j t) + b j sin(ωd j t)]

+ A j sin(ωt + τ(n)) + Bj cos(ωt + τ(n))}, (12a)

x2(n + 1) = f2(x1(n), x2(n), y1(n), y2(n), y3(n), τ (n))

= −
3∑

j=1

ψ2 j {e−η j t [a j cos(ωd j t) + b j sin(ωd j t)]

+ A j sin(ωt + τ(n)) + Bj cos(ωt + τ(n))}, (12b)

y1(n + 1) = f3(x1(n), x2(n), y1(n), y2(n), y3(n), τ (n))

= −
3∑

j=1

ψi j {e−η j t [(−η j a j + ωd j b j ) cos(ωd j t)

+ (−η j b j − ωd j a j ) sin(ωd j t)]
+ A jω cos(ωt + τ(n)) − Bjω sin(ωt + τ(n))},

(12c)

y2(n + 1) = f4(x1(n), x2(n), y1(n), y2(n), y3(n), τ (n))

= −δ11

3∑

j=1

ψ2 j {e−η j t [(−η j a j + ωd j b j ) cos(ωd j t)

+ (−η j b j − ωd j a j ) sin(ωd j t)]
+ A jω cos(ωt + τ(n))

− Bjω sin(ωt + τ(n))}

− δ12

3∑

j=1

ψ3 j {e−η j t [(−η j a j + ωd j b j ) cos(ωd j t)

+ (−η j b j − ωd j a j ) sin(ωd j t)]
+ A jω cos(ωt + τ(n)) − Bjω sin(ωt + τ(n))},

(12d)

y3(n + 1) = f5(x1(n), x2(n), y1(n), y2(n), y3(n), τ (n))

= −δ21

3∑

j=1

ψ2 j {e−η j t [(−η j a j + ωd j b j ) cos(ωd j t)

+ (−η j b j − ωd j a j ) sin(ωd j t)]
+ A jω cos(ωt + τ(n)) − Bjω sin(ωt + τ(n))}

− δ22

3∑

j=1

ψ3 j {e−η j t [(−η j a j + ωd j b j ) cos(ωd j t)

+ (−η j b j − ωd j a j ) sin(ωd j t)] + A jω cos(ωt + τ(n))

− Bjω sin(ωt + τ(n))}, (12e)

τ(n + 1) = f6(x1(n), x2(n), y1(n), y2(n), y3(n), τ (n))

= ωt + τ(n) − nπ (12f)

where the integration constants ai and bi (i = 1, 2, 3)
can be expressed as the function of the initial conditions
(see “Appendix 1”):

ai (x1(n), x2(n), τ (n)) = α1i x1(n)

+α2i x2(n) + α3i sin τ(n)

+α4i cos τ(n) + α5i , (13a)

bi (x1(n), y1(n), x2(n), y2(n), y3(n), τ (n)) = β1i x1(n)

+β2i x2(n) + β3i y1(n) + β4i y2(n)

+β5i y3(n) + β6i sin τ(n) + β7i cos τ(n) + β8i ,

(13b)

where α j i ( j = 1, . . . , 5) and βki (k = 1, . . . , 8) are
constants determined by system parameters. It should
be noted that the map Qu = P2 ◦ P1 ends at the
instant after impacting at the right stop. Since relation
x2 − x3 ≡ −h holds after impacting at the right stop,
x3(n+1) can be determined by x2(n+1). Hence, x3(n+
1) does not appear in Eqs. (12). However, as shown
in Eq. (12f), τ(n + 1) is added to express the phase
angle after every iteration (i.e., after impacting at the
right stop). Therefore, once the Poincaré map is estab-
lished, the coordinates of map point X in the Poincaré
section are transformed from (x1, x2, x3, y1, y2, y3) to
(x1, x2, y1, y2, y3, τ ).

The time t in Eq. (12) is the time interval from
the instant after impacting at the left stop to that after
impacting at the right stop. The initial time is always
set to zero after impacting at the left stop. Because the
relation x2 − x3 + h = 0 always holds after impact-
ing at the right stop, t is the solution of the following
equation:

G = x2(n + 1) − x3(n + 1) + h

=
3∑

j=1

ψ2 j {e−η j t [a j cos(ωd j t) + b j sin(ωd j t)]

+ A j sin(ωt + τ(n)) + Bj cos(ωt + τ(n))}

−
3∑

j=1

ψ3 j {e−η j t [a j cos(ωd j t) + b j sin(ωd j t)]

+ A j sin(ωt + τ(n)) + Bj cos(ωt + τ(n))}
+ h = 0. (14)

The value of t has not the analytic expression, implying
that Qu, Q, P are all implicit maps. Since the map Q
can capture two conjugate attractors [60], it is used to
investigate the dynamics of vibro-impact system and is
called virtual Poincaré map.
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Let the coordinates of the initial map point X0 be
(x10, x20, y10, y20, y30, τ0). According to Eq. (14), we
obtain ∂t

∂x10
, ∂t

∂x20
, ∂t

∂y10
, ∂t

∂y20
, ∂t

∂y30
, ∂t

∂τ0
by the implicit

function theorem. Let JQ(X0) denote the Jacobi matrix
of the virtual Poincaré map Q at the initial map
point X0. By the computation of partial derivatives of
Eq. (12), the Jacobi matrix of map Q can be obtained,
see “Appendix 2.”

3 Phase sensitivity property and local Lyapunov
exponent

SNA, which has negative Lyapunov exponents, was
defined as attractors which is not a finite set of points
and is not piecewise differentiable in Ref. [1,64].
Therefore, one can identify SNAs by (1) checking that
the attractor is not differentiable and (2) calculating the
largest Lyapunov exponent.

Phase sensitivity was introduced originally by
Pikovsky and Feudel [64] to capture the nondifferentia-
bility of attractors and is an effective tool to characterize
SNAs [5,15]. This method is based on the sensitivity of
the attractor to the phase of the external force.As shown
in Ref. [64], for SNAs, there are some special tangent
bifurcation points where the derivate of one branch of
attracting sets with respect to phase τ is infinite, i.e.,
the tangent of this branch is orthogonal to the τ axis,
implying the nonsmoothness of the attracting set. Now
let the attractor be given by

X = F(τ ), (15)

where X = [x1, x2, x3, y1, y2, y3]T and F = [F1(τ ),

F2(τ ), F3(τ ), F4(τ ), F5(τ ), F6(τ )]T, then the derivate
with respect to the external phase

SNi = ∂Fi
∂τ

(16)

provides a suitable tool to distinguish between strange
and nonstrange attractors,where N is the iteration num-
ber. If one of the maxima of SNi (i = 1, 2, 3, 4, 5, 6)
does not exist (i.e., infinite), the attractor is nonsmooth
and absent from differentiability, which means that the
attractor is strange.

