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Abstract It has been demonstrated recently that the
absolute nodal coordinate formulation (ANCF) can be
used to develop lower-order consistent rotation-based
formulations (CRBFs) that employ finite rotation para-
meters as nodal coordinates without the need for inter-
polating the rotation field. The objective of this study is
to develop new planar shear deformable ANCF/CRBF
beam elements and demonstrate their use. A cubic
ANCF/CRBF shear deformable beam element is first
developed starting with the ANCF kinematic descrip-
tion that employs position vector gradients as nodal
coordinates. The transverse position vector gradients
at the nodes are expressed in terms of finite rota-
tion parameters, leading to a lower-dimensional beam
element model that captures the shear deformation,
ensures continuity of the stresses and rotations at the
nodes, allows for an arbitrary large displacement, and
has a kinematic description consistent with geome-
try methods and suitable for systematically model-
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ing curved structures. The results, obtained using the
new planar ANCF/CRBF shear deformable beam ele-
ment, are compared with the original and more gen-
eral ANCF shear deformable beam element. Another
lower-dimension bilinear CRBF beam element which
has three coordinates at each node, two translation coor-
dinates and one rotation parameter, is also developed in
this investigation. The formulations of the three finite
elements, including the ANCF finite element, con-
sidered in this investigation are compared. Numerical
results are presented in order to demonstrate the use
of the new formulations and test their performances
in the analysis of large displacements and deforma-
tions. While the ANCF/CRBF assumptions are evalu-
ated numerically, the results obtained show, in general,
a good agreement between the elements considered in
this study. The results also show that the CRBF finite
elements, which have nonlinear mass matrix, can be
more efficient for smaller meshes. As the mesh size
and the number of finite elements increase, the orig-
inal higher-order ANCF finite elements, which have
constant mass matrix and zero Coriolis and centrifu-
gal forces, become more efficient. The ANCF/CRBF
approach clearly demonstrates that there is no need for
introducing an independent rotation field to capture the
shear effect.

Keywords Consistent rotation-based formulation -
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Shear deformable beam - Multibody systems -
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1 Introduction

In multibody system (MBS) dynamics, proper treat-
ment of finite rotations and constraints that define
mechanical joints and specified motion trajectories is
necessary. MBS algorithms, in which joint constraints
are defined using nonlinear algebraic equations, are
designed to solve a coupled system of differential-
algebraic equations (DAEs). In this section, some
important issues related to the description of the finite
rotations, formulation of the stress forces, and mode
of deformations are discussed. The scope of this inves-
tigation and its relevance to the important subject of
the integration of computer-aided design (CAD) and
analysis are also discussed in this section.

1.1 Non-commutative finite rotations

In continuum mechanics, the rotation field is not inde-
pendent from the position field, and as a consequence,
the general continuum mechanics description employs
only a position field. Large rotation vector formula-
tions (LRVFs), on the other hand, employ two indepen-
dent interpolations: one interpolation for the position
field and the other interpolation for the rotation field
[1]. Independent interpolation of the finite rotations is
not consistent with the general continuum mechanics
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description, violates basic MBS dynamics principles,
leads to a redundancy problem, and is the source of sev-
eral fundamental and numerical problems as discussed
in the literature [2]. For instance, finite rotations can-
not be treated as vectors, and therefore, vector addi-
tions cannot be applied including interpolation which
implies vector additions. While a rotation about a fixed
single axis is commutative, general three-dimensional
rotation is not commutative [3-5]. In Fig. 1a, a block
is first rotated 90° about the Y- axis followed by 90°
rotation about the Z-axis. In Fig. 1b, the same rotations
in reverse order are performed, that is, the block is first
rotated 90° about the Z-axis followed by 90° rotation
about the Y -axis. It is clear from the results presented in
Fig. I that a change in the sequence of rotations leads to
different final configurations of the block, demonstrat-
ing that finite rotations in the spatial analysis are not
commutative and cannot be in general added, treated
as vectors, or interpolated. This comment also applies
to the four Euler parameters which are quaternions and
their mathematical operations are governed by the rules
of quaternion algebra.

