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Abstract The transverse vibration of an elastic disc,
excited by a preloaded mass—damper—spring slider
dragged around on the disc surface at a constant rotat-
ing speed and undergoing in-plane stick—slip oscilla-
tion due to friction, is studied. As the vertical vibra-
tion of the slider grows at certain conditions, it can
separate from the disc and then reattach to the disc.
Numerical simulation results show that separation and
reattachment between the slider and the disc could
occur in a low speed range well below the critical disc
speed in the context of a rotating load. Rich nonlin-
ear dynamic behaviour is discovered. Time—frequency
analysis reveals the time-varying properties of this sys-
tem and the contributions of separation and in-plane
stick—slip vibration to the system frequencies. One
major finding is that ignoring separation, as is usually
done, often leads to very different dynamic behaviour
and possibly misleading results.
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1 Introduction

Elastic discs are key components in a wide range of
mechanical applications such as rotors and stators in
some engines, brakes and clutches, computer hard disc
drives, and saws. During the operation of these mechan-
ical devices, dry friction plays an important role on
the dynamic behaviour. Generally speaking, dry fric-
tion dissipates energy and thus reduces vibration, but
it can also sustain self-excited oscillation and even
cause vibration to grow under certain conditions. For
example, brake squeal is a well-known friction-induced
vibration phenomenon in car brakes. The annoying
noise can cause customers to doubt the quality of their
automobiles. Friction-induced vibration has been gen-
erally accepted as the main reason for brake squeal
[1-4]. Another consequence of friction-induced disc
vibration is data losses of a computer hard disc drive
because of its undesirable vibration.

Several physical mechanisms that attempt to explain
unstable friction-induced vibration have been proposed
in the literature and were reviewed in [5]: the nega-
tive friction slope [6], sprag-slip instability [7], mode-
coupling instability [8], and stick—slip instability [9].
However, there has been no universal acceptance of
an explanation for brake squeal [10], and the dynamic
behaviour of friction-induced vibration is not fully
understood.

Stick—slip vibration occurs when the static friction
coefficient is greater than the kinetic friction coeffi-
cient [9]. Numerous investigations have focused on dry
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friction-induced stick—slip instability [11-14]. Popp
and Stelter [9] studied the chaotic behaviour of several
simple systems, which provided an insight into stick—
slip instability. In [15], the critical speed for the initia-
tion of stick—slip oscillation from pure sliding oscilla-
tion was derived by an analytical method. The results
indicated that stick—slip motion took place in a wide
speed range of the moving belt. Kinkaid et al. [16]
examined the dynamics behaviour of a four-degree-
of-freedom model with friction force in two orthog-
onal directions at the contact interface. Since the fric-
tion in [16] followed the Amontons—Coulomb’s law
of friction, a new mechanism due to the combination
of the stick—slip instability in both directions was pre-
sented. Stelter [17] investigated the nonlinear stick—slip
behaviour of a cantilever beam excited by dry friction
via numerical analyses and experiments. In [18], the
influences of the non-smooth Coulomb’s law of fric-
tion on the stability of the self-excited vibration of a
one-degree-of-freedom model with negative damping
were studied. Pascal [19] explored the sticking and non-
sticking orbits of a two-degree-of-freedom model with
dry friction under harmonic excitation. Feeny et al. [20]
presented a very interesting review of stick—slip vibra-
tion.

Research on the vibration of an elastic disc excited
by a rotating slider system has been reported in [21—
25]. Mottershead [21] reviewed vibration of stationary
and rotating discs under various loads, including fric-
tion. In [26], parametric resonances in a disc with a
rotating mass—spring—damper system were studied in
the subcritical speed range, in which friction force was
treated as a follower force. Ouyang et al. [23] exam-
ined the transverse instability of an elastic disc under
the action of a rotating friction slider with stick—slip
vibration. The influence of system parameters on the
disc’s transverse vibration and the slider’s horizontal
stick—slip vibration was investigated through numeri-
cal simulations. In a later paper [27], amodel consisting
of an elastic disc with two rotating oscillators acting on
each side of the disc was developed. In that model, a
bending couple was produced by the unbalanced fric-
tion forces on the lower and upper surfaces of the disc.
The instability of the disc due to the friction couple
was studied. The rotating speed of the mass—spring—
damper slider system studied in these papers is in the
subcritical range.

Other work on friction-induced vibration in discs
was reported in [28—34]. Spelsberg-Korspeter etal. [29]
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proposed a new model containing a rotating Kirchhoff
plate and an idealised elastic pad, which was in friction
contact with the rotating plate. In that paper, both the in-
plane and bending vibration of the rotating plate due to
distributed friction forces were investigated. In [32], the
wave pattern and the limit cycle of the stick—slip motion
of a rotating disc, which was in frictional contact with
a pad under uniform pressure, in a simplified brake
system were analysed.

Loss of contact at the friction interface of the disc
has been neglected in most of the studies mentioned
above. Sinou [33] investigated the transient and sta-
tionary dynamics of a nonlinear automotive disc brake
model due to friction. He showed that more unstable
modes took part in the transient vibration because of
the nonlinearity and loss of contact at the friction sur-
face. However, the specific roles of separation and its
importance to the friction-induced vibration have not
been studied. The main purpose of the current paper
is to investigate the friction-induced transverse vibra-
tion of a disc subjected to a rotating slider undergoing
vertical vibration and in-plane stick—slip vibration.

In the present paper, a model containing an elas-
tic disc in friction contact with a rotating oscillator is
developed. Stick—slip motion of the slider takes place
on the disc surface due to friction governed by the
Coulomb’s law of friction, which leads to the coupling
between the transverse vibration of the disc and the
horizontal (in-plane) vibration of the rotating slider.
Theoretical formulations of the system in stick and
slip states are derived, and the conditions for staying
in individual motion states are discussed in Sect. 2.
In Sect. 3, the conditions and equations of motion
for separation and reattachment are given; meanwhile,
impact at the instant of reattachment is considered. In
Sect. 4, dynamic behaviour of the model is analysed
and numerical results show that separation can hap-
pen during unstable vibration at a low rotating speed
level. Moreover, comparisons between the dynamic
behaviour of the disc considering and ignoring sepa-
ration indicate the importance of considering separa-
tion. Then, the effects of key system parameters on the
friction-induced vibration of the system are examined
via a numerical parametric analysis. Finally, the evo-
lutions of the frequencies of the system with time are
studied through the short-time Fourier transform that
reveals the time-varying nature of the whole system due
to the transverse separation—reattachment and in-plane
stick—slip events.
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Fig.1 Annular plate and slider system in the cylindrical coordi-
nate system (fop view from the side; botfom view from the top)

2 Disc model and theoretical development

Figure 1 presents the mechanical model studied in this
paper. The system contains an elastic annular disc,
which s clamped at its inner radius a and free at its outer
radius b, and a slider system in friction contact with
the disc. The annular disc is a Kirchhoff plate which
exhibits only transverse motion. The mass (slider) has
a vertical branch and a horizontal (in-plane) branch,
each having a spring and a damper in parallel. A verti-
cal displacement A is applied on the top of the vertical
branch and is kept constant throughout the subsequent
vibration, so that a vertical pre-load is generated and
is always present. The horizontal branch is connected
with a drive point that moves around on the surface
of the elastic annular plate at a constant rotating speed
£2. In this paper, the Coulomb’s law of friction is used
with a static friction coefficient ug and kinetic friction
coefficient k. The slider is capable of stick—slip oscil-
lation in the horizontal direction. Such a system was
studied in [22] in which loss of contact and subsequent
reattachment were excluded.

