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Abstract Thermal shock-induced vibration suppres-
sion of an axiallymoving beamwith a nonlinear energy
sink (NES) is investigated. Owing to thermal shock on
the beam, the beam is subjected to excessive vibra-
tions. The equation for the transverse vibration of the
beam with thermal shock is established using Hamil-
ton’s principle, and the equation for the beamwithNES
is approximated by the Galerkin method. A numerical
algorithm is used to obtain the displacement responses
of the beamwith and without NES attached under ther-
mal shock. The NES efficiencies at different positions
are obtained. Results show the NES can absorb a large
number of vibrational energy.

Keywords Thermal shock · Nonlinear energy sink ·
Moving beam

1 Introduction

In the study of aircraft with an axially speed, many
models are initially treated as static free beams, and

Y.-W. Zhang (B) · B. Yuan · B. Fang
Faculty of Aerospace Engineerings, Shenyang Aerospace
University, Shenyang 110136, China
e-mail: zhangyewei1218@126.com

L.-Q. Chen
Shanghai Institute of Applied Mathematics and Mechanics,
Shanghai University, Shanghai 200072, China

L.-Q. Chen
Department of Mechanics, Shanghai University,
Shanghai 200444, China

the effect of axial motion is not considered. However,
when the aircraft flies at a high speed, it produces a high
temperature of thousands of degrees Celsius. Aerody-
namic heating can affect the dynamic environment; in
particular, induced vibration caused by sudden temper-
ature changes with thermal shock in the structure.

Gilat et al. [1] considered the dynamic responses
of the metal matrix-reinforcing laminated composite
plates under thermomechanical coupling effect and
solved the problem byRunge–Kuttamethods. Ghayesh
et al. [2] investigated the nonlinear dynamics of an axi-
ally moving beam with time-dependent axial speed,
including numerical results for the nonlinear resonant
response of the system in the subcritical speed regime
and global dynamical behavior. Chen andYang [3] used
the method of multiple scales to study the nonlinear
free transverse vibration of an axially moving beam.
Ghayesh et al. [4] investigated the nonlinear forced
dynamics of an axially moving viscoelastic beam in the
supercritical speed regime, when the system is beyond
the first instability.

Hein et al. [5] conducted a thermal shock analy-
sis of functionally graded and layered materials using
a numerical method. Ghayesh et al. [6] investigated
the thermomechanical nonlinear dynamics of a buck-
led axially moving beam numerically with special con-
sideration to the case with a three-to-one internal reso-
nancebetween thefirst twomodes.YaoZhangand Jing-
rui Zhang [7] investigated the combined control of fast
attitude maneuver and stabilization for large complex
spacecraft. Ding and Chen [8] applied the fast Fourier
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transform to explore the natural frequencies of nonlin-
ear vibrations of axially moving beams. Ghayesh et al.
[9] investigated numerically the coupled longitudinal–
transverse nonlinear dynamics of an axially accelerat-
ing beam, and this problem is classified as a paramet-
rically excited gyroscopic system. Shi-rong Li et al.
[10] put forward the transient dynamic responses of an
isotropic beam subjected to thermal shock with the use
the differential quadrature method. Burak Özhan and
Pakdemirli [11] applied steady-state solutions based
on a model with arbitrary linear and cubic operators
to study an axially moving Euler–Bernoulli beam and
an axially moving viscoelastic beam. Ghayesh et al.
[12] investigated the nonlinear coupled longitudinal–
transverse vibrations and stability of an axially mov-
ing beam subjected to a distributed harmonic external
force, which is supported by an intermediate spring.
Rostam et al. [13] proposed six different vibration con-
trol strategies to suppress both the flexural and tor-
sional vibrations of a curved beam traversed by off-
center moving loads. Ghayesh et al. [14] investigated
an axially moving beam with coupled longitudinal and
transverse displacements by considering a case with a
three-to-one internal resonance.