The phase sensitivity can be estimated from the time
series of the attractor [64].Now take a time series {XN }.

For each given small ε, one can find such a n0 that the
phase difference ε0 = ∣

∣τn0 − τ0
∣
∣ < ε, then

SNi = ∂Fi
∂τ

≈
∣
∣
∣
∣
Fi (k + n0) − Fi (k)

τ (k + n0) − τ(k)

∣
∣
∣
∣ , (17)

where k+n0 ≤ N and Fi (n) denotes the nth iteration of
Fi . The maximum of SNi with N th iteration is denoted
by

γ N
i (X0, τ0) = max{SNi }. (18)

If the value of γN grows with N , which means the
arbitrarily large values of SNi appear, then the attractor
cannot have finite derivate with respect to the external
phase, i.e., the attractor is nonsmooth. And the maxi-
mum difference of the i th coordinates is

max{dN
i } = max |zi (k + n0) − zi (k)| , (19)

where zi denotes the i th coordinate. If the attractor is
nonsmooth, then max{dN

i } is expected for large N to
be of the order of the size of the attractor. As shown
in Ref. [64], for a “true” SNA this behavior does not
depend on ε0, but the time to obtain this maximum
increases. However, if the attractor is a smooth one,
then the distance of neighboring points on the attractor
gets smaller and tends to zero with decreasing phase
difference ε0.

Now we compute the Lyapunov exponents based on
the Jacobi matrix. For the initial map point X0, after
N th iteration of map Q, let the product of all the Jacobi
matrix along the whole orbit be

JN
Q (X0) = JQ(QN−1X0) · · · JQ(QX0)JQ(X0), (20)

whereQkX0 represents the kth iteration ofQ at themap
point X0. Let�N

j be eigenvalues of the matrix JN
Q (X0),

and the Lyapunov exponents can be computed as [65]

λi = lim
N→∞

1

N
ln

∣
∣
∣�

N
i

∣
∣
∣ , i = 1, 2, 3, 4, 5, 6 (21)

where the Lyapunov exponents are ranked from large
to small as λ1 ≥ λ2 ≥ · · · ≥ λ6.

When N is a finite iteration number, the local Lya-
punov exponent (i.e., the finite-time Lyapunov expo-
nents) [66–68] is obtained via Eq. (21). For example,
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for a finite iteration number K , the local Lyapunov
exponent is

λ
K
i = 1

K
ln

∣
∣
∣�

K
i

∣
∣
∣ . (22)

the local largest Lyapunov exponent λ
K
1 can be taken

as another effective measure for characterizing SNAs
[9,12,15,18,26,64,69]. As shown in Ref. [64], high
burst of the finite sum SNi corresponds to such parts

of the trajectory possessing a positive λ
K
1 . In the case

that λ
K
1 can be positive with nonzero probability, the

local largest multiplier can be arbitrarily large, imply-
ing nonexistence of the derivate with respect to the

external phase. Hence, the existence of a positive λ
K
1

means that the attractor is strange. The probability dis-

tribution of λ
K
1 takes on negative values for periodic

attractor and positive value for Chaos. However, for
SNAs, it takes both positive and negative values with
tail extending predominantly into the negative region

[70]. This means that for SNAs, λ
K
1 will fluctuate in the

vicinity of zero for some time and converge to a nega-
tive value finally. In Ref. [71], a method of generating
SNA, based on taking piece of trajectories with posi-
tive and negative Lyapunov exponents, was discussed,
which implies the importance of local Lyapunov expo-
nents.

However, Eq. (21) or (22) cannot be used to cal-
culate the Lyapunov exponents directly. The reason
for this is that, when the number of iteration of the
map Q increases, the components of matrix JN

Q (X)

may become infinite for chaotic attractors and null
for periodic attractors. To avoid the overflow trou-
ble, the QR method, as a tool of continuous orthog-
onalization, is applied repeatedly to the computation
[61,65,67,68].

Singular continuous power spectrum analysis is also
used to characterize SNAs [5,12,72–74]. There is a dis-
crete spectrum for periodic attractors and quasiperiodic
attractors, but a continuous spectrum for chaotic attrac-
tors. However, for SNAs, there is a singular continu-
ous spectrum, which is intermediate between discrete
and continuous. However, it is not clear how strictly to
separate these discrete and singular continuous com-
ponents. Dimensions of SNA were also discussed in
Ref. [74]. However, it is very difficult to verify the
result numerically because of huge computational time
required.

4 Symmetric fixed point, symmetric limit set and
symmetry restoring bifurcation

Here the singularity induced by the discontinuity of the
Poincaré map is not considered. Hence, it is assumed
that Qu , Q, P are all continuous and invertible.

Definition 1 (Symmetric fixed point). The fixed point
X∗ of map Q, i.e., the solution of

X = Q(X) (23)

is called the symmetric fixed point of the Poincaré map
P of the vibro-impact system.

The symmetry of the vibro-impact system allows
that symmetric period n-2 motions (i.e., symmetric
double impacts at right and left stops in n force
periods) exist in the suitable parameter combinations
[37,60,61]. As shown in Ref. [37], the fixed point of
map P (i.e., the solution of X = P(X)) corresponds to
the associated periodic motion, and the fixed point of
map Q (i.e., the solution of X = Q(X)) corresponds
to the associated symmetric period n-2 motion. Since
Q = R−1 ◦ Qu , X = Q(X) means RX = Qu(X),
which implies that after M3 impacts the right and the
left stops, the associated state coordinates of map point
are equal in absolute value and opposite in direction
(i.e., symmetric). For both stable and unstable cases,
the coordinates of the symmetric fixed point X∗ can be
determined analytically by X = Q(X), see “Appendix
3” for detail.

The ω-limit sets of X generated by the iterations
of the P map and the Q map are denoted by ωP(X)

and ωQ(X), respectively. A limit set can be attracting
or nonattracting. Here we define an attractor to be an
asymptotically stable ω-limit set.

Definition 2 (Conjugate fixed points and conjugateω-
limit sets) If Q(X) �= X, X and Q(X) are called a pair
of conjugate map points, two ω-limits sets ωP(X) and
ωP(Q(X)) (i.e., Q(ωP(X)) generated by X and Q(X)

(i.e., ωQ2k (X) and ωQ2k+1(X)) are called a pair of con-
jugate ω-limit sets.

