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Abstract Absolute nodal coordinate formulationwas
developed in the mid-1990s. The adoption of the con-
tinuum mechanics concept has allowed large displace-
ments and large deformations to be expressed in flexi-
ble body analysis. However, the analysis time increases
due to the increased number of degrees of freedom
at nodal points. Therefore, we aimed to reduce the
analysis time by converting a dimensional equation of
motion (EOM) to a non-dimensional EOM by using
non-dimensional variables of time, length, and force. A
non-dimensional mass matrix, a non-dimensional lon-
gitudinal stiffness matrix, and a non-dimensional con-
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servative force vector are derived and applied to the
non-dimensional EOM. To verify the non-dimensional
EOM, a cantilever beam with static deflection, for
which an exact solution exists, is considered. As the
number of elements is increased, the mean value by the
non-dimensional EOM converges to the static deflec-
tion. Revolute and spherical joints are used to propose
two- and three-dimensional numerical solutions based
on the non-dimensional EOM of a free-falling pendu-
lum. These solutions are compared with the numerical
solutions from using a dimensional EOM in order to
verify the non-dimensional EOM. The analysis results
for simple pendulum motion using dimensional and
non-dimensional EOMs are in good agreement.

Keywords Absolute nodal coordinate formulation ·
Continuum mechanics · Non-dimensional analysis ·
Analysis efficiency · Verification of non-dimensional
EOM

1 Introduction

Research on absolute nodal coordinate formulation
began in 1996 for finite element analysis and the for-
mulation of beams. Absolute nodal coordinate formu-
lation is a non-incremental finite element procedure for
flexible body dynamic analysis that is suitable for rigid
bodies as well as large displacement and deformation
problems [1–8]. In an absolute nodal coordinate for-
mulation, a position vector is expressed as a combina-
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tion of a shape function and nodal coordinate, which
can be expressed in various forms by selecting a poly-
nomial depending on the deformation of interest [5,6].
Furthermore, a coordinate transformation matrix based
on a rotation angle does not exist because the posi-
tion vector is directly defined in the global coordinate
system. In this way, a mass matrix is defined with a
constant. Terms related to the Coriolis force and cen-
trifugal force that occur during the coordinate transfor-
mation process are not generated [4,9]. In contrast to
a mass matrix expressed with a constant, the stiffness
matrix shows a highly nonlinear characteristic. This
matrix is based on the concept of a structuralmechanics
formulation or continuum mechanics [10,11]. Based
on this approach, absolute nodal coordinate systems
have mainly been used to model strings, strips, drapes,
beams, plates, bushings, flexible hoses, tires, and leaf
springs where large displacement or large deformation
analysis is required [12–18].

When a stiffness matrix is developed with the afore-
mentioned structural mechanics formulation, an Euler–
Bernoulli beam [19] can be represented. In this case,
the beam element is expressed as a deficient element
[4,20]. In otherwords, because the selection of the posi-
tion vector gradients related to deformation is limited
to the longitudinal direction, the deformation gradi-
ent in the lateral direction is not considered. In this
case, the deformation information for the lateral direc-
tion cannot be confirmed. When a stiffness matrix is
developed by using a continuum mechanics approach,
a Timoshenko beam is assumed [21], wherein the beam
element becomes a fully parameterized element [22].
Thus, the deformation gradients in the lateral and lon-
gitudinal directions are considered. Because the defor-
mation information of the cross section is included, the
advantage is that the deformation information of the
beam can be accurately known. However, for a fully
parameterized element with the continuum mechanics
approach, shear locking occurswith respect to bending.
Because shear locking can hinder the convergence of
a numerical solution, various solutions have been pro-
posed [6,11,23]. Among them, the most common solu-
tions are removing a lateral direction term of the shape
function polynomial, or increasing the order of the lat-
eral direction term [24,25]. However, removing the lat-
eral direction term has the drawback that the character-
istics of large deformation possessed by the absolute
nodal coordinate system can be missed because defor-
mation cannot be observed in the cross section. If the

order of the lateral direction term is increased, the effi-
ciency of the analysis decreases.

Therefore, the aim of this study was to reduce the
analysis time by converting a conventional dimen-
sional equation of motion (EOM) to a non-dimensional
EOM for a fully parameterized element. To do this,
non-dimensional variables related to the time, length,
and force were used. The three-dimensional(3-D) non-
dimensional model developed in this study was based
on the 3-D model developed by Garcia-Vallejo et al.
[22]. For the developed non-dimensional model, the
efficiency of the non-dimensional EOM was verified
by comparing the CPU time according to the num-
ber of elements through examples of a cantilever beam
and a free-falling pendulumwith revolute and spherical
joints.