To suppress the transverse vibration caused by
thermal shock, several researchers have used active
control methods, including boundary control method
and distributed control method to design the con-
troller and actuator. However, these methodologies are
more complex than their passive counterparts. Several
researchers have studied how to improve the perfor-
mance of nonlinear energy sink to dissipate the primary
system oscillatory energy [15–17]. Different points of
view are considered for a comprehensive review of
previous studies associated with the current work. A
nonlinear energy sink (NES) is a dynamic system that
composed of a small mass, a damper, and a nonlinear
stiffness spring. In such a system, vibration energy can
be “pumped” from the linear part to the nonlinear part
[18–21], and the NES can perform over low-frequency
and high-frequency ranges and transfer and dissipate
significant vibration energy.

Angelo andDaniele [22] presented the use of nonlin-
ear energy sink as a passive control device is extended
here to a nonlinear elastic string, in internal resonance
conditions, excited by an external harmonic force.
Zhang et al. [23] analyzed the effectiveness of an NES
connected to an axially moving string and proved that
the NES can effectively suppress the vibration of the

axially moving string with transverse wind loadings.
Yang et al. [24] conducted a numerical study on a pipe
NES system and found that the system can efficiently
transfer anddissipate the vibration energy causedby the
fluidmovement in the pipe. Kani et al. [25] investigated
the vibration control of a nonlinear simply supported
beamwith an essentially nonlinear attachment andopti-
mized theNESparameterswith the use of both sensitiv-
ity analysis and particle swarm optimization method.
Ahmadabadi and Khadem [26] investigated grounded
and ungrounded configurations of NES attached to a
cantilever beam and found that the latter effectively dis-
sipates vibration energy. Georgiades and Vakakis [27]
utilized numerical methods to prove that input shock
energy is locally dissipated and rapidly transferred from
a linear, flexible simply supported beam to the attached
NES. Masoumeh Parseh et al. [28] investigated steady-
state dynamic of the beam by two different theories of
Euler–Bernoulli and Timoshenko. Complex averaging
method combined with arc length continuation is used
to achieve an approximate solution for the steady-state
vibrations of the system based on 1:1 resonance condi-
tion.

Previous studies on the thermal shocks in beams
used cantilever beams or simply supported beams,
instead ofmovingbeams, asmodels. Thus, in this study,
the suppression of thermal shock-induced vibration of
an axially moving beamwith an NES is examined. The
equation for the transverse vibration of the beam is
established using Hamilton’s principle, and the equa-
tion for the beam with an NES was approximated by
the Galerkin method. The primary system can be well
controlled by choosing proper parameters of the NES
on the premise of the best system performance. The
results of the numerical algorithm used to obtain the
displacement responses of the beams with NES and
without NES attached under the thermal shock show
that the control effect of NES and the NES efficiency
are good and could help to reduce the axially moving
beam oscillations rapidly.

2 Dynamical model

The target system, as depicted in Fig. 1, consists of an
axially moving beam with simply supported ends on
which a NES is attached and thermal shock is imposed
on it. Compared their equations of motion with Ref.
[23], the main emphasis is to study the impact of
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Fig. 1 Axially moving
beam with nonlinear energy
sink

v
x

thermal shock, butNES is connected between the string
and the ground in Ref. [23].

The length of the beam is l, the flexural rigidity
is EI, the density per unit length is ρ, the movement
speed of the beam in the axial direction of the rigid
body is V, I is the moment of inertia, η is the viscosity
coefficient of the beam material, the nonlinear (cubic)
spring stiffness is K , the NES dissipation is D, and the
NESmass ismNES. The transverse displacements of the
beam and the NES relative to the horizontal X -axis are
represented by Y (X, T ) and U (X, T ). The governing
equation of motion can be obtained using Hamilton’s
principle, as shown in the following equation [29]:

ρ

(
∂2Y (X, T )

∂T 2 + 2V
∂2Y (X, T )

∂X∂T
+ V 2 ∂2Y (X, T )

∂X2

)

−
(
P ′ ∂Y (X, T )

∂X
+ P

∂2Y (X, T )

∂X2

)

+E I
∂4Y (X, T )

∂X4 + ηI
∂5Y (X, T )

∂X4∂T
+ dM(X)

dX

+
{
K [Y (xd , T ) −U (xd , T )]3

+ D

(
∂Y (xd , T )