The positive orbit of the map point X under the
Q map is X, Q(X), Q2(X), Q3(X), …, Q2k(X),
Q2k+1(X), …. Since the P map is the second itera-
tion of the Q map, then we have Q2k(X) = Pk(X),
and Q2k+1(X) = Pk(Q(X)). That is, the orbit of the
map point X under the map P comes from the even
number iterating of the map Q, and the orbit of the
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map point Q(X) under the map P comes from the odd
number iterating of the map Q. Therefore, we have
ωQ2k (X) = ωP(X) andωQ2k+1(X) = ωP(Q(X)). Since
ωQ(X) = ωQ2k (X) ∪ ωQ2k+1(Q(X)), then

ωQ(X) = ωP(X) ∪ ωP(Q(X)). (24)

In addition, since

Q(Pk(X)) = Q2k+1(X) = Pk(Q(X)), (25)

then

lim
k→∞ Q(Pk(X)) = lim

k→∞ Pk(Q(X)), (26)

that is

Q(ωP(X)) = ωP(Q(X)). (27)

Definition 3 (Symmetric ω-limit sets). If the ω-limit
sets of Q2k and that of Q2k+1 satisfy

ωQ2k (X) = ωQ2k+1(X), (28)

then ωQ2k (X) = ωQ2k+1(X) = ωQ(X), and ωQ2k (X),
ωQ2k+1(X) and ωQ(X) are all symmetric limit sets.

Equation (28) is equivalent to ωP(X) = ωP(Q(X)).
Hence, this definition is the same as the definition 7 in
Ref. [29]. That is, if the ω-limit sets of X are equal to
its conjugate limit set, ωP(X) is a symmetric limit set.
Moreover, an ω-limit set is symmetric if P and Q have
the same limit set (i.e., ωP(X) = ωQ(X)). Besides,
ωP(X) is symmetric if it is mapped onto itself under
the Q map (i.e., Q(ωP(X)) = ωP(X)). According to
this definition, the map Q can capture two conjugate
attractors of the Poincaré map P (i.e., two conjugate
motions in the phase space).

Proposition 4 If ωP(X) is an attractor, and

ωQ2k (X) ∩ ωQ2k+1(X) �= ∅, (29)

then ωQ2k (X),ωQ2k+1(X) andωQ(X) are all symmetric
limit sets.

Since ωQ2k (X) = ωP(X) and ωQ2k+1(X) = ωP(X),
the proof is the same as that of proposition 10 in
[29]. That is, as a parameter changes, once two con-
jugate limit sets intersect each other, symmetry restor-
ing bifurcation takes place. It was proved firstly in
[25] that if h : Rn → Rn is continuous and com-
mutes with a matrix ρ, A ∈ Rn is an attractor and if
A∩ ρ(A) �= ∅, then A = ρ(A). However, in our case,
ωQ2k (i.e., ωP(X)) is dependent on time. Since there
is not a single ρ which can take elements in ωP(X)

to its conjugate, the matrix ρ is replaced by the map
Q, and the condition A ∩ ρ(A) �= ∅ is replaced by
ωP(X) ∩ Q(ωP(X)) �= ∅, equivalently.

According to Proposition 4, it is certain that sym-
metry restoring bifurcation takes place if two conju-
gate chaotic attractors contact each other directly (i.e.,
ωQ2k (X) ∩ ωQ2k+1(X) �= ∅). In this case, chaos–
chaos intermittency is induced by the chaotic attractor-
merging crisis. It is known that the collisions of two
conjugate chaotic attractors also mean that they collide
with saddle unstable orbit (i.e., the unstable symmet-
ric fixed point) on the basin boundary. To detect the
critical point of symmetry restoring bifurcation (i.e.,
attractor-merging crisis in this case), we define a dis-
tance sequence between two conjugate chaotic limit
sets and the unstable symmetric fixed point X∗:

D(N ) =
√

(x∗
1 − x1N )2 + (y∗

1 − y1N )2 + (x∗
2 − x2N )2 + (y∗

2 − y2N )2 + (x∗
3 − x3N )2 + (y∗

3 − y3N )2, (30)

where (x∗
1 , y

∗
1 , x

∗
2 , y

∗
2 , x

∗
3 , y

∗
3 ) are the coordinates of

X∗ and (x1N , y1N , x2N , y2N , x3N , y3N ) are the coor-
dinates of map point X at the N th iteration. As the
iteration number N is increased, there is a distance
sequence {D(N )}. Since min{D(N )} = 0 indicates the
direct collision betweenωQ2k (X) andωQ2k+1(X), it can
be used to detect the critical point of attractor-merging
crisis.

However, in this paperwe reveal another special type
of symmetry restoring bifurcation which generates a
mixed limit set. This symmetry restoring bifurcation
occurs as two conjugate strange nonchaotic limit sets
are suddenly embedded in another chaotic one. In this
case, two conjugate strange nonchaotic limit sets do not
contact directly each other (i.e., min{D(N )} �= 0), but
the condition ωQ2k (X) ∩ ωQ2k+1(X) �= ∅ is also satis-
fied. Here the intersection of ωQ2k (X) and ωQ2k+1(X)

is exactly the two conjugate strange nonchaotic limit

123



Coexistence of strange nonchaotic attractors and a special mixed attractor 1195

sets. As suggested in Ref. [29], this symmetry restor-
ing bifurcation is still the result of the collision between
conjugate limit sets and a symmetric limit set.However,
since min{D(N )} �= 0, here the symmetric limit set is
not the unstable symmetric fixed point X∗, but may be
an unstable symmetric multi-periodic point, an unsta-
ble quasiperiodic limit set or an unstable chaotic limit
set.

For the two conjugate strange nonchaotic sets, map
point cannot enter directly from one into another
because they have not intersection. However, the
appearance of the chaotic set makes the transition pos-
sible. Therefore, the iteration interval of the chaotic
set is always between that of two conjugate strange
nonchaotic sets. Now for map Q2k , pick three iteration
intervals I1 ∈ [s, s + s1], I2 ∈ (s + s1, s + s1 + s2],
and I3 ∈ (s+ s1 + s2, s+ s1 + s2 + s3], where s, s1, s2,
s3 are positive integers, and s1 = s3. As s → +∞, let
ω
I1
Q2k (X),ωI2

Q2k (X) andω
I3
Q2k (X)be three components of

the ω-limit sets of map Q2k corresponding to the itera-
tion interval I1, I2 and I3, respectively. That is,ω

I1
Q2k (X)

andω
I3
Q2k (X) are two conjugate sets, andω

I2
Q2k (X) is the

chaotic set. The following proposition proves strictly
that the appearance of a mixed limit set always means
that symmetry restoring bifurcation takes place at the
same time.