2 Non-dimensional equation of motion for
absolute nodal coordinate formulation

As shown inFig. 1, an absolute nodal coordinate system
is expressed with the global position vector �r defined
in a global coordinate system and the position vec-
tor gradients ∂�r/∂x , ∂�r/∂y, and ∂�r/∂z. As shown in
Fig. 1, this comprises a fully parameterized element
because the position vector gradients in the y- and z-
axis directions (i.e., ∂�r/∂y and ∂�r/∂z) are included.
Consequently, the physical deformation of the cross
section and the deformation in the length direction are
considered. As previously noted, because the position
vector gradients in the y- and z-axis directions are
considered, the analysis time may be increased com-
pared to the gradient-deficient element. As discussed
in Sect. 1, the shear locking phenomenon could occur
[11,23].

Fig. 1 Absolute nodal coordinate system
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The equation for the displacement field suggested
by Garcia-Vallejo et al. [22] is expressed as follows:

�r =
⎡
⎣
a0 + a1x + a2y + a3z + a4xy + a5xz + a6x2 + a7x3

b0 + b1x + b2y + b3z + b4xy + b5xz + b6x2 + b7x3

c0 + c1x + c2y + c3z + c4xy + c5xz + c6x2 + c7x3

⎤
⎦

(1)

Then, a nodal coordinate can be given as

�e =
[

�r|Tx=0
∂ �r|Tx=0

∂x
∂ �r|Tx=0

∂y
∂ �r|Tx=0

∂z �r|Tx=le
∂ �r|Tx=le

∂x
∂ �r|Tx=le

∂y
∂ �r|Tx=le

∂z

]T

(2)

where x is an arbitrary point following a neutral axis
of the element for the state before deformation and le
is the length of the element.

The nodal coordinate (�e) and shape function (S) for
the element before deformation comprise the global
position vector (�r), as shown in Eq. (3) from Eq. (1),
by boundary conditions at x = 0 and x = le.

�r = [ r1 r2 r3
]T = S�e (3)

Next, the shape function in Eq. (3) is given as follows:

S = [ S1I S2I S3I S4I S5I S6I S7I S8I
]

(4)

where I is a 3 × 3 identity matrix in 3D, Si =
Si (ξ, η, ζ ) (i = 1 ∼ 8) is defined in Eq. (5), and
ξ , η, and ζ are non-dimensionalized values that refer
to ξ = x/ le, η = y/ le, and ς = z/ le. Thus,

S1 = 1 − 3ξ2 + 2ξ3, S2 = le
(
ξ − 2ξ2 + 3ξ3

)
,

S3 = le (η − ξη) , S4 = le (ς − ξς) ,

S5 = 3ξ2 − 2ξ3, S6 = le
(
ξ3 − ξ2

)
,

S7 = le (ξη) S8 = le (ξς)

(5)

Theglobal position vector inEq. (3) is �r = �r(ξ, η, ς, t),
i.e., it is a variable for space and time functions. The
shape functionS = S(ξ, η, ς) is a variable for the space
function. The nodal coordinate �e = �e(t) is a variable
for the time function. Based on the relationships of the
shape function with respect to the space and time func-
tions of the nodal coordinate, the mass matrix, stiffness
matrix, and the conservative force vector can be deter-
mined as follows:

M�̈e + K(�e)�e = �FC (6)

where M is the mass matrix, K is the stiffness matrix,
and �FC is the conservative force vector corresponding
to gravity.

During the non-dimensionalization process of the
EOM, TND can be used as a non-dimensional variable
of time, as follows [26]:

t = TNDt
∗
(
TND = LND

√
ρA

FND

)
(7)

where t is the time, ρ is the density, A is the cross-
sectional area, LND is a non-dimensional length for
the maximum length of the beam, and FND is an
arbitrary force acting on the beam and represents
a non-dimensional force unit. Note that ∗ means a
non-dimensionalized variable. There is a difference
between the physical time versus the actual analysis
time according to the non-dimensional variable TND
in Eq. (7). When TND is greater than 1, the process is
efficient because the physical time is greater than the
analysis time. As shown in Eq. (7), for TND, the analy-
sis efficiency of the non-dimensional EOM increases
with LND.