∂T
− ∂U (xd , T )

∂T

)}

δ(X − xd) = 0 (1)

mNES
∂2U (xd , T )

∂T 2 + K [U (xd , T ) − Y (xd , T )]3

+ D

[
∂U (xd , T )

∂T
− ∂Y (xd , T )

∂T

]
= 0 (2)

where

P(x) = −
∫ l

x
ρvtdx + N (x) (3)

N (x) =
∫ h

0
Ewα�T̄ (x, z, t)dz (4)

M(x) =
∫ h

0
Ewα�T̄ (x, z, t)zdz (5)

where P is the axial force, N is the thermal axial force,
M is the thermal bendingmoment, h is the height of the
beam cross section, z is the coordinate in the direction
of thickness,w is the width of the beam cross section, α
is the linear expansion coefficient, T̄ is the temperature
field under thermal shock, and xd is the NES position
on the beam.

The following is non-dimensional quantities

x = X

L
, y = Y

L
, t = T

L2

√
EI

ρ
,

v = VL

√
ρ

EI
, p′ = P ′L3

EI
p = PL2

EI
,

α1 = η

L2

√
I

ρE
,m′ = dM

dX

L3

EI
, k = KL6

EI
,

σ = DL2

√
ρEI

, ε = mNES
ρ

(6)

Substituting Eq. (6) into Eqs. (1) to (2) yields the fol-
lowing dimensionless form

∂2y(x, t)

∂t2
+ 2v

∂2y(x, t)

∂x∂t
+ v2

∂2y(x, t)

∂x2

−
(
p′ ∂y(x, t)

∂x
+ p

∂2y(x, t)

∂x2

)

+ ∂4y(x, t)

∂x4
+ α1

∂5y(x, t)

∂x4∂t
+ m′(x)

+
{
k [y(xd , t) − u(xd , t)]

3

+ σ

(
∂y(xd , t)

∂t
− ∂u(xd , t)

∂t

)}
δ(x − xd) = 0

(7)

ε
∂2u(xd , t)

∂t2
+ k [u(xd , t) − y(xd , t)]

3

+ σ

[
∂u(xd , t)

∂t
− ∂y(xd , t)

∂t

]
= 0 (8)
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3 Galerkin method

Based on theGalerkinmethod, the lateral vibration dis-
placement can be expressed by the superposition of
the intrinsic mode function of the beam at a certain
moment. The displacement expansion is assumed to be

y(x, t) =
N∑
j=1

q j (t)
 j (x) (9)

where q j (t) are the generalized coordinates of the dis-
cretized system. The beam is supported by pinned ends,
sowe designate
 j (x) = √

2 sin λ j x, λ j = jπ , where
the

√
2 factor is for ensuring orthonormality.

Substituting Eq. (9) into Eqs. (7) and (8) yields

N∑
j=1

[
φ j (x)q̈ j (t) + 2vφ′

j (x)q̇ j (t) + v2φ′′
j (x)q j (t)

−(p′φ′
j (x)q j (t) + pφ′′

j (x)q j (t))

+ φ
(4)
j (x)q j (t) + α1φ

(4)
j (x)q̇ j (t)

]

+m′(x) +

⎧⎪⎨
⎪⎩k

⎡
⎣ N∑

j=1

φ j (xd )q j (t) − u(xd , t)

⎤
⎦
3

+ σ

⎛
⎝ N∑

j=1

φ j (xd )q̇ j (t) − ∂u(xd , t)

∂t

⎞
⎠
⎫⎬
⎭ δ(x − xd ) = 0

(10)

ε
∂2u(xd , t)

∂t2
+ k(u(xd , t) −

N∑
j=1

φ j (xd )q j (t))
3

+ σ

⎛
⎝∂u(xd , t)

∂t
−

N∑
j=1

φ j (xd )q̇ j (t)

⎞
⎠ = 0 (11)

Multiplying Eq. (10) by φi (x) and integrating over the
domain [0, l] yield.