Proposition 5 IfωQ2k (X) (orωQ2k+1(X)) contains two

conjugate sets ω
I1
Q2k (X) and ω

I3
Q2k (X) which do not

necessarily intersect and a chaotic set ω
I2
Q2k (X), then

ωQ(X),ωQ2k (X) andωQ2k+1(X) are all symmetric, and

ωQ2k (X) ∩ ωQ2k+1(X) ⊃ ω
I1
Q2k (X) ∪ ω

I3
Q2k (X) �= ∅.

(31)

Proof Since ωQ2k (X) is a mixed set containing three
components, then

ωQ2k (X) = ω
I1
Q2k (X) ∪ ω

I2
Q2k (X) ∪ ω

I3
Q2k (X). (32)

Because ω
I1
Q2k (X) and ω

I3
Q2k (X) are two conjugate sets,

then

Q(ω
I1
Q2k (X)) = ω

I3
Q2k (X). (33)

Equation (32) implies

ωQ2k (X) ⊃ ω
I1
Q2k (X), (34)

hence

Q(ωQ2k (X)) ⊃ Q(ω
I1
Q2k (X)). (35)

According Eqs. (33), (35) can be rewritten as

ωQ2k+1(X) ⊃ ω
I3
Q2k (X). (36)

Similarly, because

ωQ2k (X) ⊃ ω
I3
Q2k (X), (37)

and

ω
I1
Q2k (X) = Q(ω

I3
Q2k (X)), (38)

we obtain

ωQ2k+1(X) ⊃ ω
I1
Q2k (X). (39)

According to Eqs. (34), (36), (37) and (39), we
prove Eq. (31). Then, based on Proposition 4, ωQ(X),
ωQ2k (X), ωQ2k+1(X) are all symmetric limit sets since
ωQ2k (X) ∩ ωQ2k+1(X) �= ∅. ��

If ωQ2k+1(X) is a mixed set containing two conju-
gate sets and a chaotic set, the proof is similar to the
above. Proposition 9 in Ref. [29] is suitable for the case
that two conjugate sets have different initial conditions.
However, here Proposition 5 is suitable for the case that
a mixed set contains two conjugate components which
have the same initial conditions.

5 Coexistence of SNAs and a special type of mixed
attractor caused by a new intermittency near a
NS-P bifurcation point

5.1 NS-P bifurcation

Consider the vibro-impact system with system para-
meters [37]: n = 1, ζ = 0.008, R = 0.85, h =
0.08, um1 = 5, um2 = 2, um3 = 1, uk1 = 0.8,
uk2 = 1, uk3 = 1, u f 1 = 0.49, u f 2 = 0.3787240036,
u f 3 = 1, ω = 1.14388. The six eigenvalues and of the
Jacobian matrix of the Poincaré map P can be com-
puted as: λ1,2 = 0.343288 ± 0.748114i ,

∣
∣λ1,2

∣
∣ =

0.823117; λ3,4 = 0.906843 ± 0.421469i,
∣
∣λ3,4

∣
∣ =

1.000000; λ5 = 0.536714; λ6 = 1.000000. They
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Fig. 2 Phase portraits in
the projected Poincaré
section (y1, x2): a
�μ = [0.006618, 0.02]T:
two conjugate fixed points,
b �μ = [0.006616, 0.02]T:
one symmetric
quasiperiodic attractor, c
�μ =
[−0.000118,−0.0008]T:
two conjugate quasiperiodic
attractors, d
�μ = [0.00661725, 0.02]T:
from two unstable conjugate
fixed points to one
symmetric quasiperiodic
attractor

satisfy the following conditions of NS-P bifurca-
tion:

(H1) DP has three eigenvalues on the unit circle: a
pair of complex conjugate eigenvalues λ1,2 =
e±iθ0 , and a real eigenvalue λ6 = +1. The other
eigenvalues of DP are inside the unit circle;

(H2) λ1,2 = e±iθ0 satisfies nonresonant conditions:
λn1,2 �= 1, n = 1, 2, 3, 4, 5, 6, and λn1,2 �= −1,
n = 4, 5.

Thus, this combination of parameters is NS-P bifurca-
tion point.

The two-parameter dynamical behavior in the vicin-
ity of this NS-P bifurcation point is shown in Fig. 2,
taking μ =[ω, u f 2]T as the control parameter vector.
If there are different two-parameter perturbations, var-
ious dynamical behaviors take place. The map point of
the even iteration (i.e., ωQ2k (X)) is denoted by red, and
that of the odd iteration (i.e., ωQ2k+1(X)) is denoted by
blue. The virtual Poincaré map Q may exhibit two con-
jugate fixed points Xα and Xβ (Fig. 2a), one symmetric
quasiperiodic attractor (Fig. 2b), two conjugate quasi-
periodic attractors (Fig. 2c). As shown in Fig. 2d, as
a result of interaction of Neimark–Sacker bifurcation

and pitchfork bifurcation, the map point bifurcates into
two unstable conjugate fixed points firstly and settles
into one symmetric quasiperiodic attractor at last.

5.2 Coexistence of two conjugate SNAs and a special
mixed attractor induced by a novel intermittency

Choose the external force frequency ω as the control
parameter; bifurcation diagrams are shown in Fig. 3.
As ω varies in the interval ω ∈ [1.14386, 1.14408], the
bifurcation diagram is represented in Fig. 3a. Because
ωA = 1.14388 is theNS-P bifurcation point, a symmet-
ric orbit bifurcates into two conjugate periodic orbits
asω is increased and passes throughωA. Subsequently,
at ωB the two conjugate periodic orbits evolve into two
conjugate quasiperiodic orbits, which will lead to two
conjugate chaotic orbits at some point. However, these
two conjugate chaotic orbits merge to form a single
symmetric chaotic orbit via symmetry restoring bifur-
cation at ωC = 1.1440405. Because min{D(N )} = 0
at ωC , this symmetry restoring bifurcation belongs to
the so-called attractor-merging crisis, which brings
about chaos–chaos intermittency. While ω is increased
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Fig. 3 Bifurcation
diagrams. a ω ∈
[1.14386, 1.14408], b
ω ∈ [1.14403, 1.14408]

Fig. 4 Bifurcation diagrams. a ω ∈ [1.14405780, 1.14405784],
b ω ∈ [1.1440556, 1.1440557], c ω ∈ [1.1440625, 1.1440635]

to ωD , phase-locking regime appears, and SNAs will
take place in some small parameter intervals as ω

changes continuously. The amplification of the bifur-
cation diagram in the interval ω ∈ [1.14403, 1.14408]
is represented in Fig. 3b. It seems that phase-locking
exists in the parameter interval [ωD, ωE ] and [ωF , ωG ].
However, the following analysis shows that phase-
locking regime exists in the whole interval [ωD, ωG ],
including interval [ωE , ωF ].