1.2 Geometrically exact formulations

Itis also important to distinguish between large rotation
vector formulations (LRVFs) and what is called geo-
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metrically exact beam formulations (GEBFs) [6-10].
A MBS approach is defined by the kinematic descrip-
tion and type of coordinates used in the formulation
of the dynamic equations of motion. For example, the
general continuum mechanics approach employs the
matrix of position vector gradients to formulate the
stress forces and the floating frame of reference (FFR)
which ensures zero strains for an arbitrary rigid body
displacement are geometrically exact approaches. For
this reason, the authors of this paper refer to methods
that interpolate finite rotations as LRVFs. With any of
the MBS approaches, different methods that lead to
zero strain under an arbitrary orthogonal rigid body
transformation can be used in the formulation of the
stress (elastic) forces. The geometrically exact beam
formulation (GEBF) is one of these methods for for-
mulating the elastic forces, and such a formulation can
be used with ANCF finite elements or with LRVF finite
elements as demonstrated in the literature [1,11].

1.3 Independent deformation modes and locking
problems

Shear and torsion represent important independent
modes of deformation that must be properly repre-
sented in the mathematical model. Their effect in large
displacement and large deformation problems can be
systematically captured using ANCF finite elements,
which have been successfully used in many applica-
tions [11-25]. Capturing shear deformations does not
require the use of two independent meshes and does
not require interpolation of rotations. Starting with
the ANCF kinematic description, a consistent rotation-
based formulation (CRBF) can still be developed using
one mesh that defines a unique rotation field and cap-
tures the effect of shear deformation [26]. The ANCF
position vector gradients can be expressed in terms of
rotation parameters. Using this coordinate transforma-
tion, a velocity transformation matrix can be devel-
oped and used to define the finite element equations
of motion in terms of finite rotation parameters. In
the general three-dimensional case, the ANCF/CRBF
approach correctly captures the effect of shear and tor-
sion.

Fully parameterized ANCEF finite elements as well as
fully parameterized conventional finite elements such
as the brick and tetrahedral elements have been widely
used and have proven to be very valuable in captur-

ing effects that cannot be captured by gradient defi-
cient finite elements. As evident by the large number
of investigations that span more than four decades,
conventional finite elements, including the brick and
tetrahedral elements, can suffer from serious locking
problems that need to be addressed. While locking has
been an important issue in the finite element litera-
ture, it has not deterred the scientific community from
exploiting the unique features of fully parameterized
elements. As demonstrated in this paper, some vari-
ables can converge faster as compared to others. For
example, a small number of elements is sufficient to
predict displacements and deformations, while a larger
number of elements is required in order to achieve
convergence for some strain components including
shear.

1.4 Future mechanics-based CAD/analysis systems

ANCF/CRBF finite elements can also be the basis
for developing new floating frame of reference (FFR)
finite elements that can be converted from and to B-
spline and non-uniform rational B-splines (NURBS)
CAD geometry representations. Such ANCF/CRBF
finite elements can be designed to have numbers and
types of nodal coordinates similar to the numbers and
types of nodal coordinates used in existing FFR for-
mulations and computer algorithms. This will facili-
tate the development of the powerful mechanics-based
CAD/analysis systems envisioned for future MBS sim-
ulations since CAD geometry can be systematically
converted to FFR meshes. Therefore, further research
in this direction will result in an FFR implementation
that can be an important component in the integra-
tion of computer-aided design and analysis (I-CAD-
A).

It is also important to point out that existing finite
and infinitesimal rotation finite element formulations
do not, in general, ensure the continuity of the stress
field at the nodal points. The continuity of the rota-
tion field does not imply continuity of the stress field.
The ANCF/CRBF used in this investigation allows
for consistently using rotations as nodal coordinates
and at the same time ensuring the continuity of the
stress field. This important ANCF/CRBF feature is the
result of using the kinematic relationships between the
ANCEF position vector gradients and the rotation para-
meters.
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1.5 Scope and contributions of this investigation

In this investigation, the first CRBF elements are devel-
oped, and their use is demonstrated using numer-
ical examples. A distinction is made between the
ANCF/CRBEF finite elements and other CRBF finite
elements. ANCF/CRBF ensures the continuity of the
rotation and stress fields, while CRBF ensures only
the rotation field as the result of using lower order
of interpolation. The ANCF kinematic description of
12-coordinate planar beam element is first used [12].
Crucial in the development of the ANCF/CRBF finite
elements is the use of the ANCEF position gradient vec-
tors which cannot be zero vectors. Displacement gra-
dient vectors, on the other hand, can be zero vectors.
In the planar formulation presented in this paper, the
ANCEF transverse position gradient vector at the node is
expressed in terms of a finite rotation parameter, lead-
ing to an element with a lower dimension. In the case of
shear non-deformable element, one can show that this
element can be reduced to an element which has three
or four coordinates per node, depending on whether or
not extensibility is accounted for. Another CRBF shear
deformable element which has three coordinates per
node based on bilinear interpolation is also proposed in
this investigation. This bilinear element does not ensure
the continuity of the longitudinal gradient vector, and
therefore, it will be referred to as CRBF finite element
only. The results obtained using the elements consid-
ered in this investigation are compared, and the com-
parative study shows that as the mesh size increases,
the original ANCEF finite elements can become more
efficient due to the fact that these elements lead to a
constant mass matrix and zero Coriolis and centrifu-
gal forces, while the ANCF/CRBEF finite elements lead
to a nonlinear mass matrix. Nonetheless, the new ele-
ments proposed in this investigation can be effectively
and efficiently used in static applications, in dynamics
problems which have small to moderate size meshes,
and can be the foundation for a new FFR implemen-
tation that is consistent with future mechanics-based
I-CAD-A.