The non-dimensional variable for the length can be
expressed for a non-dimensional EOM as follows:

x = LNDx
∗, le = LNDl

∗
e , �̂e = LND�̂e∗

(8)

where the caret symbol (∧) above the characters indi-
cates a newly defined shape function and nodal coor-
dinate that differs from those in Eq. (3). In Eq. (3), the
dimensions of the shape function and nodal coordinate
are mixed. In other words, because the dimensions and
non-dimension are mixed with each other, a somewhat
complex process is required to non-dimensionalize the
EOM in Eq. (6). Therefore, it is necessary to unify
each dimension of the shape function and nodal coor-
dinate with respect to non-dimensionalization. In this
study, the shape function was determined to be non-
dimensional, and the dimension of the nodal coordi-
nate was determined to be the length. Therefore, the
position vector of Eq. (3) can be defined as

�r = Ŝ�̂e (9)

Because the coordinates corresponding to the nodal
slopes of Eq. (2) are multiplied by the length of ele-
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ment le, the nodal slopes can be represented by the
length dimension rather than being non-dimensional,
as follows:

�̂e =
[
�r|Tx=0 le

∂ �r|Tx=0
∂x le

∂ �r|Tx=0
∂y le

∂ �r|Tx=0
∂z �r|Tx=le le

∂ �r|Tx=le
∂x le

∂ �r|Tx=le
∂y le

∂ �r|Tx=le
∂z

]T
(10)

The shape function is defined as non-dimensional, as
shown in Eq. (11). The shape function newly defined
by Eq. (11) can be expressed with Eq. (11):

Ŝ =
[
S1I Ŝ2I Ŝ3I Ŝ4I S5I Ŝ6I Ŝ7I Ŝ8I

]

(11)

where the components of the newly defined shape func-
tion are defined as

S1 = 1 − 3ξ2 + 2ξ3, Ŝ2 = ξ − 2ξ2 + 3ξ3,
Ŝ3 = η − ξη, Ŝ4 = ς − ξς,

S5 = 3ξ2 − 2ξ3, Ŝ6 = le
(
ξ3 − ξ2

)
,

Ŝ7 = ξη Ŝ8 = ξς

(12)

By using Eq. (9) and the non-dimensional variable
LND, the non-dimensional global position vector can
be defined as

�r = LND�r∗ = Ŝ�̂e = LNDŜ�̂e∗ → �r∗ = Ŝ�̂e∗
(13)

The non-dimensional mass matrix, non-dimensional
stiffness matrix, and non-dimensional external conser-
vative force can be determined as shown in Eq. (14)
by using the newly defined non-dimensional position
vector of Eq. (13):

M∗
(
d2�̂e∗

dt∗2

)
+ K∗(�̂e∗

)�̂e∗ = �F∗
C (14)

where the non-dimensional nodal coordinate �̂e∗
is the

value of the nodal coordinate in Eq. (10) when non-
dimensionalized by the relationship in Eq. (13). This
yields

�̂e∗ =
[

�r∗|Tx∗=0 l
∗
e

∂ �r∗|Tx∗=0
∂x∗ l∗e

∂ �r∗|Tx∗=0
∂y∗ l∗e

∂ �r∗|Tx∗=0
∂z∗ �r∗|Tx∗=l∗e l∗e

∂ �r∗|Tx∗=l∗e
∂x∗ l∗e

∂ �r∗|Tx∗=l∗e
∂y∗ l∗e

∂ �r∗|Tx∗=l∗e
∂z∗

]T
(15)

A non-dimensional EOM to express a flexible body
consists of a mechanical or multi-body system with
inter-constraints. The differential algebraic equation

(DAE) includes aLagrangemultiplier alongwith a con-
straint equation, which is given by [27]

��
(
d2�̂e∗

dt∗2
, �λ
)

=
⎡
⎣M∗

(
d2 �̂e∗

dt∗2
)

+ �T
�̂e∗ �λ + K∗(�̂e∗

)�̂e∗ − �F∗
C

��
(
�̂e∗)

⎤
⎦ = �0

(16)

where �� is the constraint equation, �T
�̂e∗ is the Jacobian

matrix of the constraint equation, and �λ is the Lagrange
multiplier. Equation (16) is a DAE of index 3 [28].
In this study, the numerical solution to Eq. (16) was
obtained at each time step through Newmark implicit
integration [29,30]. The numerical solution for Eq. (16)
is included in Appendix 1.

The processes of determining the non-dimensional
mass matrix (M∗), non-dimensional stiffness matrix
(K∗), and non-dimensional conservative force corre-
sponding to gravity (�F∗

C ) are given in Sects. 2.1, 2.2,
and 2.3, respectively. As previously noted, the non-
dimensional EOM developed in this study was based
on the dimensional EOM developed by Garcia-Vallejo
et al. [22].