Now the bifurcation diagram of a small interval
ω ∈ [1.14405780, 1.14405784] ⊂ [ωE , ωF ] is dis-
cussed firstly. As shown in Fig. 4a, this small interval
is not full of SNAs. The following analysis shows that
there are three states in this small interval: two conju-
gate SNAs, phase-locking and a type of mixed attrac-
tor. These three states intertwine in the whole para-
meter interval [ωE , ωF ]. However, because these three
types of attractor have different sizes, they can be dis-
tinguished by the vertical coordinate x2 in the bifur-
cation diagram. Mixed attractors own the largest size.
For the two conjugate SNAs, the smaller one is denoted
by SNA1 (red point) and the larger one is denoted by
SNA2 (blue point). It should be noted that the bifurca-
tion diagram of an arbitrary small parameter interval
in [ωE , ωF ] is always similar to that shown in Fig. 4a.
This means that the phase-locking regions are dense
in the parameter interval [ωE , ωF ] (i.e., the width of
phase-locking is smaller than the accuracy of the com-
putation and cannot be detected). Second, as shown
in Fig. 4b, while ω is decreased to some value near
ωE , the chance of the appearance of the phase-locking
and the mixed attractor degenerates, and the coexis-
tence of SNAs dominates gradually the parameter inter-
val. However, as ω is decreased gradually and pass
through ωE , phase-locking regime dominates abruptly
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Fig. 5 Phase portraits in
the projected Poincaré
section (x2, y2):
a ω = 1.14405566: two
conjugate SNAs,
b ω = 1.144058: two
conjugate phase-locked
periodic attractors,
c ω = 1.144063: two
conjugate SNAs

Fig. 6 Convergence of the
largest Lyapunov exponent
with the change of iteration
number. a ω = 1.14405566,
bω = 1.144063

the whole parameter interval, accompanying with a
small amount of mixed attractors. Third, as shown in
Fig. 4c, while ω is increased to some value near ωF ,
the coexistence of SNAs dominates gradually the para-
meter interval. However, as ω is increased gradually
and pass through ωF , phase-locking state dominates
again thewhole parameter interval, accompanyingwith
a small amount of coexistence of SNAs.

The three types of attractors are analyzed in detail
as below. Figure 5 represents two states: phase-locked
periodic attractor and SNAs. The even number iter-
ations of map Q (i.e., ωQ2k (X)) are denoted by red

points, and the odd number iterations of map Q (i.e.,
ωQ2k+1(X)) are denoted by blue points. For example,
while ω = 1.14405566 and ω = 1.144063, two con-
jugate SNAs coexist, see Fig. 5a, c, respectively. As
ω = 1.144058, two conjugate phase-locked periodic
attractors coexist, see Fig. 5b.

SNAs shown in Fig. 5a, c can be characterized
by local Lyapunov exponents and phase sensitivity.
Fig. 6a, b represents the convergence of the largest Lya-
punov exponent with the change of iteration number
in the case of ω = 1.14405566 and ω = 1.144063,
respectively. It is shown that λ1 begins with a positive
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Fig. 7 ω = 1.144063:
phase sensitivity from time
series. a 1800 iterations:
SN1 , b 1800 iterations:
maximum γ N

1 , c 105

iterations: SN1 , d 105

iterations: maximum γ N
1

Table 1 Saturated value
max{d∞

i }(i = 1, 2, 6) and
γ ∞
1 in the case of

ω = 1.144063

n0 ε0 max{d∞
1 } max{d∞

2 } max{d∞
6 } γ ∞

1

100 9.169 × 10−3 0.0092 0.0189 0.1008 1.1782 × 104

70 1.924 × 10−3 0.0090 0.0159 0.0871 3.7270 × 104

50 2.804 × 10−5 0.0065 0.0158 0.0848 1.4787 × 106

40 3.377 × 10−6 0.0087 0.0194 0.1039 1.3321 × 104

value and waves between the positive region and the
negative region in some iteration regions. After that,
λ1 enters into negative region forever and converge to
a negative number as iteration number is increased infi-
nitely. The existence of a positive local Lyapunov expo-

nent λ
N
1 implies the strange of the attractor. However,

the negative value of λ1 as N → ∞ guarantees the fact
that the attractor is nonchaotic

Nonsmoothness (i.e., strange) of the attractor can
also be determined by discussing the phase sensitivity
property. As an example, the case of ω = 1.144063
is considered. If we choose n0 = 40, then ε0 =
3.3768 × 10−6. If the iteration number N is 1800, the
value of SN1 seems very intermittent and reaches the
maximum 18.626 at N = 1183, see Fig. 7a. It seems
that γ N

1 (i.e., themaximumof SN1 ) grows infinitelywith
increasing N , see Fig. 7b. However, because the value

of SNi is estimated from time series, there is a saturated
value SNi with some N . The iteration number which
is necessary to achieve the saturated SN1 can be esti-
mated as N ∼ 1

ε0
= 3 × 105. Here as N is increased

to 336816, SN1 reaches the maximum 4.7 × 104 and
can be regarded as max{S∞

1 }, see Fig 7c. The corre-
sponding γ N

1 with change of N is shown as Fig. 7d.
The huge max{S∞

1 } means that there are some special
points where the derivate of one branch of attracting
sets with respected to phase τ is nearly infinite, imply-
ing the nonsmooth of the attractor shown in Fig. 5c.

If different ε0 are chosen, the saturated values
max{d∞

i }(i = 1, 2, 6) and γ ∞
1 are shown as Table 1.

It is shown that while n0 is decreased gradually, the
initial phase difference ε0 deceases significantly. As
n0 = 40, ε0 decreases to 3.37710−6, which is very
close to zero. If the attractor is smooth, then max{d∞

i }
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Fig. 8 ω = 1.144059:
Mixed attractor. a Phase
portraits, b convergence of
the largest Lyapunov
exponent with the change of
iteration number

must get smaller and tends to zero with the decreas-
ing phase difference ε0. However, as shown in Table 1,
although the saturated value max{d∞

i } has a small fluc-
tuation, but does not depend on ε0, implying the strange
of the attractor.