2 ANCF/CRBEF finite elements
A simple rigid body motion cannot be described using

kinematic equations that are linear in the rotation para-
meters. Therefore, the position equations of a finite
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element whose geometry is invariant under rigid body
transformation cannot be linear functions of the rota-
tion parameters. Nonetheless, the element velocity
equations can be linear functions in the time derivatives
of the rotation parameters. This fact will be used in this
paper to develop a consistent formulation that employs
rotations as nodal coordinates without violating basic
principles of dynamics and continuum mechanics. In
this section, the equations required for developing the
planar ANCF/CRBEF finite beam elements are briefly
discussed. These equations can be considered as a spe-
cial case of the three-dimensional equations recently
introduced [26]. The assumed displacement field of pla-
nar ANCEF finite elements can be written as r (x, t) =
S (x) e (), where r is the global position vector of an
arbitrary point on the element, S is the element shape
function matrix, e is the vector of nodal coordinates,
x=[xy ]T is the vector of the element spatial coor-
dinates, and ¢ is time. At a given node of a planar fully
parameterized ANCF finite element, the vector of nodal
coordinates can be defined using the position and gradi-
ent coordinate vectors r, ry, and ry, where ry = dr/odx
and ry, = 0r/dy. In the ANCF description, the posi-
tion gradient vectors ry and ry, which are not in general
orthogonal unit vectors, define the strain components
at the nodes. In the planar analysis, an ANCF/CRBF
finite element can be developed by considering the gra-
dient vector ry as unit vector expressed in terms of a

rotation 0 () asry = [ —sin6 cosf ]T. It follows that

. . T . . . .
ry, =—0 [cos 0 sinf ] . Using this velocity equation,
one can write the coordinate transformation [26]

i 1007 [ &
i [=]010]]|F ey
i 00a |6

In this equation, I is the 2 x 2 identity matrix, and
a=— [cos@ sin 0 ]T. By using the preceding equa-
tion, the time derivative of the vector of element nodal
coordinates can be written in terms of the time deriv-
atives of the position coordinates and rotation para-
meters as € = Bp, where p is the vector of nodal
coordinates that include position coordinates, longi-
tudinal gradient vectors, and rotation parameters, and
B is the element velocity transformation matrix that
depends nonlinearly on the independent rotation para-
meters [26]. More details on the formulation of the
velocity transformation matrix B will be provided in
the following sections.
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The ANCEF finite element equations of motion can
be written as Mé = Q, where M is the constant sym-
metric ANCF mass matrix and Q is the vector of nodal
forces including the elastic forces [22]. Using the veloc-
ity transformation é = Bp, one can write ¢ = B+ Bp.
Substituting this acceleration equation into the element
equation of motion Mé = Q and pre-multiplying by
the transpose of the velocity transformation matrix B,
one obtains the ANCF/CRBF element equations asso-
ciated with the new set of coordinates that include finite
rotation coordinates as Mp = Q, where M = B'MB
and Q = BT (Q — MBp) It is clear that while the
ANCF mass matrix M is constant, the ANCF/CRBF
mass matrix M is nonlinear, and as a consequence,
quadratic velocity inertia forces appear explicitly in the
equations of motion.

In order to describe stress-free initial curved geome-
try, the conditions that define the position gradient vec-
tors in terms of the rotation parameters can be devel-
oped after the mesh assembly. In this case, ANCF finite
elements can be used first to develop the curved stress-
free geometry using the position vector gradients. This
is particularly important in the integration of CAD and
analysis since advantage can be taken of the position
vector gradients in defining the accurate geometry of
the system components.