2.1 In-plane stick—slip motion of the slider

As the friction coefficient g is assumed to be greater
than uy in this work, the slider can undergo stick—slip
oscillation in the horizontal direction. When the slider
is sliding, its in-plane equation of motion is expressed
in Eq. (1):

ro (myr + cpVr + kp¥) = picsgn (¢) P (1)

in which ¢ denotes the circumferential angular posi-
tion of the slider relative to the drive point and ¢ is the
absolute circumferential angular position of the slider,
ro is the radial position of the slider, cp is the in-plane
damping coefficient of the slider, k, is the in-plane stiff-
ness of the slider, and P is the (total) contact force
between the disc and the slider.

The sliding motion can be maintained if the follow-
ing conditions are satisfied:

rolepr + kp¥| > ps P )
or
i £ 2 3)

The relation between the relative motion represented
by ¥ and absolute motion ¢ is:

=Rt Y, o=t -y, =~V 4)

where 7 is time.

Otherwise, the slider sticks to the plate. In this
motion phase, the slider’s absolute circumferential
velocity ¢ and its acceleration ¢ are equal to zero, and
its circumferential position is referred to as ¢gck. The
relative motion of the slider is given by Eq. (5):

Y = 21 — Qtick (©)

The condition for the slider staying in the stick phase
is:

rolepyr + kp¥r| < s P ()

2.2 Transverse vibration of the disc

The equation of transverse motion of the disc under the
action of the moving slider is given by Eq. (7):

92w

1
— + D*V*' + DV*w = —=5 (r — ro)
r

Phse
5 —¢)P @)
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where w denotes the transverse displacement of the
plate,  and @ are the radial and circumferential coordi-
nates in the cylindrical coordinate system, respectively,
D* is the damping coefficient of the disc, p is the mass
density of the disc, D is the flexural rigidity of the disc,
and & (e) is the Dirac delta function.

P can be obtained from the equation of vertical
motion of slider m:

P =N +mii + cit + k (u — up) ()

where u and u are the vertical motion and vertical veloc-
ity of the slider, u is the initial vertical displacement of
the slider, ¢ is the damping coefficient, & is the stiffness
of the vertical branch of the slider, and N is the pre-load
as a result of the vertical displacement A applied.

In this paper, contact force P is defined as positive
when there is contact (so that P is a compressive force).
Thus, the condition for maintaining contact is:

P>0 )

If there is contact between the slider and the plate, the
relationship between the transverse displacement w of
the plate and the vertical displacement u of the slider
is [35]:

u(t)=wro,@),1) (10)
and therefore
w Jw
L 0w oW 11
=g + o (11)
‘_811) .232 . 32w 32w
=g 42— 12
B=5e T %0 T %0 T o (12)

By substituting Egs. (8) and (10)—(12) into Eq. (7), the
equation of transverse motion of the disc can be derived
as:

92w ol . 4 1
(N+m(¢5a_w+¢282_w ¢32_w 82_'”)
20 962 909t 0t?
+c(¢3—w+8—w)+k(w—wo)) (13)
a6 ot

where wy is initial transverse displacement of the disc
as a result of applying A to the vertical branch of the
slider.

Although Eq. (13) is applicable to both stick and slip
motion states, as ¢ and ¢ are zero in the stick phase,
Eq. (13) is simplified to Eq. (14) which represents the
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equation of motion when the slider sticks to the disc.
9? 1
phSS + D*V*iy + DV*w = —=8 (r — ro)
at r

2

o w ow
50— o) (N—i—mﬁ—i-cE +k(w—wo))

(14)

2.3 Coupled equations of motion of the whole system
in modal coordinates

The transverse displacement of the disc can be expressed
as an infinite series in modal coordinates:

w(r 0,0 = > > W (r,0)qu ) (15)
k=0Il=—00

where Wy (r, 0) is the mode shape of the plate given
by Eq. (16):

Wy (r, 0) = Ry (r) el (16)

1
V phb?
in which Ry; (r) is a combination of the Bessel func-
tions and the modified Bessel functions. Subscript k
denotes the number of nodal circles, and / denotes the
number of nodal diameters; i = +/—1.

The ortho-normality conditions of modal functions
are:

b 2w _
/ / PhWi W, srdrdf = 8k, 655,
a JO

b 27 _
/ / Uy VA, rdrdd = 8,85,
a 0

in which ¥, is the complex conjugate of ¥;.

Then, by multiplying ¥}, on both sides of Egs. (13)
and (14), then integrating them over the whole disc
surface, and by using the ortho-normality conditions
shown in Eq. (17), Egs. (13) and (14) are rewritten in
terms of modal coordinates gx; (#) shown below.

In the stick phase, the equation of transverse motion
of the disc in terms of modal coordinates is expressed
as:

A7)

N — kwg

V phb?

Gui + 2o + ofqu = —

Ry (ro) exp (—ilg)

—ﬁz z Ry (ro) Rui (ro)

r=0s=—00

exp (i (s — 1) @) (mgrs + cqrs + kqrs) (18)
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in which

@ = Pstick (19)
and the relative motion of the slider in the stick phase
has been given by Eq. (6).

The condition for remaining in stick phase given by
Eq. (6) is transformed into Eq. (20):

A

”0|Cp1/.f+kpw| < us{ N —kwo +
phb

> Rys (ro) exp (isg)

§=—00

(m('irs + Cq.rx + kqrs)) (20)

During the sliding motion, the equations of transverse
motion of the disc and the equation of horizontal motion
of the slider are given by Egs. (21) and (22):

i + 28 St 2 N — kwg
gkl Wklqkl T Wi dkl = ———F/—=
ki oh?

1
Ry (ro) exp (—ilg) — hb?

oo

D D" Res (r0) R (ro)exp (i (s — 1) )

r=0s=—00
i [drs + 250455 + (i55 = 5267 4]
+ ¢ (§rs +159qrs) + kqrs) 2D

and
ro (m@ + cp + kpp) = ro (cpQ + kp Q)

1 o o
B (N 92D
o

r=0s=—00

Rys (ro) exp (is@) {m [grs + 12594, s
+ (IS(P - 52¢2) Qrs:l +c (q.rs + iSQbCIrs) + ers})
(22)

And because of the axial symmetry of the annular disc,
the relationships in Eq. (23) are satisfied [25]:

Rr,s (r)y= Rr,fs (r), Wy, s (r)
= Wr,—s (r), qr,s () = ér,—s (1) (23)

The conditions for staying in the slip phase [(Egs. (2)
and (3)] can be expressed in modal coordinates as:

rolepdr + kpr| < g (N — kwo + ——— Z
Jp hb2

> Reg (ro) exp (is9)

§=—00
{m I:éjrs +i25¢qs. + (isﬁb - 52‘»272) Qrs]
+c(Grs +is9qrs) + kqrs}) (24

3 Separation and reattachment

In this paper, separation takes place when contact force
P(t) drops to zero. During the numerical calculations, it
is important to monitor P (¢) at each time step, because
if separation happens, a new set of equations of motion
of the slider and disc needs to be used. When P(¢)
becomes negative, the bisection method is used to find
the critical point at which P(¢) satisfying |P(¢)| < e,
in which ¢ is a small tolerance defined in the MATLAB
codes. During separation, the contact force is zero and
the sliding friction force vanishes.