The third type of attractor is amixed attractor, which
is the combination of two conjugate strange nonchaotic
limit sets and a chaotic limit set. For example, as
ω = 1.144059, a mixed attractor is shown in Fig. 8a.
The size of the two conjugate strange nonchaotic com-
ponents is smaller than that of the chaotic one. That
is, the two conjugate strange nonchaotic limit sets are
embedded into the chaotic one. Convergence of the
largest Lyapunov exponent with the change of iteration
number is represented inFig. 8b.While N < 6×103,λ1
changes from positive region to negative region and has
a remarkable fluctuation between positive and negative
as 1 × 104 < N < 4 × 104. After that, λ1 stays in the
negative region for some time. This indicates that the
map point settles into two conjugate strange nonchaotic
limit sets first. Consequently, the map point enters into
the chaotic component and alternates always between
conjugate strange nonchaotic limit sets and chaotic one
since then. Therefore, λ1 enters into positive region
again and has an obvious fluctuation forever.

It is necessary to analyze the structure of the mixed
attractor shown in Fig. 8a. There are three components
of the attractor. Since the two conjugate strange non-
chaotic components are embedded in the chaotic one,
the chaotic component owns the largest size and is
denoted by CA. For the two conjugate strange non-
chaotic components, the small one is denoted by SNA1

and the bigger one is denoted by SNA2. Now the dia-
gram of coordinate x2 versus iteration number N is
given in Fig. 9. Figure 9a, b represents the iteration
of Q2k and Q2k+1, respectively. Figure 9c gives the

iteration of Q, which is the combination of the above
two cases. As shown in Fig. 9a, for Q2k , the map
point first enters into SNA2 before 60000 iteration or
so. Subsequently, between 60000 and 200000 itera-
tions, it wanders on the CA. Then, between 200000 and
240000 iterations, it enters into SNA1 before settling
into CA again. This process is repeated forever, and
the iteration sequence is: SNA2 → CA → SNA1 →
CA → SNA2 → CA → . . .. For Q2k+1, the itera-
tion sequence is: SNA1 → CA → SNA2 → CA →
SNA1 → CA → . . ., see Fig. 9b. For Q, the itera-
tion sequence is: TCSNAs → CA → TCSNAs →
CA → . . ., where TCSNAs denotes the two conjugate
strange nonchaotic components, see Fig. 9c. For Q2k

andQ2k+1, themap point in one conjugate strange non-
chaotic component cannot jump directly into another;
hence, the chaotic component is the necessary transi-
tion between them.Thus, thismixed attractor is induced
by the intermittency between three components: two
conjugate strange nonchaotic limit sets and a chaotic
one.

The relationship of the three types of attractors is
analyzed as follows. Each phase-locked regime corre-
sponds to a region (i.e., Arnol’d tongue) in the two
parameters plane. Between these tongues, the rota-
tional number is irrational. The bifurcation diagram in
an arbitrary small interval in [ωE , ωF ] is always sim-
ilar to that shown in Fig. 4a, implying the dense of
the phase-locking regions. If the stable and unstable
periodic orbits collide at some parameter value, tan-
gent bifurcation of two conjugate phase-locked peri-
odic orbits occurs. The possible subsequence of this
collisionmay be two-frequency quasiperiodic attractor,
chaotic attractor or SNA [20,21]. As shown in Fig. 4b,
while the external force frequency ω is increased and
passes through ωE , there is a quick decrease in the
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Fig. 9 ω = 1.144059: Intermittency between two conjugate limit sets and a chaotic one. a Q2k , b Q2k+1, c Q
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width of phase-locking. At the same time, the width
of phase-locking becomes smaller than the accuracy of
the computation and cannot be detected, which results
in the fact that the shape of the phase-locking regions
changes from tongue-like to leaf-like [21]. This tran-
sition leads to the appearance of two conjugate SNAs.
The result coincides well with the mechanism of the
birth of SNAs suggested in Ref. [20,21]. However, here
the vibro-impact system is excited by periodic force,
but not quasiperiodic force. Hence, the only difference
is that two-frequency torus and three-frequency torus
in [20,21] should be replaced by the phase-locked peri-
odic orbit and two-frequency torus in our case.

If two conjugate strange nonchaotic limit sets are
suddenly embedded in a chaotic one, a special mixed
attractor is induced by a new intermittency accom-
panying with symmetry restoring bifurcation. In this
case, two conjugate limit sets do not contact each
other directly (i.e., min{D(N )} �= 0), but the condition
ωQ2k (X) ∩ ωQ2k+1(X) �= ∅ is also satisfied. Here the
intersection of ωQ2k (X) and ωQ2k+1(X) is exactly the
two strange nonchaotic limit sets. According to Propo-
sition 5, symmetry restoring bifurcation takes place at
this critical point. As suggested in Ref. [29], this sym-
metry restoring bifurcation is the result of the collision
between two strange nonchaotic conjugate limit sets
and a symmetric limit set. However, here the symmet-
ric limit set is not the unstable symmetric fixed point
X∗, but may be an unstable symmetric multi-periodic
points, an unstable quasiperiodic limit set or an unsta-
ble chaotic limit set.

6 Conclusions

For the periodically forced three-degree-of-freedom
vibro-impact system with symmetry, the Poincaré map
P is the twofold composition of a six-dimensional
implicit map Q. Since map Q can capture two con-
jugate attractors, it is used to investigate the dynam-
ics of the system. With a suitable parameter combina-
tion, the Poincaré map P of the vibro-impact system
exhibits NS-P bifurcation. It is shown that near this NS-
P bifurcation point, phase-locking regime appears after
attractor-merging crisis. Consequently, as the exter-
nal force frequency ω is increased and passes through
some critical value, there is a quick decrease in the
width of phase-locking. As ω is increased gradually,
many of these phase-locking regions disappear, and

the coexistence of SNA appears instead. The SNA
is characterized by the local largest Lyapunov expo-
nent and the phase sensitivity property. It is shown
that the phase-locking regions are dense in a small
parameter interval. Three types of attractor alternate in
this small region: two conjugate long periodic attrac-
tors, two conjugate SNAs and a special type of mixed
attractor.