2.1 Non-dimensional mass matrix

The kinetic energy is necessary to derive the non-
dimensional mass matrix which can be determined as
shown in Eq. (17) by using the variables LND, TND,
and FND, which represent the non-dimensional length,
time, and force, respectively:
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T = 1

2

∫
A

∫ le

0
ρ

(
∂�r
∂t

)T (
∂�r
∂t

)
dxdA

= 1

2

L5
ND

T 2
ND

∫
A∗

∫ l∗e

0
ρ

(
∂�r∗

∂t∗

)T (
∂�r∗

∂t∗

)
dx∗dA∗

= 1

2

L3
ND

A
FND

∫
A∗

∫ l∗e

0

(
∂�r∗

∂t∗

)T (
∂�r∗

∂t∗

)
dx∗dA∗

(17)

Based on Eq. (17), the non-dimensional EOM can be
determined as

T ∗ = 1

2

∫
A∗

∫ l∗e

0

(
∂�r∗

∂t∗

)T (
∂�r∗

∂t∗

)
dx∗dA∗

= 1

2

(
∂ �̂e∗

∂t∗

)∫
A∗

∫ l∗e

0

(
Ŝ
)T (

Ŝ
)
dx∗dA∗

(
∂ �̂e∗

∂t∗

)

(18)

Therefore, the non-dimensional mass matrix can be
determined as

M∗ = ∫A∗
∫ l∗e
0

(
Ŝ
)T (

Ŝ
)
dx∗dA∗

= l∗e
∫
A∗
∫ 1
0

(
Ŝ
)T (

Ŝ
)
dξdA∗

(19)

2.2 Non-dimensional stiffness matrix

In this study, the continuum mechanics approach was
used to determine the non-dimensional stiffness matrix
from the non-dimensional strain energy [8,10,22].
First, the deformation gradient expressed by the nonlin-
ear Green–Lagrange strain–displacement relationship
is given in Eq. (20). The deformation gradient is itself
non-dimensional because it is defined from the non-
dimensional position vector in this study. Thus, the
previously applied symbol of “∗” representing non-
dimensionality is used.

J∗ = ∂�r∗

∂�r∗
0

= ∂�r∗

∂�x∗
∂�x∗

∂�r∗
0

= ∂�r∗

∂�x∗ J
∗(−1)
0 = ∂�r∗

∂�x∗ (20)

In Eq. (20), �r∗
0 is the non-dimensional position vector of

the element before deformation, and �x∗ is a component
defined at the local coordinate of the element before
deformation where �x∗ = [

x∗ y∗ z∗
]T
. In addition,

J∗
0 = ∂�r∗

0/∂�x∗: as a deformation gradient for the coor-
dinate before deformation, it is expressed with an iden-
tity matrix. Therefore, Eq. (20) can also be expressed
as

J∗ =
[
Ŝ,1 �̂e∗

Ŝ,2 �̂e∗
Ŝ,3 �̂e∗ ]

(21)

where Ŝ,α is ∂Ŝ/∂α, and α = 1, 2, 3 refers to α =
x∗, y∗, z∗.

Next, if the deformation gradient is used, the strain
tensor can be determined as shown in Eq. (22).
Although the strain tensor is also non-dimensional, the
∗ symbol is still used to signify non-dimensionality.

�ε∗ = 1

2

(
J∗T J∗ − I

)
= [ ε∗

11 ε∗
22 ε∗

33 ε∗
12 ε∗

13 ε∗
23

]T

(22)

Therefore, if Eq. (22) is assumed to be a symmetric
strain tensor, the six different components are given by

ε∗
11 = 1

2

(
�̂e∗T

Ŝ,Tx∗ Ŝ,x∗ �̂e∗ − 1
)

, ε∗
12 = 1

2

(
�̂e∗T

Ŝ,Tx∗ Ŝ,y∗ �̂e∗)
,

ε∗
22 = 1

2

(
�̂e∗T

Ŝ,Ty∗ Ŝ,y∗ �̂e∗ − 1
)

, ε∗
13 = 1

2

(
�̂e∗T

Ŝ,Tx∗ Ŝ,z∗ �̂e∗)
,

ε∗
33 = 1

2

(
�̂e∗T

Ŝ,Tz∗ Ŝ,z∗ �̂e∗ − 1
)

, ε∗
23 = 1

2

(
�̂e∗T

Ŝ,Ty∗ Ŝ,z∗ �̂e∗)

(23)

If a flexible body is assumed to be an isotropic homo-
geneousmaterial, the relationship between stresses and
strains can be written explicitly as follows [10]:

σi j = λ (ε11 + ε22 + ε33) + 2Gεi i , i = 1, 2, 3
σi j = 2Gεi j , i �= j

(24)

where λ is Lame’s constant andG is the shear modulus.
Then, the stress vector can be expressed as

�σ = E�ε = [σ11 σ22 σ33 σ12 σ13 σ23
]T

(25)

where E is the matrix of elastic coefficients.
Using Eqs. (22) and (25), the strain energy can be

expressed as [31]