The transverse motion of the disc and the vertical
motion of the slider during separation are governed by
Egs. (25) and (26), respectively:

2
ph%’ + D*V*i + DV*w =0 (25)
mii+cu+ku—uy)+N=0 (26)

The new equation of horizontal motion of the slider is
expressed in Eq. (27):

my + cp¥r + kpr = 0 (27)
Separation can be maintained when Eq. (28) is satisfied:
u> w (28)

After separation, the slider may get into contact with
the disc again. Reattachment takes place when the dis-
placement of the slider u# equals to the displacement w
of a point on the disc having the same coordinate as
the slider. During the very short time interval of reat-
tachment, denoted by (¢, #."), impact may happen. -
and 7" are the starting and the ending time moments of
the impact. The states of the disc and the slider at time
1, are determined based on the momentum theory. The
procedure for determining the dynamic states immedi-
ately after reattachment, which was presented in [36]
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for amoving-mass-on-beam problem, is derived for the
present problems below.

For simplification, a simple perfectly plastic impact
is assumed, and slider sticks onto the disc after the
impact. Thus, the slider takes the displacement and
the velocity of the disc at time 7. Suppose the
impulse at #; is p, the equation of motion of the disc
is:

Because the transverse displacement is continuous and
in-plane motion of the slider does not change by the
vertical impact, one gets:

qu (1) = qu () = qu (t7) . ¢ ()
=9 ), ¢(") =9 (35)
By substituting Eq. (34) into (33), and combining

Eq. (35), then modal velocity gx; and vertical veloc-
ity & at time 7, are derived as:

Zﬁ@Zﬁﬂimﬂﬁﬂ%dmy¢@Wﬂwvm¢@»+%dmsw@ﬂﬁw@ﬁ+¢W7gu%¥@D%dﬁD

320 30 (W (00 ¢ (69)) dur (1) + ¢ (1) P D gy (1)) — i (1)

L+m >0 >0 o (W (ro, @ (67)) W (ro, ¢ (1))

(36)

%@ﬂ=%WJ—m(

L+m Y2020 o (T (ro. @ (81) T (ro, ¢ (1))

) Wy (ro, ¢ (1))

(37)

82
ph=3 + D*V*i + DV*w = — L5
at r
(r—ro)d @ —¢)é(—1t) (29)
By using the same modal expansion process described

in Sect. 2.3, Eq. (29) can be converted to Eq. (30) in
modal coordinates:

i +2E oudu +ofgn=—pPa (ro, ¢ (1)) 8 (1=t (30)
The velocity jump as aresult of the impact can be solved
from Eq. (30) and given by Eq. (31):
S .

g (17) =g (17) = WRH (ro) exp Gl (1)) (31)

Similarly, the velocity jump of the slider can be
acquired:

. Lo P

i) —i () =2 (2)
The combination of Egs. (31) and (32) gives:

Grr (67) = qua (17) = —m (i (577) — i (7))
Wi (ro, ¢ (tr)) (33)

For perfectly plastic impact, the slider takes the dis-
placement and the velocity of the disc at time 7.1t (£,")
can be expressed as Eq. (34):

. 0w dw
u (tr+) = ((p% + W) |9:¢(;r+)

= i,i (W (ro s @ (7)) awa (1)
» (t;r) 0 (roa,gfp (t;r))qkl (tf)) (34)
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4 Numerical study

As the state of the system switches between stick
and slip phases, and between separation and contact
phases, the dynamic behaviour of the system needs
to be obtained by solving three different sets of gov-
erning equations, which brings out some difficulties
in the numerical computations. In this paper, Runge—
Kutta method appropriate for the second-order dif-
ferential equations [37] is used to solve this non-
smooth dynamic problem. The states of the disc and
the slider during vibration, including the contact force,
the absolute circumferential speed of the slider, and
the force in the horizontal spring and damper, are mon-
itored at each time step. If the results at the end of a
time step do not satisfy the conditions for the system to
stay in the same motion phase as at the start of the time
step, then the bisection method is used to find the criti-
cal point where the dynamics switches from one phase
to another phase. After getting the critical point, the
current set of equations of motion changes to another
set. Rich dynamic behaviour, some of which has not
been seen in the literature, is found. Due to the lim-
ited space, however, only some distinct and interesting
results are presented in this paper. The basic parame-
ter values used in the numerical examples are listed in
Table 1.

To avoid expensive computations, truncated modal
series of the disc’s displacement is used in this
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Table 1 Values of system P b o h E N D*
parameters

0.044m 0.12m 0.1m 0.002 m 150 GPa  0.211 105N m's
Ms Mk k kp m P c  Cp
0.4 0.24 5x 10*N/m 2x 10*N/m 0.1kg 7200 kg/m* 0 0
500
400
400 350/
= = 300
£. 300 z
@ @ 250
e o
€ 200 S 200
3 8
8 £ 150
c c
8 100 8 100
50
0
0
-100 -
200 400 600 800 1000 602.12 602.125 602.13 602.135 602.14 602.145
Time [s] Time [s]
(a) (b)

Fig. 2 Time response of the contact force when N = 200 N and §2 = 20 rad/s. a In the entire time duration. b Its zoom-in plot during

t =[602.115, 602.15] s

paper. The first five distinct natural frequencies are
obtained: 1491.92, 1516.76, 1823.88, 2774.19, and
4383.04rad/s, which are 237.45, 241.40, 290.28,
441.53, and 697.58 in Hz, respectively. Except for the
zero nodal circle mode (indices k = 0 and I = 0)
which is a single mode, all other frequencies each have
two natural (nodal diameter) modes. In order to obtain
more dynamic information, long time calculations are
carried out. It is found that nine disc modes are good
enough since more modes do not lead to noticeable
change in vibration behaviour.

4.1 Separation during vibration

Firstly, the occurrence of separation is illustrated by a
numerical example. The time response of the contact
force and transverse vibration of the disc are shown in
Figs. 2 and 3. In this example, the rotating speed of
the driving point is £2 = 20 rad/s, and the pre-load is
N = 200N. A long time calculation is run. Figure 2a
shows the time response of the contact force during the
entire calculation time. Although details of the vibra-

- Slider
—Plate

25

Transverse displacement [mm]

618.791

618.7912 618.7914 618.7916 618.7918
Time [s]

Fig.3 Enlarged time response of the transverse displacement of
the disc and the vertical displacement of the slider

tion cannot be observed easily in Fig. 2a, it can be
observed that the oscillating range of the contact force
grows, and the contact force can drop to zero, which
means that separation can occur during the vibration.
Then, for a clearer observation, the zoom-in view of
Fig. 2a within a short time interval is given in Fig. 2b.
It shows that when the contact force decreases to zero,

@ Springer
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1.5 25
< Stage 1 < Stage 1
- Stage 2 20 - Stage 2
1
0.5
(&
~ 0
>
-0.5
-1
-1.5 -20
-0.04 -0.02 0 0.02 0.04 0.06 0.08 -0.03 -0.02 -0.01 0 0.01 0.02

¥ [rad]

w [m]

Fig. 4 Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the disc (right) when separation

is ignored(N = 200 N, £2 = 20rad/s)

4
* In contact-period 1
3 - In contact-period 2
/ During separation
2 SR 2P X NIRRT 0 "“x,»\
c 1
=
0
-1

-3
-0.04 -0.02 0 0.02 0.04 0.06 0.08
¥ [rad]

8
* In contact-period 1
6 - In contact-period 2
/ During separation
4 .
= 2
-2 j\
-4 v
-6
-10 -8 -6 -4 -2 0 2 4
w [m] x103

Fig. 5 Poincare maps of the relative horizontal motion of the slider (/eft) and the transverse motion of the disc (right) when separation

is considered(N = 200 N, £2 = 20 rad/s)

separation takes place, and then, contact force remains
zero during separation. Moreover, multiple separation
events can happen. The results of transverse vibration
of the disc and the vertical vibration of the slider dur-
ing one full event of the separation and reattachment
process are shown in Fig. 3. As shown in Fig. 3, separa-
tion happens while the disc moves upward; therefore,
the growing vibration of the disc is bounded due to loss
of contact. It shows that the duration of the separation
is very short, which can be explained as follows: the
pre-load acts on the slider all the time even during sep-
aration, so the slider quickly gets into contact with the
disc again under these parameter values.