If two conjugate strange nonchaotic limit sets are
suddenly embedded in a chaotic one, a special mixed
attractor is induced by a new intermittency accompa-
nied by symmetry restoring bifurcation. In this case,
although two conjugate limit sets do not contact each
other directly, the two strange nonchaotic components
are the intersection of ωQ2k (X) and ωQ2k+1(X). Hence,
the appearance of the mixed attractor always accom-
panies with symmetry restoring bifurcation and is the
result of the collision between two conjugate strange
nonchaotic limit sets and a symmetric limit set.With the
changing of the iteration number, the map point enters
into two conjugate strange nonchaotic components and
the chaotic one in turn, indicating the intermittency
between these three limit sets. For the map P (i.e.,
Q2k or Q2k+1), the map point cannot jump from one
strange nonchaotic component to another.However, the
appearance of the chaotic component makes it possible
and plays a key role for this intermittency. Chaos–chaos
intermittency has been studied extensively [75–78].
For our knowledge, this intermittency, which occurs
between two conjugate strange nonchaotic limit sets
and a chaotic one, has not been reported in the lit-
erature till now. We believe that the results in this
paper have some positive significance for both the
optimization design of vibro-impact systems and the
study on the intermittency of nonlinear dynamical
system.
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Appendix 1: Expressions of the integration con-
stants ai and bi as the function of the initial con-
ditions

Let the coordinates of the initial map point X0 ∈ �1

be (x10, x20, y10, y20, y30, τ0). Substituting t = 0 into
the general solutions shown in Eq. (8), we obtain
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xi0 = ψi1(a1 + A1 sin τ0 + B1 cos τ0)

+ψi2(a2 + A2 sin τ0 + B2 cos τ0)

+ψi3(a3 + A3 sin τ0 + B3 cos τ0),

i = 1, 2; (40)

and

yi0 = ψi1(−η1a1 + ωd1b1 + A1ω cos τ0 − B1ω sin τ0)

+ψi2(−η2a2 + ωd2b2

+ A2ω cos τ0 − B2ω sin τ0)

+ψi3(−η3a3 + ωd3b3

+ A3ω cos τ0 − B3ω sin τ0)

i = 1, 2, 3; (41)

Besides, since x∗
2 − x∗

3 = h with t = 0, the following
relation holds:

x20 − x30 = ψ21a1 + ψ22a2 + ψ23a3

+ (ψ21A1 + ψ22A2 + ψ23A3) sin τ0

+ (ψ21B1 + ψ22B2 + ψ23B3) cos τ0

−[ψ11a1 + ψ12a2 + ψ13a3

+ (ψ11A1 + ψ12A2 + ψ13A3) sin τ0

+ (ψ11B1 + ψ12B2 + ψ13B3) cos τ0]
= h. (42)

(44), (45) and (46) generate six equations about six
unknowns ai and bi (i = 1, 2, 3). Then the integra-
tion constants ai and bi can be expressed as the fol-
lowing functions depending on the initial conditions
(x10, x20, y10, y20, y30, τ0):

ai (x10, x20, τ0) = α1i x10 + α2i x20

+α3i sin τ0 + α4i cos τ0 + α5i , (43a)

bi (x10, y10, x20, y20, y30, τ0) = β1i x10

+β2i x20 + β3i y10 + β4i y20

+β5i y30 + β6i sin τ0 + β7i cos τ0 + β8i , (43b)

where α j i ( j = 1, . . . , 5) and βki (k = 1, . . . , 8) are
constants determined by system parameters.

If the initial conditions (x10, x20, y10, y20, y30, τ0)
are replaced by (x1(n), x2(n), y1(n), y2(n), y3(n),

τ (n)), Eq. (13) is obtained.
Then we obtain the partial derivatives of the inte-

gration constants about the initial conditions (x10, x20,
y10, y20, y30, τ0):

∂ai
∂x10

= α1i ,
∂ai
∂x20

= α2i ,

∂ai
∂y10

= 0,
∂ai
∂y20

= 0,
∂ai
y30

= 0,

∂ai
τ0

= α3i cos τ0 − α4i sin τ0, (44a)

∂bi
∂x10

= β1i ,
∂bi
∂x20

= β2i ,
∂bi
∂y10

= β3i ,

∂bi
∂y20

= β4i ,
∂bi
∂y30

= β5i ,

∂bi
τ0

= β6i cos τ0 − β7i sin τ0. (44b)

Appendix 2: Expressions of Jacobi matrix

We replace the initial conditions (x1(n), x2(n), y1(n),

y2(n), y3(n), τ (n)) by (x10, x20, y10, y20, y30, τ0),
Eq. (14) is rewritten as:

G = x2(n + 1) − x3(n + 1) + h

=
3∑

j=1

ψ2 j {e−η j t [a j cos(ωd j t) + b j sin(ωd j t)]

+ A j sin(ωt + τ0) + Bj cos(ωt + τ0)}

−
3∑

j=1

ψ3 j {e−η j t [a j cos(ωd j t)

+ b j sin(ωd j t)] + A j sin(ωt + τ0)

+ Bj cos(ωt + τ0)} + h = 0 (45)

According to the implicit function theorem, we
obtain

∂t

∂x10
= − ∂G

∂x10

/∂G

∂t
,

∂t

∂x20
= − ∂G

∂x20

/∂G

∂t
,

∂t

∂y10
= − ∂G

∂y10

/∂G

∂t
,

∂t

∂y20
= − ∂G

∂y20

/∂G

∂t
,

∂t

∂y30
= − ∂G

∂y30

/∂G

∂t
,

∂t

∂τ0
= − ∂G

∂τ0

/∂G

∂t
. (46)

Let the Jacobi matrix JQ(X0) = [Ji j ]6×6. Accord-
ing to the expression shown in Eq. (12), ai j can be
computed as follows by the chain rule:

Ji1 = ∂ fi
∂a1

∂a1
∂x10

+ ∂ fi
∂b1

∂b1
∂x10

+ ∂ fi
∂a2

∂a2
∂x10

+ ∂ fi
∂b2

∂b2
∂x10

+ ∂ fi
∂a3

∂a3
∂x10

+ ∂ fi
∂b3

∂b3
∂x10

+ ∂ fi
∂t

∂t

∂x10
, (47a)
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Ji2 = ∂ fi
∂a1

∂a1
∂x20

+ ∂ fi
∂b1

∂b1
∂x20

+ ∂ fi
∂a2

∂a2
∂x20

+ ∂ fi
∂b2

∂b2
∂x20

+ ∂ fi
∂a3

∂a3
∂x20

+ ∂ fi
∂b3

∂b3
∂x20

+ ∂ fi
∂t

∂t

∂x20
,

(47b)

Ji3 = ∂ fi
∂a1

∂a1
∂y10

+ ∂ fi
∂b1

∂b1
∂y10

+ ∂ fi
∂a2

∂a2
∂y10

+ ∂ fi
∂b2

∂b2
∂y10

+ ∂ fi
∂a3

∂a3
∂y10

+ ∂ fi
∂b3

∂b3
∂y10

+ ∂ fi
∂t

∂t

∂y10
,

(47c)