U = 1

2

∫
A

∫ le

0
σTε dxdA

= 1

2

∫
A

∫ le

0
εTEε dxdA

= 1

2
FNDLND

∫
A∗

∫ l∗e

0
ε∗TE∗ε∗ dx∗dA∗ (26)

whereE∗ is the non-dimensional matrix of elastic coef-
ficients and is equal to

(
L2
ND/FND

)
E.
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Therefore, the non-dimensional strain energy can be
expressed as shown in Eq. (27):

U∗ = 1

2

∫
A∗

∫ l∗e

0
ε∗TE∗ε∗ dx∗dA∗

= 1

2

∫
A∗

∫ l∗e

0

⎡
⎢⎢⎢⎣

(λ+2G)

(FND/L2
ND)

(
ε∗2
11 + ε∗2

22 + ε∗2
33

)

+ λ

(FND/L2
ND)

(
ε∗
11ε

∗
22 + ε∗

11ε
∗
33 + ε∗

22ε
∗
33

)

+ 2G
(FND/L2

ND)

(
ε∗2
12 + ε∗2

13 + ε∗2
23

)

⎤
⎥⎥⎥⎦

dx∗dA∗ (27)

and where ν is Poisson’s ratio, and E is Young’s mod-
ulus. Therefore, from Eq. (27), the elastic force can be
determined as follows:

F∗
e = − ∂U∗

∂ �̂e∗

= −1

2

∫
A∗

∫ l∗e

0

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ+2G)

(FND/L2
ND)

(
2

∂ε∗
11

∂ �̂e∗ ε∗
11 + 2

∂ε∗
22

∂ �̂e∗ ε∗
22 + 2

∂ε∗
33

∂ �̂e∗ ε∗
33

)

+ λ

(FND/L2
ND)

⎛
⎝

∂ε∗
11

∂ �̂e∗ ε∗
22 + ∂ε∗

22

∂ �̂e∗ ε∗
11 + ∂ε∗

11

∂ �̂e∗ ε∗
33

+ ∂ε∗
33

∂ �̂e∗ ε∗
11 + ∂ε∗

22

∂ �̂e∗ ε∗
33 + ∂ε∗

33

∂ �̂e∗ ε∗
22

⎞
⎠

+ 2G
(FND/L2

ND)

(
2

∂ε∗
12

∂ �̂e∗ ε∗
12 + 2

∂ε∗
13

∂ �̂e∗ ε∗
13 + 2

∂ε∗
23

∂ �̂e∗ ε∗
23

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×dx∗dA∗ (28)

From Eq. (28), the derivative term for the non-
dimensional nodal coordinate of the strain tensor com-
ponent is given by

∂ε∗
i j

∂ �̂e∗ = 1

2

(
ŜT,i Ŝ, j + ŜT, j Ŝ,i

)
�̂e∗

(i, j = 1, 2, 3 j ≥ i)

(29)

SubstitutingEq. (29) intoEq. (28) and rearrangingyield

F∗
e = −K(�̂e∗

)�̂e∗
(30)

Therefore, the non-dimensional stiffness matrix is
given by

K∗(�̂e∗
) =

3∑
α=1

(λ + 2G)

2(FND/L2
ND)

×
∫
A∗

∫ l∗e

0

(
ŜT,αŜ,α �̂e∗�̂e∗T

ŜT,αŜ,α − ŜT,αŜ,α

)

× dx∗dA∗

+
3∑

α=1

3∑
β=1
β �=α

λ

2(FND/L2
ND)

×
∫
A∗

∫ l∗e

0

(
ŜT,αŜ,α �̂e∗�̂e∗T

ŜT,β Ŝ,β − ŜT,αŜ,α

)

×dx∗dA∗

+
3∑

α=1

3∑

β = 1
β �= α

G

(FND/L2
ND)

×
∫
A∗

∫ l∗e

0

(
ŜT,αŜ,β �̂e∗�̂e∗T

ŜT,αŜ,β

)
dx∗dA∗

(31)

2.3 Non-dimensional conservative force vector

For the conservative force corresponding to gravity, a
distributed load should be considered rather than a con-
centrated load. Using the non-dimensional variables
FND and LND for the force and length, respectively,
we obtain

�FT
C =

∫
A

∫ le

0
ρ �GTŜ dxdA

= FND

∫
A∗

∫ l∗e

0

ρ �GTŜ(
FND/L3

ND

) dx∗dA∗ (32)

where �G is a vector containing the acceleration of grav-
ity.