Secondly, the influences of the separation on the in-
plane vibration of the slider and the transverse vibra-
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tion of the disc are studied by comparing the results of
the system with considering and ignoring separation.
The transverse vibration of the disc is observed at a
fixed point on the disc at r = rg and ¢ = 1. Three
sets of examples, at different values of pre-load N and
driving speed £2 , are illustrated in Figs. 4, 5, 6, 7, 8,
and 9 in terms of Poincare maps in order to reveal the
dynamic behaviour. For clear observation, the results
of the entire simulated time duration are divided and
shown in several stages. As to the results of ignoring
separation, shown in Figs. 4, 6, and 8, the entire time
interval is divided into two stages. Blue crosses denote
the motion of the first half of the total computing time,
and the green dots denote the motions of the next half.
In the results with separation, shown in Figs. 5, 7, and
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2 25
= Stage 1 « Stage 1
1.5 « Stage 2 20 + Stage 2
- N N B R
1 :\“k\ N * o ‘Y‘\)-\"
05 x 10 - ’
0 w
U £
-0.5 3 0
-1
1.5 ) -10 P
2 TR
-2.5 -20
-0.04 0 0.04 0.08 0.12 -0.03 -0.02 -0.01 0 0.01 0.02
¥ [rad) w [m]

Fig. 6 Poincare maps of the relative horizontal motion of the slider (left) and the transverse motion of the disc (right) when separation
is ignored(N = 300 N, £2 = 20 rad/s)

25 12
* In contact-period 1 * In contact-period 1
- In contact-period 2 - In contact-period 2
/ During separation 8 / During separation

S "y
~ 0 X
o~
-2.5 -8
-0.04 0 0.04 0.08 0.12 -0.012 -0.008 -0.004 0 0.004

¥ [rad] w [m]

Fig. 7 Poincare maps of the relative horizontal motion of the slider (/eft) and the transverse motion of the disc (right) when separation
is considered (N = 300N, £2 = 20rad/s)

1.5 50
~ Stage 1 L P, « Stage 1
- Stage 2 40 e a R _ |~ Stage2

0.1 -0.05 0 0.05 0.1 0.15 20.05 0 0.05
¥ [rad] w [m]

Fig. 8 Poincare maps of the relative horizontal motion of the slider (/eft) and the vertical motion of the disc (right) when separation is
ignored(N = 200 N, £2 = 50 rad/s)

@ Springer



1054

Z.Lietal.

* In contact-period 1
- In contact-period 2
1.5 A -
/ During separation

! I K s
05 g ol T

-1 R o ool SRR

-0.1 -0.05 0 0.05 0.1 0.15

¥ [rad]

* In contact-period 1
6 - In contact-period 2
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9, blue crosses denote the motion before the first sepa-
ration which is called ‘In contact-period 1’; green dots
denote the motion that occurs when contact reoccurs
and is maintained after the first separation, which is
called ‘In contact-period 2’; and red triangles denote
the motion during separation.

It can be seen from the Poincare maps (the sampling
rate is the driving point’s speed) in these comparison
cases shown in Figs. 4 and 5, Figs. 6 and 7, and Figs. 8
and 9 that ignoring and considering separation result
in different dynamic behaviour. In the Poincare maps
of the in-plane motion of the slider, the dots or crosses
forming the horizontal straight line represent motion in
the stick phase and those dots and crosses away from
this line represent motion in the slip phase. In all the
cases when the contact is assumed to be maintained
during vibration, shown in Figs. 4, 6 and 8, the trajec-
tories of horizontal stick—slip motion exhibit transient
behaviour initially, but finally settle down to a steady
state of stick and slip motion (given by the green dots).
The stick and slip motion can be always maintained
during the steady state, which are not affected by the
values of the pre-load and the rotating speed. However,
when separation is considered, shown in Figs. 5, 7,
and 9, separation changes the patterns of the trajec-
tories formed by the Poincare points, which indicates
that a variety of complex dynamic behaviour of the
system can be produced, depending on system para-
meters like the pre-load and the rotating speed. With
respect to the transverse vibration of the disc, more fre-
quencies actually join in during the steady state when
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separation is considered, as there are more points on
the Poincare plane in Figs. 5 and 7 (considering sep-
aration) compared with Figs. 4 and 6 (ignoring sepa-
ration). As to the horizontal vibration of the slider, it
is periodic at the steady state (in stage 2) when sep-
aration is ignored (Figs. 4, 6), as confirmed by their
phase portraits. However, it is quasi-periodic at steady
state (in contact-period 2 and during separation) in
Figs. 5 and 7 as new non-commensurate frequencies
take part when separation is considered, which is also
confirmed by their phase portraits. The phase portraits
of the transverse vibration of the disc in Figs. 4 and 5
are shown in ‘Appendix’. Further investigations on the
vibration frequencies of the system are carried out in
Sect. 4.4.

Additionally, the vibration ranges of the disc when
considering separation are much smaller than those
when ignoring separation, shown in Fig. 10. The rea-
son for this can be explained. Because of separation,
the disc cannot get further excitation from the slider
(note that the rotating slider is the source of excitation),
unlike the cases when contact is assumed to be always
maintained even though the contact force has dropped
to anegative value. Therefore, separation serves to con-
tain the vibration in a smaller range of magnitude.

Consequently, the necessity of considering sepa-
ration in friction-induced vibration of this system is
obvious. As this paper focuses on the dynamic behav-
iour of friction-induced vibration with separation, more
numerical results with separation for various parameter
values are provided in Sect. 4.3.
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4.2 The critical speed for separation

Firstly, two numerical examples are shown to give a
brief description of the critical rotating speed 2. for
separation. Figures 11, 12, 13, and 14 illustrate the
dynamic responses of the system in cases with differ-
ent but close driving rotating speeds: £2 = 15rad/s and
§2 = 15.1rad/s. Figure 11 clearly indicates that sepa-
ration does not happen at 2 = 15rad/s, and the disc
vibration does not grow and only oscillates in a small
constant range. However, at a slightly higher rotating
speed of §£2 = 15.1rad/s, the oscillation range of the
contact force grows, as shown in Fig. 13a, and then,
several separation events take place. In this case, the

disc vibrates in a larger range in Fig. 13b. The Poincare
maps of these two cases shown in Figs. 12 and 14
indicate that the dynamic behaviour of the system can
be very different when the system becomes unstable.
This rotating speed is referred to as the critical speed
for separation.