δ j j q̈ j (t) + (2va j j + α1e j j )q̇ j (t) + (v2b j j

− c j j − d j j + e j j )q j (t) + m′(x)

+

⎧⎪⎨
⎪⎩k

⎡
⎣ N∑

j=1

φ j (xd)q j (t) − u(xd , t)

⎤
⎦
3

+ σ

⎛
⎝ N∑

j=1

φ j (xd)q̇ j (t) − ∂u(xd , t)

∂t

⎞
⎠
⎫⎬
⎭φ j (xd)

= 0 (12)

ε
∂2u(xd , t)

∂t2
+ k(u(xd , t)

−
N∑
j=1

φ j (xd)q j (t))
3

+ σ

⎛
⎝∂u(xd , t)

∂t
−

N∑
j=1

φ j (xd)q̇ j (t)

⎞
⎠ = 0 (13)

where

δ j j =
∫ l

0
φ2
j (x)dx, a j j =

∫ l

0
φ j (x)φ

′
j (x)dx,

b j j =
∫ l

0
φ j (x)φ

′′
j (x)dx

c j j =
∫ l

0
p′φ j (x)φ

′
j (x)dx, d j j=

∫ l

0
pφ j (x)φ

′′
j (x)dx,

e j j =
∫ l

0
φ j (x)φ

(4)
j (x)dx

Equations (12) and (13) show a multi-degree-of-
freedom nonlinear system. The NES is applicable to
all modes of the beam and can extract the vibration
energy from each beam mode.

4 Transient temperature field

Assuming that the initial temperature of the system is
T̄0, the upper surface of the beam is suddenly subjected
to a temperature increase in T̄1 = T̄u− T̄0 and the lower
surface of the beam is subjected to a temperature incre-
ment of T̄2 = T̄e − T̄0 [29], where T̄u [30] and T̄e are
the temperatures of the upper and lower surfaces of the
beam after thermal shock, respectively. The equations
for the heat transfer process and the initial and bound-
ary conditions are described as follows:

cρ
∂ T̄

∂t
= K1

∂2T̄

∂z2
(14)

⎧⎨
⎩
T̄ (z, 0) = T̄0 = 20
T̄ (h, t) = T̄u = 10∧6 · (1 − t/0.01) · sin(πx)
T̄ (0, t) = T̄e = 10∧5 · (1 − t/0.01) · sin(πx)

(15)

where c is the specific heat capacity, K1 is the thermal
conductivity coefficient, and h is the beam thickness.
The solution of the equation can be obtained using the
variable separation approach.

T̄ (z, t) =
2k∑
n=1

2

nπ
(T̄u − T̄e) exp

{
−

(anπ

h

)2
t

}

sin
(nπ z

h

)
+ T̄u − T̄e

h
z + T̄e
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+
2k−1∑
n=1

[
− 2

nπ
(T̄u − T̄e) + 1.2732

h
(T̄0 − T̄e)

]

× exp

{
−

(anπ

h

)2
t

}
sin

(nπ z

h

)
(16)

where

a2 = K1

cρ

Equation (16) is used to obtain the temperature differ-
ence in the thickness of the beam. Equations (4) and
(5) are used to obtain the thermal axial load and the
thermal bending moment, respectively. The obtained
results are plugged into Eq. (13) to solve the vibration
of the model.

5 Effectiveness of nonlinear energy sink

After the transient temperature field has been deter-
mined and the parameters of the model equation have
been calculated, the calculation results are plugged into
the equation. The numerical algorithm is then used
to solve the equation. In the Galerkin discretization
process, the transverse displacement is approximated

by N = 2. The initial vibration of the moving model is
induced by the initial speed.Accordingly, the following
initial distributed velocity is imposed:

q̇2(0)= X, q1(0)= q2(0)= q̇1(0)= u(0)= u̇(0)= 0

(17)

where X is a constant. First, we take a set of sys-
tem parameters: K = 8000, mNES = 1, l = 1, D =
1000, η = 0.1, xd = 0.7, v = 5 and X = 0.2, andxa
is the position of the thermal bending moment. The
NES efficiency is calculated by the expression

ENES =
∫ t
0 σ

[
u̇(xd , t) − ∑N

j=1 φ j (xd)q̇ j (t)
]2

dτ

0.01 · f · X
(18)

where

f =
∫ l

0
[mxφ1(xa)]dx

Equation (18) indicates the percentage of the entire
vibration energy absorbed by the NES up to time t ,
given that the time of the thermal shock is 0.01.