Therefore, the non-dimensional conservative force
can be expressed as

�F∗T
C =

∫
A∗

∫ l∗e

0

ρ �GTŜ(
FND/L3

ND

) dx∗dA∗ (33)

3 Verification of non-dimensional equation
of motion

As discussed in Sect. 2, a non-dimensional EOM was
determined by using the non-dimensional variables
LND, TND, and FND representing the length, time, and
force, respectively. In this section, the non-dimensional
EOM is compared with the dimensional EOM based
on the examples of a cantilever beam and free-falling
pendulum with revolute and spherical joints for verifi-
cation. Table 1 gives the specifications of the personal
computer used in this study.MATLAB� [32] was used
to verify the non-dimensional EOM because some suc-
cessful applications have been based on this software
[33–37].
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Table 1 Computer specifications for analysis

CPU Intel� CoreTM i7-4930K @ 3.40GHz

Memory capacity 32GB

Commercial software MATLAB R2012a - 64 bit

Fig. 2 Cantilever beam

Table 2 Properties and data of free-falling pendulum

Density (kg/m3) Modulus
of elastic-
ity (N/m2)

Length (m) Diameter (m)

8030 193E+09 1.00 0.20

Table 3 Non-dimensional parameter TND for various numbers
of elements

Number of elements

1 2 5 10 15 20

TND 0.32 s 0.45 s 0.71 s 1.01 s 1.24 s 1.43 s

3.1 Cantilever beam

To verify the non-dimensional EOM, a cantilever beam
with an exact solution for static deflection is consid-
ered, as shown in Fig. 2. Table 2 gives the specifica-
tions of the cantilever beam and the physical properties
of 304 stainless steel.

As given in Table 3, the non-dimensional time vari-
able TND in Eq. (7) for the non-dimensional EOM is
determined by the number of elements.

When the data in Table 3 were interpreted by using
Eq. (7), the physical timewas less than the analysis time
when TND < 1, and the physical timewasmore than the
analysis time when TND > 1. Table 4 presents the cal-
culation time for a physical time of 2 s for the cantilever
beamwhenusing thedimensional andnon-dimensional
EOMs. Figure 3 shows a graph the numerical values
from Table 4. The efficiency in terms of the calcu-
lation time was confirmed to increase when the non-

Table 4 Analysis time of dimensional and non-dimensional
equations of motion for various numbers of elements represent-
ing the cantilever beam

Number of elements

1 (s) 2 (s) 5 (s) 10 (s) 15 (s) 20 (s)

DIM 6.27 16.28 41.90 109.64 166.69 231.52

Non-DIM 28.45 38.65 54.67 93.63 114.47 131.04

Fig. 3 Comparison of analysis times with dimensional and non-
dimensional equations of motion

dimensional variable TND and the number of elements
increase. In particular, when there were 20 elements,
the calculation time efficiency was increased approxi-
mately twofold. When there were 10 elements, despite
the non-dimensional variable TND being close to unity,
using the non-dimensional EOM was more advanta-
geous in terms of the calculation time because the con-
vergence of solutions increased during the process of
finding a solution at each step.

For the case of a distributed load acting on the
cantilever beam, Eq. (34) shows the calculated sta-
tic deflection at the end node of the cantilever beam
described in Table 2:

δ = qL4

8E I
∼= −2.040 mm (34)

where δ is the static deflection at the end node of the
cantilever beam, q is the distributed load, L is the can-
tilever beam’s length, E is the Young’s modulus, and I
is the area moment of inertia.
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Table 5 Mean value of deflection for various numbers of
elements with dimensional and non-dimensional equations of
motion

Number of elements

1 (mm) 2 (mm) 5 (mm) 10 (mm) 15 (mm) 20 (mm)

DIM −1.357 −1.870 −2.014 −2.032 −2.036 −2.037

Non-DIM−1.356 −1.872 −2.015 −2.032 −2.036 −2.037

Fig. 4 Exact solution and mean value of deflection for 20
elements with dimensional and non-dimensional equations of
motion

Table 5 presents the mean value of deflection at the
end node of the cantilever beamwhen the physical time
was set according to the number of elements at 2 s. As
the number of elements increased, the mean value con-
verges to the static deflection. With 20 elements, Fig. 4
shows that the mean value is nearly the same as the
static deflection. The damping in Fig. 4 is a numerical
value, not structural damping. In this study, γ = 0.70
and β = 0.36 were selected as introduced in ADAMS
[38].

As listed in Table 5 and Fig. 5, when the analysis had
an insufficient number of elements, shear locking was
confirmed to occur. When the number of elements was
insufficient, physically nonexistent shear strain greatly
increased numerically, and the deflection of the can-
tilever beam was reduced. In other words, the normal
strain, which must occur in the direction of deflection,
decreased. Therefore, a solution close to an exact solu-
tion can be obtained when the system is divided into a
sufficient number of elements.