In order to study the critical speed range of this sys-
tem, numerical calculations for various values of initial
pre-load and rotating speed are carried out. Figure 15
shows the changes in critical rotating speed §2. for the
occurrence of separation with pre-load N. When the
rotating speed is smaller than the critical speed, the
contact is always maintained during vibration. Other-
wise, when the rotating speed is greater than 2., the
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slider can lose contact with the disc along with growing
vibration. It can be seen that the critical speed for the
loss of contact of this system can be low, which is much
lower than the conventional critical speed (defined as
the speed value of a rotating constant load which causes
the resonance of the disc). Moreover, with the initial
increase in pre-load N, the system becomes unstable
and separation occurs at a lower rotating speed; from
a certain value of N, with further increase in N, the
system becomes unstable and separation takes place at
a higher rotating speed.

4.3 Influences of significant parameters

To reveal various dynamic behaviour of the system
when separation is considered, parametric studies are

1.5

¥ [rad]

5
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

carried out. In this section, the effects of the pre-load N
are examined firstly. The results of three pre-load cases
(N = 385, 50 and 200N) are illustrated in Fig. 12,
16, and 17, respectively. The rotating speed in these
examples is fixed at 15rad/s. When the initial pre-load
is small (N = 50N), the disc vibrates periodically at
a small amplitude and there is no separation during
the vibration; the in-plane vibration is periodic as well,
shown in Fig 16. At a larger pre-load (N =200 N), both
of the slider’s in-plane vibration and disc’s transverse
vibration become unstable and separation occurs, as
shown in Fig. 17. As to the in-plane motion of the slider,
the stick phase gets longer because of the larger pre-
load, but then due to separation, the stick—slip vibra-
tion becomes very complicated. However, with further
increase in the normal force (N = 385N), the vibra-
tion of the system becomes stable again and no sepa-
ration occurs, as shown in Fig. 12 in Sect. 4.2. There-
fore, pre-load N plays a complex role in the stability
of this system and does not have a monotonous effect
on the friction-induced disc vibration. Initial increase
in N destabilises the system, while further increase in
N leads to a stable system.

Although the specific reasons for its complex role in
this model is difficult to identify because of coupling of
non-smooth in-plane vibration of the slider with out-of-
plane vibration of the slider, two extreme situations can
shed some light onto this matter. One extreme situation
is: when N is zero, there is no friction force, and thus,
the slider undergoes pure sliding motion in the horizon-
tal direction; as the running speed in this case (£2 = 15

0.01
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003 =
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Fig. 16 Poincare maps of the relative horizontal motion of the slider (/eft) and the transverse motion of the disc (right) (N = 50N,

2 = 15rad/s)
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N = 200N, Q = 10rad/s)

rad/s) is far below the critical speed (§£2 = 608rad/s)
for the unstable vibration of the disc in the moving load
problem, the system is stable when the normal force is
zero at low rotating speed. The other extreme situation
is: when N is extremely large, the slider can hardly
move, which means that the slider sticks to the disc
within the time duration of observation and the system
is also stable. Between the two extreme situations, hor-
izontal stick—slip motion appears and is affected by the
value of the normal force N; as the horizontal motion
of the slider is coupled with the vertical motion of the
slider and the transverse motion of the disc, the whole
system dynamics is affected by the normal force in a
complicated way.
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Secondly, the effects of damping, including the
disc’s damping, damping of the horizontal and verti-
cal dampers, are examined. When pre-load N is at 200
N and the disc’s damping D* is 107, critical rotat-
ing speed £2. for separation is 12.6 rad/s. When there
is no disc’s damping (D*=0), the vibration of the
system becomes unstable and separation occurs at a
lower rotating speed shown in Fig. 18, £2 = 10rad/s,
at N = 200N. The trajectory of the in-plane motion
of the slider changes after the first separation, which
is shown by the green dots in the left Poincare map of
Fig. 18. Additionally, when D* is at 2 x 107>, both
the horizontal vibration of the slider and the transverse
vibration of the disc become stable.
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It is found that the influences of the in-plane damp-
ing on the transverse vibration of the disc are more
complicated, as contact force P is changing during
the vibration. The in-plane damping can destabilise the
system, in a large pre-load range, shown in Fig. 19,
in comparison with the vibration of this system when
the in-plane damping is zero, shown in Fig. 12, which
indicates that the system is stable at ¢, = O, N =
385 N and £2 = 15rad/s. However, when there is in-
plane damping (¢, = 0.5), the vibration of the disc
increases and it becomes unstable, and loss of con-
tact happens as a consequence of the increase in vibra-
tion. From the Poincare map in Fig. 19, after sepa-
ration both of the slider’s in-plane stick—slip motion
and disc’s transverse vibration are unstable periodic
motion.

The influences of the vertical damping coefficient
are also studied. When there is vertical damping, as
shown in Fig. 20, the slider’s in-plane motion is a peri-
odic stable stick—slip motion; the vibration of the disc
is also stable, and it oscillates within a small range
around its static equilibrium position. Therefore, verti-
cal damping coefficient appears as a stabilising factor
to the system.

Then, the effects of the stiffness of the disc and the
stiffness of the vertical and horizontal springs on the
vibration of the system when separation is considered
are studied. Increasing the elasticity of the disc and
the stiffness of the vertical spring stabilises the unsta-
ble transverse vibration of the disc. On the other hand,
decreasing the value of the elasticity and the vertical
stiffness makes the vibration more unstable. At suffi-
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ciently small value of E, the transverse vibration of
the disc seems quasi-periodic with irregular Poincare
points, but separation does not happen during the vibra-
tion, shown in Fig. 21 (E = 100GPa, £2 = 11rad/s) in
which blue crosses denote the motions of the first half
of the total computing time (stage 1), and the green dots
denote the motions of the last half (stage 2).

When k becomes smaller, the system becomes unsta-
ble sooner and separation takes place more easily. The
system becomes stable when k is large enough (i.e.
k =2 x 10° N/m).

The role of the in-plane stiffness of the slider on
the vibration of the system is complex. When k, =
2 x 103 N/m, the vibration of the disc initially vibrates
quasi-periodically. However, after separation occurs,
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the points, shown by green dots, on the Poincare section
of the disc wander within a certain range and become
unpredictable, shown in Fig. 22. When kp = 2 x 10*
N/m, the unstable vibration grows faster and separation
takes place earlier. However, a large enough k;, (2 x 10°
N/m) then appears to stabilise the system.

Finally, the value of the slider’s mass is found to
affect the separation location in the vertical direction. In
all the results shown above, separation happens while
the disc is moving upward. In Fig. 23, however, the
position of separation is changed if the mass is small
(m = 0.01). In this example, separation happens when
the mass reaches its lowest vertical position. This infor-
mation is not available from Poincare maps and can
only be obtained from the time response of vibration.
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Therefore, the vibration of the disc induced by the
frictional moving slider is quite complex. Unstable
vibration of the disc happens in a low speed range, and
separation takes place along with the growing vibra-
tion of the disc. After separation, the transverse vibra-
tion of the disc becomes bounded; the horizontal slider
exhibits pure slip vibration, and the stick phase dis-
appears under some parameter values. The different
dynamic behaviour between the situations when sep-
aration is considered and when separation is ignored
can be seen. Numerical results through a parametric
analysis reveal the roles of key system parameters on
the vibration of the system. It is notable that small and
large values of the pre-load appear as stabilising factors
to the system, but the intermediate values are desta-
bilising. However, when the normal pre-load is large
enough, the in-plane damping then appears as a desta-
bilising factor to the system.

4.4 Non-stationary dynamic behaviour

As the system actually experiences distinct motion
states during vibration, the vibration frequencies in
these motion states can be different, and thus, the sys-
tem is non-stationary and FFT analysis is no longer
suitable. In this subsection, time—frequency analysis
through the short-time Fourier transform is carried out
to explore evolution of the vibration frequency of the
system studied in this paper.