In Fig. 2, the transient responses of the moving
beams with and without NES fitted at different posi-
tions (The model is symmetrical, so the latter half of

Fig. 2 Comparison of the
transient response of the
moving beam with NES and
without NES with zero
velocity at different
positions. a xd = 0.9, b
xd = 0.7, c xd = 0.6, d
xd = 0.55
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Fig. 3 Comparison of the
transient response of the
moving beam with NES and
without NES with the
velocity of 2 at different
positions. a xd = 0.9,
b xd = 0.7, c xd = 0.6,
d xd = 0.55
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Fig. 4 Comparison of the
transient response of the
moving beam with NES and
without NES with the
velocity of 2 at different
positions. a xd = 0.9,
b xd = 0.7, c xd = 0.6,
d xd = 0.55
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Fig. 5 NES efficiency versus its location (other parameters of
the NES are K = 8000, D = 1000, mNES = 1)

the model is studied and four locations are selected
roughly.) under thermal shock are compared with zero
velocity. The beam without NES exhibited sustained
oscillations under thermal shock. By contrast, the tran-
sient displacement responses of the beam with an NES
converge over time. Different positions of the beam are
then selected to examine the effect of the NES on a
vibration. The results clearly show the convergence of
the oscillation responses. The transient responses of the
moving beams with and without NES fitted at different
positions under thermal shock are compared with the
velocity of 2 in Fig. 3. In Fig. 4, the transient responses
of the moving beams with and without NES fitted at
different positions under thermal shock are compared
with the velocity of 5. The comparison of these three
graphs can be drawn that when the axial velocity varies
from 0 to 5, the speed of convergence of the vibration
is different and the convergence effect is good while
the location of the NES is in the vicinity of 0.7.
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Fig. 7 Effect of theNESmass on its efficiency (other parameters
of the NES are K = 8000, xd = 0.7,mNES = 1)

In Fig. 5, the NES efficiency versus its location
is demonstrated, the NES efficiency of is maximum,
while the location of the NES is in the vicinity of 0.25
and0.78.Thepositionof themost powerful beamvibra-
tionmust be determined to suppress the vibration of the
beam effectively. Installing the NES at this position can
effectively improve the NES efficiency. The results are
consistent with the results obtained from the above fig-
ures.

The effect of the mass parameter of the NES on its
efficiency is shown in Fig. 6. As it can be seen that
the mass parameter is 0.4, the NES efficiency is max-
imum. Comparison of (a) and (b) can also be showed
that increasing the damping parameter tends to increase
the NES efficiency. The effect of the damping parame-
ter of the NES on its efficiency is shown in Fig. 7.
With the increase in damping, the NES efficiency also
increased, but the desired amplification of the damp-
ing parameter provides some practical restrictions, and

Fig. 6 Effect of the
nonlinear mass on the NES
performance (other
parameters of the NES:
a K = 8000,
D = 1000, xd = 0.7;
b K = 8000,
D = 1200, xd = 0.7)
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it will be considered equal to 1000 by all aspects of
consideration.

6 Conclusions

In this study, an axially moving beam subjected to
a thermal shock that induces a transverse vibration
is investigated. The transverse vibration equation and
boundary conditions are formulated using Hamilton’s
principle. The approximate equation for the system
response is obtained by the Galerkin method. The tran-
sient vibration displacement response of the beam and
the NES efficiency at different locations are obtained
by solving the equation. Based on the numerical results,
the NES can irreversibly transfer and dissipate vibra-
tional energy, it is in the vicinity of 0.25 and 0.78, and
the control effect of the model is the best, where the
thermal shock is imposed on. As it can be seen, increas-
ing the damping parameter tends to increase the NES
efficiency; however, the mass parameter is suitable just
in a limited range. The primary system can bewell con-
trolled by choosing proper parameters of the NES on
the premise of the best system performance and help to
reduce the axially moving beam oscillations rapidly.
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