Fig. 5 Exact solution and shear locking phenomenon by number
of elements

Fig. 6 Free-falling pendulum with revolute joint

Table 6 Data for analysis of simple pendulum attached to rev-
olute joint with dimensional and non-dimensional equations of
motion

DIM Non-DIM

Number of elements 1 1 (TND = 0.32 s)

Step size 0.00100 s 0.00032 s

Number of iteration 2001 6263

Analysis time 37.62 s 27.96 s

3.2 Free-falling pendulum with revolute joint

The free-falling pendulum with a revolute joint exam-
ple shown in Fig. 6 was used to compare the calculation
times of dimensional and non-dimensional EOMs and
verify the accuracy of the numerical solution. The spec-
ifications and physical properties for a simple pendu-
lummotion are given in Table 2, and the analysis condi-
tions are given in Table 6. The physical calculation time
interval was set to 0.001 s. For the non-dimensional
EOM, when the number of elements was set to unity,
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Fig. 7 Iteration number with Newton–Raphsonmethod for each
time step with dimensional and non-dimensional equations of
motion

the analysis timewas shown to increase compared to the
physical time. However, when the dimensional EOM
was used, the calculation time increased instead. This
happened because the Newton–Raphson method was
used tofind a solution to the next step during the process
of finding a solution at each step. In the case of the
non-dimensional EOM, the convergence to the solution
increased compared to the convergencewith the dimen-
sional EOM. To explain this, Fig. 7 shows the iteration
number for the convergence to a solution for dimen-
sional and non-dimensional EOMs when finding the
solution in the next step. With the dimensional EOM,

Fig. 9 End node acceleration of a simple pendulum using a rigid
body model, and dimensional and non-dimensional equations of
motion

the iteration number for the convergence to a solution
increased considerably compared to the case of using
a non-dimensional EOM. This means that the conver-
gence to a solution decreased. In the case of the dimen-
sional EOM, the initial step required approximately 80
iterations. In the case of the non-dimensional EOM,one
or two iterationswere required across the entire section.
This phenomenon occurred because the convergence to
a solution increased as the high-frequency components
were canceled out through the non-dimensionalization
of the EOM.

Figure 8 shows that the analysis results of a sim-
ple pendulum motion using a rigid body were consis-
tent with the dimensional and non-dimensional EOMs.
The figure also shows the acceleration information for

Fig. 8 End node position of a simple pendulum using a rigid body model, and dimensional and non-dimensional equations of motion.
a Time versus x and y displacement, b x displacement versus y displacement
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Fig. 10 Free-falling pendulum with spherical joint

Fig. 11 Comparison of analysis times with dimensional and
non-dimensional equations of motion

the x-axis and y-axis. For the dimensional and non-
dimensional EOMs, the characteristics of the flexible
body using absolute nodal coordinates were confirmed
to be represented by the vibration phenomenon of the
early behavior, and the vibration characteristics were
offset by numerical damping (Fig. 9).

3.3 Free-falling pendulum with spherical joint

Based on the example of a free-falling pendulum with
a spherical joint shown in Fig. 10, a case was con-
sidered in which one end is connected to a spherical
joint, and a force with the magnitude of gravity is act-
ing in the y-axis and z-axis directions simultaneously.
The spherical joint facilitates three-axis rotation and is
sensitive in numerical analysis, especially to numerical
error. By using a spherical joint, the modeling accuracy
when using absolute nodal coordinates and the robust-
ness of the Newmark implicit integration method can
be determined.

Figure 10 represents a situation in which the afore-
mentioned spherical joint is connected and the force of
gravity is simultaneously acting in the y-axis and z-axis
directions. The specifications and properties for sim-
ple pendulum motion are given in Table 2. Because the
spherical joint, which is sensitive to numerical analy-
sis, was adopted, Young’s modulus was reduced to
1/1000 of its value to maintain the analysis time inter-
val. Table 3 gives the non-dimensional variable TND
according to the number of elements. Table 7 shows
the calculation times for a physical time of 2 s accord-
ing to the simple pendulum motion when using dimen-
sional and non-dimensional EOMs. Figure 11 shows a
graph of the numerical values in Table 7. For the dimen-
sional EOM, the calculation time linearly increases
as the number of elements is increased. For the non-
dimensional EOM, the calculation time was confirmed
to converge to a single value as the non-dimensional
variable TND increased.

Fig. 12 End node position of simple pendulum attached to spherical joint with dimensional and non-dimensional equations of motion.
a Time versus x and y displacement, b 3-D view
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Fig. 13 Acceleration and reaction force of simple pendulum at the position of spherical joint with dimensional and non-dimensional
equations of motion. a Time versus acceleration, b time versus reaction force

Figure 12 shows that the analysis results for a
simple pendulum motion using dimensional and non-
dimensional EOMs are in good agreement. In particu-
lar, despite the use of a sensitive spherical joint, the
agreement of the y-axis and z-axis behavior results
means that the modeling using absolute nodal coor-
dinates is accurate. The agreement of the y-axis and z-
axis behavior results can be considered to be an advan-
tage that appears when using slopes in the absolute
nodal coordinate formulation. Figure 13 shows the
acceleration and reaction force information at the joint,
the y-axis and z-axis were confirmed to have the same
results. The variations in Fig. 13 occurred because
Young’s modulus was reduced to 1/1000 of its orig-
inal value.