In the following, the time—frequency analysis of
three examples is carried out. The results of the first
example are shown in Figs. 24 and 25. The time history
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Fig. 24 Time history of the transverse displacement of the disc
(E = 150Gpa, N = 385N, £2 = 15.1rad/s)

of the contact force, shown in Fig. 13 in Section 4.2,
indicates that separation starts to take place at 54.5s,
followed by events of repeated reattachment and sep-
aration. Figure 24 shows that there are roughly three
kinds of behaviour during transverse vibration of the
disc. Its vibration frequency during four time segments,
marked as (a), (b), (c), and (d) in Fig. 24, are calcu-
lated, and the corresponding time—frequency results are
shown in Fig. 25a—d, respectively.

Firstly, in the starting stage of the transient vibration,
the vibration amplitude grows, and the main frequen-
cies of the unstable modes are indicated in Fig. 25a. It
can be seen that there are several frequencies involved
in the vibration. The values of the main frequencies,
shown in the time—frequency power spectrum, making
significant contributions to the vibration during ¢= [0,
10] s are listed in Table 2.

Among these frequencies, f is the predominant
frequency, which comes from the rotating driving point,
and its superharmonic components 2 f and 3 f; also
take part in the vibration. Additionally, frequencies fh
and fp are associated with the in-plane vibration of the
slider whose frequency is 70Hz and splits into the two
frequencies due to the rotation of the slider.

The main frequencies for the transverse vibration
of the disc when the slider and the driving point
are not rotating are calculated by solving the cor-
responding eigenvalues. The natural frequencies of
the first nine modes are 850.86, 1492.55, 1516.76,
1814.90, 1823.88, 2758.02, 2774.19, 4360.49, and
4383.04rad/s, which are 135.42,237.55,241.40, 288.85,
290.28, 441.53, 438.95, 693.99, and 697.58 in Hz,
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Table 2 Significant . -
frequencies (Hz)found fe S Jh2 il ) f Ja fs fo
through the time—frequency 24 65.5 70 133 138 200 206 269 273

analysis

respectively. It is notable that any pairs of natural fre-
quencies corresponding to modes of the same number
of nodal diameters of this disc with a stationary slider
are not at the same values as the natural frequencies of
the corresponding modes of the symmetrical disc given
at the beginning of Sect. 4.

f1 to fe in Fig. 25 and in Table 2 are close to but
not the same as some natural frequencies of the static
system (135.42, 237.55 and 288.85 Hz). This is due to
the effect of the in-plane rotation of the slider.

Figure 25b indicates that, in addition to the main
frequencies (fqo, fni, fa2, and fi to fs), new vibra-
tion frequencies emerge during the transient vibra-
tion of the system due to unstable horizontal vibra-
tion of the slider, which are shifted from the main
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frequencies (f, fh1, fa2, and fi to fe). Figure 25¢
shows that when separation takes place at 54.5s, the
frequency spectrum has a sudden change. Higher fre-
quencies show up after separation. At the same time,
the fuzzy frequencies (in Fig. 25b, c) in the midst of
the main frequencies disappear in Fig. 25d, which can
be explained by the horizontal responses of the slider
shown in Fig. 26. Figure 26a is the time history of
¥ which is very complex as the switching between
stick and slip motion relies on not only the difference
between the static and kinetic friction coefficients but
also the oscillating contact force. Figure 26b gives the
frequency spectrum during = [50, 60] s which shows
that the obviously irregular shifting between the hori-
zontal vibration frequency of the slider f,, and its super-
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harmonics (nfy,n = 1,2, 3...) disappear after sepa-
ration, and the horizontal stick—slip motion becomes
periodic which can be also seen from the Poincare map
shown in Fig. 14 in Sect. 4.2. When the transverse disc
vibration becomes steady long after the first separa-
tion event, it possesses constant values of frequencies
(including the fundamental frequency and higher fre-
quencies) due to separation, as shown in Fig. 25d.
The second example is computed using the follow-
ing parameter values: £ = 150GPa, N 300N,
§2 = 20rad/s. Figure 27a illustrates the time history
of the transverse displacement of the disc. Firstly, the
vibration grows gradually, then increases sharply for a
while before the growth rate drops, and finally becomes

bounded due to separation which firstly occurs around
149.5 s. A time—frequency analysis is conducted within
the time interval of + = [143, 153]s, since this time
interval is very special which covers different stages of
the vibration (transient vibration, transition to separa-
tion and steady-state vibration after separation). Fig-
ure 27b shows that the vibration of the disc is mainly
governed by its natural frequencies; meanwhile, a num-
ber of fuzzy frequencies (shown by the dense red lines
between the main system frequencies) start to make
contributions to unstable transient vibration. After the
transition point to separation, higher disc frequencies
arise. On the other hand, the fuzzy frequencies main-
tain their contributions to the vibration, and in con-
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Fig. 29 Transient responses of the disc (E = 100GPa, N = 200N, §2 = 11rad/s). a The time history of the transverse displacement.

b Its time—frequency spectrum for ¢t = [465, 475] s

trast, they disappear in the first example, which can be
explained by the in-plane time—frequency results of the
slider shown in Fig. 28b. Figure 28b is obtained during
the same time interval r= [143, 153] s, and the time
history of v is illustrated in Fig. 28a. From the time—
frequency results, it can be seen, in Fig. 28b, that the
in-plane stick—slip vibration of the slider in steady state
is quasi-periodic.

The dynamic response of the third example is shown
in Fig. 29. The parameter values used are: E
100GPa, N = 200 N, £2 = 11rad/s. In this case, there
is no separation during the vibration which is illustrated
inFig.21. Although the vibration magnitude of the disc,
in Fig. 29a, is bounded due to the nonlinearity of the

@ Springer

in-plane stick—slip vibration, how the limit cycle of the
vibration evolves is different from those cases in which
the transverse disc vibration is non-smooth because of
repeated events of separation and reattachment. Conse-
quently, the time—frequency response in this case does
not show any high frequency arising above the maxi-
mum natural frequency (4383.04 rad/s) of the system
with slider being stationary, during steady-state vibra-
tion, after the transient phase of vibration (marked by
At in Fig. 29a). The vibration of the disc in this case
is quite erratic as its frequency spectrum shows several
prominent incommensurate frequencies and many low-
amplitude frequencies emerge, vanish, or shift with
time.
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In conclusion, the time—frequency analysis of all
three examples reveals that the frequencies of the non-
smooth self-excited friction-induced vibration problem
vary with time in a complicated manner. The power
spectrum of system frequencies is non-stationary, and
other frequencies arise and shift between the main sys-
tem frequencies. Higher frequencies can arise due to
separation. It also shows the importance of considering
separation from the point of view of evolution of the
frequency with time. Moreover, the unstable in-plane
stick—slip vibration of the slider which couples with
the vertical vibration of the slider can make significant
contributions to the frequencies of the disc’s transverse
vibration.

5 Conclusions

In this paper, the dynamic behaviour of a disc modelled
as a thin elastic annular plate excited by a rotating oscil-
lator which has a vertical branch normal to the disc and
a horizontal branch in the plane of the disc is studied.
Because of the non-smooth nature of friction between
the slider and the disc, the slider undergoes stick—slip
vibration in the circumferential direction on the disc.
The variable in-plane location of the slider leads to a
varying contact force at the interface between the disc
and the slider, which affects the transverse vibration
of the disc and makes the in-plane stick—slip vibration
and vertical vibration of the slider system coupled and
complicated. During vibration, the slider can lose con-
tact (separation) with the disc and then reattach to the
disc again.