Ji4 = ∂ fi
∂a1

∂a1
∂y20

+ ∂ fi
∂b1

∂b1
∂y20

+ ∂ fi
∂a2

∂a2
∂y20

+ ∂ fi
∂b2

∂b2
∂y20

+ ∂ fi
∂a3

∂a3
∂y20

+ ∂ fi
∂b3

∂b3
∂y20

+ ∂ fi
∂t

∂t

∂y20
,

(47d)

Ji5 = ∂ fi
∂a1

∂a1
∂y30

+ ∂ fi
∂b1

∂b1
∂y30

+ ∂ fi
∂a2

∂a2
∂y30

+ ∂ fi
∂b2

∂b2
∂y30

+ ∂ fi
∂a3

∂a3
∂y30

+ ∂ fi
∂b3

∂b3
∂y30

+ ∂ fi
∂t

∂t

∂y30
, (47e)

Ji6 = ∂ fi
∂a1

∂a1
∂τ0

+ ∂ fi
∂b1

∂b1
∂τ0

+ ∂ fi
∂a2

∂a2
∂τ0

+ ∂ fi
∂b2

∂b2
∂τ0

+ ∂ fi
∂a3

∂a3
∂τ0

+ ∂ fi
∂b3

∂b3
∂τ0

+ ∂ fi
∂t

∂t

∂τ0
+ ∂ fi

∂τ0
. (47f)

where ∂ai
∂x10

, ∂ai
∂x20

, ∂ai
∂y10

, ∂ai
∂y20

, ∂ai
y30

, ∂ai
τ0
, ∂bi
∂x10

, ∂bi
∂x20

, ∂bi
∂y10

,
∂bi
∂y20

, ∂bi
∂y30

, ∂bi
τ0

are shown as Eq. (44).

Appendix 3: Analytic solutions of symmetric fixed
point

Let the coordinates of the symmetric fixed point X∗
be (x∗

1 , x
∗
2 , y

∗
1 , y

∗
2 , y

∗
3 , τ

∗). For both stable and unsta-
ble cases, the coordinates of the symmetric fixed point
X∗ can be determined analytically by X∗ = Q(X∗).
Since Q = R−1 ◦ Qu , X∗ = Q(X∗) means RX∗ =
Qu(X∗), which implies that after M3 impacts the right
and the left stops, the associated state coordinates of
map point are equal in absolute value and opposite in
direction.

Let the initial time be t0 = 0 after impact-
ing at the left stop, and inserting it to Eq. (8), we
obtain the coordinates xi (t0) and yi (t0) = ẋi (t0)(i =
1, 2, 3) after impacting at the left stop. Then let the
time be t1 = nπ

ω
(i.e., half of n excitation peri-

ods) where n is an odd integer, and inserting it
into Eq. (8), we obtain the coordinates xi (t1) and
yi (t1) = ẋi (t1)(i = 1, 2, 3) after impacting at the right
stop.

Based on RX∗ = Qu(X∗), we have

xi (t0) = −xi (t1),

yi (t0) = −yi (t1)(i = 1, 2, 3); x2(t0)

−x3(t0) = −h. (48)

Then we obtain the following seven equations about
τ = τ ∗, ai and bi (i = 1, 2, 3):

3∑

j=1

ψ1 j (e
−η j t a j + A j sin τ ∗ + Bj cos τ ∗)

= −
3∑

j=1

ψ1 j {e−η j t1 [a j cos(ωd j t1) + b j sin(ωd j t1)]

−A j sin τ ∗ − Bj cos τ ∗} (49a)
3∑

j=1

ψ2 j (e
−η j t a j + A j sin τ ∗ + Bj cos τ ∗)

= −
3∑

j=1

ψ2 j {e−η j t1 [a j cos(ωd j t1) + b j sin(ωd j t1)]

−A j sin τ ∗ − Bj cos τ ∗} (49b)
3∑

j=1

ψ3 j (e
−η j t a j + A j sin τ ∗ + Bj cos τ ∗)

= −
3∑

j=1

ψ3 j {e−η j t1 [a j cos(ωd j t1) + b j sin(ωd j t1)]

−A j sin τ ∗ − Bj cos τ ∗} (49c)
3∑

j=1

ψ1 j (−η j a j + ωd j b j + A jω cos τ ∗ − Bjω sin τ ∗)

=
3∑

j=1

ψ1 j {e−η j t1 [(−η j a j

+ωd j b j ) cos(ωd j t1) + (−η j b j − ωd j a j ) sin(ωd j t1)]
−A jω cos τ ∗ + Bjω sin τ ∗} (49d)

3∑

j=1

ψ2 j (−η j a j + ωd j b j + A jω cos τ ∗ − Bjω sin τ ∗)

=
3∑

j=1

ψ2 j {e−η j t1 [(−η j a j

+ωd j b j ) cos(ωd j t1) + (−η j b j − ωd j a j ) sin(ωd j t1)]
−A jω cos τ ∗ + Bjω sin τ ∗} (49e)

3∑

j=1

ψ3 j (−η j a j + ωd j b j + A jω cos τ ∗ − Bjω sin τ ∗)
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=
3∑

j=1

ψ3 j {e−η j t1 [(−η j a j + ωd j b j ) cos(ωd j t1)

+ (−η j b j − ωd j a j ) sin(ωd j t1)]
−A jω cos τ ∗ + Bjω sin τ ∗} (49f)

3∑

j=1

ψ2 j (e
−η j t a j + A j sin τ ∗ + Bj cos τ ∗)

−
3∑

j=1

ψ3 j (e
−η j t a j + A j sin τ ∗ + Bj cos τ ∗) = −h.

(49g)

By elimination and simplification, we obtain the fol-
lowing equation about τ ∗:

u cos τ ∗ + v sin τ ∗ = h (50)

where u and v are constants determined by the system
parameters. Then τ ∗ can be solved as

τ ∗ =
{
2 tan−1

(
v±√

u2+v2−h2
u+h

)
, u + h �= 0

2 tan−1
( h−u

2v

)
, u + h = 0

. (51)

Subsequently, inserting the expression of τ ∗ into
Eq. (49), we obtain expressions of integration constants
ai and bi (i = 1, 2, 3). Inserting the value of ai , bi
and τ ∗ into Eq. (8), and letting the time t = 0, we
obtain the coordinates (x∗

1 , x
∗
2 , y

∗
1 , y

∗
2 , y

∗
3 , τ

∗) of the
symmetric fixed point X∗.
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