4 Conclusions

Studies of absolute nodal coordinate formulation began
through related research on the finite element analysis
of beams and beam formulations in 1996. One of the
weaknesses of the absolute nodal coordinate system is
that the analysis time increaseswith the number ofDOF
at the nodal point. To address this, the analysis time
was reduced in this study by converting a dimensional
equation ofmotion (EOM) to a non-dimensional EOM.
To convert a dimensional EOM to non-dimensional
EOM, the non-dimensional variables TND, LND, and
FND (related to time, length, and force, respectively)
were used. The 3-D non-dimensional model developed

in this study is based on the 3-D model developed by
Garcia-Vallejo et al. [22]. This was used to determine a
non-dimensional mass matrix, non-dimensional stiff-
ness matrix, and non-dimensional conservative force
vector, as discussed in Sect. 2.

The non-dimensional EOM was verified by using
examples of a cantilever beam and free-falling pendu-
lum with revolute and spherical joints. First, the effec-
tiveness of the non-dimensional EOM was verified by
using a cantilever beam example for which an exact
solution exists for static deflection. Increasing the num-
ber of elements of the cantilever beam was shown to
prevent shear locking, which can occur in finite ele-
ment analysis. The analysis time efficiency increased
with the non-dimensional variable TND. Next, the
example of a free-falling pendulum with a revolute
joint confirmed that the Newton–Raphsonmethod con-
verged to a solution in the next step. With the non-
dimensional EOM, the convergence speed noticeably
increased compared to the case of using a dimen-
sional EOM. The non-dimensional EOM was verified
through a comparison with a simple pendulum motion
modeled using a rigid body. The characteristics of the
absolute nodal coordinate formulationwere confirmed,
wherein both the rigid body and elastic body charac-
teristics can be expressed with the same formulation.
Finally, the example of a free-falling pendulum with a
spherical joint was considered. The usefulness of the
non-dimensional EOM was verified by the adoption
of a numerically sensitive spherical joint. In particu-
lar, when the pendulum was divided into 20 elements,
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the analysis time using a non-dimensional EOM was
reduced more than fourfold. The end node position of
the pendulum, the acceleration, and the reaction force
occurring at the joint were confirmed to be consistent
with the dimensional and non-dimensional EOMs.

The unique contributions of this study are as follows:

(1) The adoption of non-dimensional nodal coordi-
nates for an absolute nodal coordinate formulation;

(2) The development of a 3D non-dimensional model
with an absolute nodal coordinate formulation by
theuseof thenon-dimensional variablesTND, LND,
and FND for the time, length, and force, respec-
tively; and

(3) The verification of the non-dimensional EOM’s
numerical solution and analysis efficiency by using
the examples of a cantilever beam and free-falling
pendulum with revolute and spherical joints.

Acknowledgements This researchwas supported by theKorea
Institute of Industrial Technology (KITECH) and the Agency for
Defense Development (ADD).

Appendix

Discretizing Eq. (16) in Sect. 2.1 gives as follows:
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Next, the Newmark formula for the numerical integra-
tion of the displacement and velocity is given by
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(36)

where n is the current step, n + 1 is the next step for
which a solution is to be found, and h is the time inte-
gration interval. In Eq. (36), the coefficients β and γ

are arbitrary constants, and common values for them
are given in Table 7. When finding the solution of the
next step, the Newton–Raphson method is usually used
to improve the convergence rate. This requires the use
of a Jacobianmatrix. Because Eq. (35) is expressed as a

Table 7 Some of the most commonly used modified Newmark
methods

γ β Accuracy

Central difference 1/2 0 Excellent for small h

Unstable for large h

Linear acceleration 1/2 1/6 Very good for small h

Unstable for large h

Average acceleration 1/2 1/4 Good for small h

No energy dissipation

ADAMS [38] 0.70 0.36 –

function of d2�̂e∗
n+1/dt

∗2
n+1 and λn+1 by its relationship

with Eq. (36), the chain rule can be used to express the
Jacobian matrix as follows:

J =
[
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(37)

When Eq. (37) is used, the increment for the solution
in the next stage can be obtained with Eq. (38):{

δ
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Therefore, the solution in the next stage can be deter-
mined with Eq. (39) based on the convergence toler-
ance of the solution and the current step’s solution and
increment.{(

d2 �̂e∗

dt∗2
)
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(39)
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