The equations of motion of this discrete—continuous
system at three motion states (stick motion, slip motion,
and separation) are derived. The conditions for staying
in each state are established, and impact at the moment
of the reattachment is formulated. Then, numerical
study is carried out at various values of the key para-
meters. The following conclusions can be drawn:

1. Separation can happen during the unstable vibra-
tion of the system caused by friction. The time
duration of separation is very short. Reattachment
naturally occurs following separation.

2. The system become unstable and separation occurs
in low speed range of the driving point, which is
much smaller than the critical speed of the disc in
the corresponding moving load problem.

3. When separation is considered, the disc’s trans-
verse vibration becomes bounded within a smaller
range; and the in-plane motion of the slider may
change to a trajectory which is totally different from
its trajectory before separation, and the stick phase
disappears under certain parameter values. On the
other hand, if contact is assumed to be maintained
during vibration (in cases of ignoring separation),
both the in-plane stick—slip vibration of the slider
and transverse vibration of the disc can be very dif-
ferent from those cases of considering separation.

4. More interesting dynamic behaviour of the disc
and the slider when separation is considered is
revealed through a parametric analysis. The rela-
tionship between the stability of the system and the
pre-load in-plane damping and in-plane stiffness
is not monotonous. A pre-load appears destabil-
ising within a certain range but stabilising within
another range. Disc damping and vertical damp-
ing of the slider stabilise the friction-induced disc
vibration, while the in-plane damping of the slider
destabilises the vibration at some large pre-load val-
ues. Within the range of the stiffness values of the
vertical spring of the slider considered in this paper,
the stiffness stabilises the system when it is large
enough. Larger in-plane stiffness makes the vibra-
tion grow faster and separation occurs earlier, but
it becomes a stabilising factor when it reaches a
large enough value. Additionally, separation may
not happen when the disc is soft enough. Where sep-
aration occurs during disc vibration can be affected
by the mass of the slider.

5. The variation of the frequencies of the system over
time is illustrated through a time—frequency analy-
sis. The frequency of the rotating speed, the natural
frequencies of the disc, and the horizontal and ver-
tical branches of the slider all make contributions to
the frequencies of the whole system. Frequencies
higher than the main frequencies of the disc arise
due to separation. The in-plane stick—slip vibration
results in complex evolution of the frequencies of
the transverse disc vibration.

The most important conclusion of this paper is that sep-
aration should be taken into account in many friction-
induced vibration problems.
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Appendix
Figures 30 and 31 show the phase portraits of the rel-
ative horizontal motion of the slider under the same

operation conditions when separation is ignored and
considered, respectively, which serve as supplements
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Fig. 30 Phase portrait of the relative horizontal motion of the
slider when separation is ignored (N = 200N, §£2 = 20rad/s)
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Fig. 31 Phase portrait of the relative horizontal motion of the
slider when separation is considered (N = 200N, §2 = 20rad/s)
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to the discussion on the results presented in Figs. 4
and 5.

Figure 30 shows that the horizontal motion of the
slider lies on a regular stick—slip limit cycle, during the
steady state, when separation is ignored, which is peri-
odic vibration. However, the actual horizontal vibra-
tion, when separation is considered, is quasi-periodic,
as the regular stick—slip limit cycle breaks out, and an
intricate phase portrait can be observed in Fig. 31.

References

1. Ibrahim, R.A.: Friction-induced vibration, chatter, squeal,
and chaos. Part II: dynamics and modeling. Appl. Mech.
Rev. 47(7), 227-253 (1994). doi:10.1115/1.3111080

2. Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analy-
sis of automotive disc brake squeal: a review. Int. J. Veh.
Noise Vib. 1(3—4), 231 (2005). doi:10.1504/1IJVNV.2005.
007524

3. Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automo-
tive disc brake squeal. J. Sound Vib. 267(1), 105-166 (2003).
doi:10.1016/S0022-460X(02)01573-0

4. Elmaian, A., Gautier, F., Pezerat, C., Duffal, J.JM.: How can
automotive friction-induced noises be related to physical
mechanisms? Appl. Acoust. 76, 391401 (2014). doi:10.
1016/j.apacoust.2013.09.004

5. Akay, A.: Acoustics of friction. J Acoust Soc Am 111(4),
1525-1548 (2002)

6. Mills, H.R.: Brake squeak. Technical report 9000 B, Insti-
tution of Automobile Engineers (1938)

7. Spurr, R.T.: A theory of brake squeal. ARCHIVE: Proceed-
ings of IMechE, Automobile Division 1947-1970 1961, 33—
52 (1961). doi:10.1243/pime_auto_1961_000_009_02

8. North, N.R.: Disc brake squeal. Proc. IMechE C38(76),
169-176 (1976)

9. Popp, K., Stelter, P.: Stick—slip vibrations and chaos. Philos.
Trans. R. Soc. A Math. Phys. Eng. Sci. 332(1624), 89-105
(1990). doi:10.1098/rsta.1990.0102

10. Akay, A., Giannini, O., Massi, F., Sestieri, A.: Disc brake
squeal characterization through simplified test rigs. Mech.
Syst. Signal Process. 23, 2590-2607 (2009). doi:10.1016/j.
ymssp.2009.03.017

11. Oestreich, M., Hinrichs, N., Popp, K.: Bifurcation and stabil-
ity analysis for a non-smooth friction oscillator. Arch. Appl.
Mech. 66(5), 301-314 (1996). doi:10.1007/BF00795247

12. Leine, R.I., van Campen, D.H., de Kraker, A., van den Steen,
L.: Stick—slip vibrations induced by alternate friction mod-
els. Nonlinear Dyn. 16(1), 41-54 (1998). doi:10.1023/A:
1008289604683

13. Luo, A.C.J., Gegg, B.C.: Stick and non-stick periodic
motions in periodically forced oscillators with dry friction.
J. Sound Vib. 291(1-2), 132-168 (2006). doi:10.1016/j.jsv.
2005.06.003

14. van de Vrande, B.L., van Campen, D.H., de Kraker, A.:
An approximate analysis of dry-friction-induced stick—slip
vibrations by a smoothing procedure. Nonlinear Dyn. 19(2),
159-171 (1999). doi:10.1023/A:1008306327781


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1115/1.3111080
http://dx.doi.org/10.1504/IJVNV.2005.007524
http://dx.doi.org/10.1504/IJVNV.2005.007524
http://dx.doi.org/10.1016/S0022-460X(02)01573-0
http://dx.doi.org/10.1016/j.apacoust.2013.09.004
http://dx.doi.org/10.1016/j.apacoust.2013.09.004
http://dx.doi.org/10.1243/pime_auto_1961_000_009_02
http://dx.doi.org/10.1098/rsta.1990.0102
http://dx.doi.org/10.1016/j.ymssp.2009.03.017
http://dx.doi.org/10.1016/j.ymssp.2009.03.017
http://dx.doi.org/10.1007/BF00795247
http://dx.doi.org/10.1023/A:1008289604683
http://dx.doi.org/10.1023/A:1008289604683
http://dx.doi.org/10.1016/j.jsv.2005.06.003
http://dx.doi.org/10.1016/j.jsv.2005.06.003
http://dx.doi.org/10.1023/A:1008306327781

Friction-induced vibration of an elastic disc and a moving slider

1067

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Thomsen, J.J., Fidlin, A.: Analytical approxima-
tions for stick-slip vibration amplitudes. Int. J. Non-
Linear Mech. 38(3), 389-403 (2003). doi:10.1016/
S0020-7462(01)00073-7

Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: On the
transient dynamics of a multi-degree-of-freedom friction
oscillator: a new mechanism for disc brake noise. J. Sound
Vib. 287(4-5), 901-917 (2005). doi:10.1016/j.jsv.2004.12.
005

Stelter, P.: Nonlinear vibrations of structures induced by dry
friction. Nonlinear Dyn. 3(5), 329-345 (1992). doi:10.1007/
BF00045070

Hetzler, H.: On the effect of nonsmooth Coulomb friction on
Hopf bifurcations in a 1-DoF oscillator with self-excitation
due to negative damping. Nonlinear Dyn. 69(1-2), 601-614
(2012). doi:10.1007/s11071-011-0290-1

Pascal, M.: Sticking and nonsticking orbits for a two-degree-
of-freedom oscillator excited by dry friction and harmonic
loading. Nonlinear Dyn. 77(1-2), 267-276 (2014). doi:10.
1007/s11071-014-1291-7

Feeny, B.F., Guran, A., Hinrichs, N., Popp, K.: A histori-
cal review of dry friction and stick—slip phenomena. Appl.
Mech. Rev. 51(5), 321-341 (1998)

Mottershead, J.E.: Vibration and friction-induced instability
in discs. Shock Vib. Dig. 30(1), 14-31 (1998)

Ouyang, H., Mottershead, J.E., Cartmell, M.P., Friswell,
M.L: Friction-induced parametric resonances in discs: effect
of a negative friction—velocity relationship. J. Sound Vib.
209(2), 251-263 (1998)

Ouyang, H., Mottershead, J.E., Cartmell, M.P., Brookfield,
D.J.: Friction-induced vibration of an elastic slider on a
vibrating disc. Int. J. Mech. Sci. 41(3), 325-336 (1999).
doi:10.1016/S0020-7403(98)00059-9

Mottershead, J.E., Ouyang, H., Cartmell, M.P., Friswell,
M.I.: Parametric resonances in an annular disc, with a rotat-
ing system of distributed mass and elasticity; and the effects
of friction and damping. Proc. R. Soc. Lond. A Math. Phys.
Eng. Sci. 453(1956), 1-19 (1997)

Shen, 1.Y.: Response of a stationary, damped, circular plate
under arotating slider bearing system. ASMEJ. Vib. Acoust.
115(1), 65-69 (1993). doi:10.1115/1.2930316

Chan, S.N., Mottershead, J.E., Cartmell, M.P.: Parametric
resonances at subcritical speeds in discs with rotating fric-
tional loads. IMechE J. Mech. Eng. Sci. 208(6), 417-425
(1994)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Ouyang, H., Mottershead, J.E.: Dynamic instability of an
elastic disk under the action of a rotating friction couple.
ASME J. Appl. Mech. 71(6), 753-758 (2005). doi:10.1115/
1.1795815

Giannini, O., Sestieri, A.: Predictive model of squeal noise
occurring on a laboratory brake. J. Sound Vib. 296, 583-601
(2006). doi:10.1016/].jsv.2006.02.022
Spelsberg-Korspeter, G., Hochlenert, D., Kirillov, O.N.,
Hagedorn, P.: In- and out-of-plane vibrations of a rotat-
ing plate with frictional contact: investigations on squeal
phenomena. ASME J. Appl. Mech. 76(4), 041006-041006
(2009). doi:10.1115/1.3112734

Lee, D., Waas, A.M.: Stability analysis of a rotating multi-
layer annular plate with a stationary frictional follower load.
Int. J. Mech. Sci. 39(10), 1117-1138 (1997)

Hochlenert, D.: Nonlinear stability analysis of a disk brake
model. Nonlinear Dyn. 58(1-2), 63—73 (2009). doi:10.1007/
s11071-008-9461-0

Kang, J., Krousgrill, C.M., Sadeghi, F.: Wave pattern motion
and stick—slip limit cycle oscillation of a disc brake. J. Sound
Vib. 325, 552-564 (2009). doi:10.1016/j.jsv.2009.03.030
Sinou, J.J.: Transient non-linear dynamic analysis of auto-
motive disc brake squeal—on the need to consider both sta-
bility and non-linear analysis. Mech. Res. Commun. 37(1),
96-105 (2010). doi:10.1016/j.mechrescom.2009.09.002
Hochlenert, D., Spelsberg-Korspeter, G., Hagedorn, P.: Fric-
tion induced vibrations in moving continua and their applica-
tion to brake squeal. ASME J. Appl. Mech. 74(3), 542-549
(2007). doi:10.1115/1.2424239

Ouyang, H.: Moving-load dynamic problems: a tutorial
(with a brief overview). Mech. Syst. Signal Process. 25(6),
2039-2060 (2011). doi:10.1016/j.ymssp.2010.12.010
Stancioiu, D., Ouyang, H., Mottershead, J.N.: Vibration of
a beam excited by a moving oscillator considering separa-
tion and reattachment. J. Sound Vib. 310(4-5), 1128-1140
(2008). doi:10.1016/].jsv.2007.08.019

Pollard, H., Tenenbaum, M.: In: Tenenbaum, M., Pollard,
H. (eds.) Ordinary Differential Equations. Harper & Row,
New York (1964)

@ Springer


http://dx.doi.org/10.1016/S0020-7462(01)00073-7
http://dx.doi.org/10.1016/S0020-7462(01)00073-7
http://dx.doi.org/10.1016/j.jsv.2004.12.005
http://dx.doi.org/10.1016/j.jsv.2004.12.005
http://dx.doi.org/10.1007/BF00045070
http://dx.doi.org/10.1007/BF00045070
http://dx.doi.org/10.1007/s11071-011-0290-1
http://dx.doi.org/10.1007/s11071-014-1291-7
http://dx.doi.org/10.1007/s11071-014-1291-7
http://dx.doi.org/10.1016/S0020-7403(98)00059-9
http://dx.doi.org/10.1115/1.2930316
http://dx.doi.org/10.1115/1.1795815
http://dx.doi.org/10.1115/1.1795815
http://dx.doi.org/10.1016/j.jsv.2006.02.022
http://dx.doi.org/10.1115/1.3112734
http://dx.doi.org/10.1007/s11071-008-9461-0
http://dx.doi.org/10.1007/s11071-008-9461-0
http://dx.doi.org/10.1016/j.jsv.2009.03.030
http://dx.doi.org/10.1016/j.mechrescom.2009.09.002
http://dx.doi.org/10.1115/1.2424239
http://dx.doi.org/10.1016/j.ymssp.2010.12.010
http://dx.doi.org/10.1016/j.jsv.2007.08.019

	Friction-induced vibration of an elastic disc and a moving slider with separation and reattachment
	Abstract
	1 Introduction
	2 Disc model and theoretical development
	2.1 In-plane stick--slip motion of the slider
	2.2 Transverse vibration of the disc
	2.3 Coupled equations of motion of the whole system in modal coordinates

	3 Separation and reattachment
	4 Numerical study
	4.1 Separation during vibration
	4.2 The critical speed for separation
	4.3 Influences of significant parameters
	4.4 Non-stationary dynamic behaviour

	5 Conclusions
	Acknowledgements
	Appendix
	References