3 ANCF/CRBEF shear deformable beam

In this section, a new ANCF/CRBF planar beam ele-
ment is developed starting with the assumed displace-
ment field of the planar ANCF shear deformable beam
element [12]. The new ANCF/CRBEF finite beam ele-
ment correctly describes an arbitrary rigid body motion
including arbitrary finite rotations, ensures continuity
of the rotation and stresses at the nodal points, and cap-
tures shear deformation.

3.1 Displacement field

The ANCF assumed displacement field r(x,?) =
S (x) e (¢) is used as the starting point, where r is the
global position vector of an arbitrary point on the ele-
ment, S is the element shape function matrix, and e
is the vector of nodal coordinates that includes posi-
tion vector gradients as previously explained, x =

T . . .
[x y] is the vector of the element spatial coordi-

nates, and ¢ is time. In the case of the two-dimensional
shear deformable beam element, the displacement
field r is defined in the global coordinate system
as

= ao+a1x+a2y+a3xy+a4x2+a5x3 ?)
bo + bix + boy + baxy + bax? + bsx3

where a; and b; are the polynomial coefficients,
and x and y are the spatial coordinates defined
in a beam coordinate system. The spatial coordi-
nate x is chosen to be along the beam axis (0 <
x < 1), where [ is the element length. The vector
of the element nodal coordinates e can be defined
using the position and gradient coordinates r, ry,
and ry, where r, = 9dr/dx and ry = dr/dy as
e= [rlT rl? r;T 27 2 r%T ]T, where superscripts
refer to the node number. The element shape function
matrix S is defined as

|51 0520530540550 s560 3)
T 105105 0530840550 56
where the functions s; = s; (¢, n) are defined as
s1=1-3824283, sp=1 (& —2624£7),
sy=nl (1 =§), 54 =36 — 267,
ss=1 (=267, s = énl
4

and & = x/I,n = y/l, and [ is the element length.

3.2 Finite rotations and velocity transformation

In order to obtain the ANCF/CRBF shear deformable
beam element using the ANCF description, the trans-
verse gradient vectors at the nodes are assumed to be
unit vectors. This can be accomplished using the fol-
lowing definitions:

1 —sin 6 o) —sin 6,
r, = , Tri= 5
y |: cos 6 } Y [ cos 6 } )
where 01 and 6, are the rotation angles at the nodes. The
preceding equations, upon differentiation with respect
1 .

to time, lead to the linear velocity relation l"y = a6,

. . . T
and r§ = ay0p, where a; = — [cos 01 sin 61] , and

. T . . .
a = — [cos 6, sin 92] . Using these kinematic rela-
tionships, the time derivatives of the vector of element
nodal coordinates can be written as

@ Springer
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P! 10000 07
il 01T 000 0|]r!
.1 by
: il 00a 00 01|]6 :
— Yy — —
=121 loo0o o0 10 of|i|=BP
i2 00 0 0T 0|2
i’ 00 0 00 a|[6
(6)
In this equation, I is the 2 x 2 identity matrix and
I10000O P!
01 0000 il
~|00a 00 0 .| 6
B=looo 100 P | )
000 0TI 0 i2
00 0 0 0 a )

The velocity transformation matrix B can be used to
write the element equations in terms of the new set
of nodal coordinates p as Mp = Q, as previously
explained. The element equations of motion Mp = Q
can be solved for the acceleration vector p which can be
integrated to determine the coordinate vector p which
includes the rotation coordinates and the longitudinal
position vector gradients. The rotation coordinates can
be used to determine the transverse position gradient
vectors at the nodes. The use of the procedure described
in this section reduces the number of nodal coordinates
from 6 coordinates to 5 coordinates at the node. The
resulting element ensures the continuity of the rotations
and stresses at the nodal points. The resulting element
mass matrix M = B MB can be calculated using the
mass matrix M of the original ANCF shear deformable
beam element given explicitly in [12] and the veloc-
ity transformation matrix B defined in the preceding
equation.

3.3 Formulation of the stress forces

Having determined the rotations at the nodes, the lon-
gitudinal and transverse position gradient vectors can
then be used in a geometrically exact approach to eval-
uate the element elastic forces that enter into the for-
mulation of the equations of motion. Other elastic force
formulations based on classical beam theories can also
be used with the proposed ANCF/CRBF finite element.
In this investigation, the general continuum mechan-
ics approach for formulating the elastic forces is used.
In this approach, the matrix of position vector gradi-
entJ = [rx ry ] is used to define the Green—Lagrange

@ Springer

strain tensor €, which in turn is used to define the second
Piola—Kirchhoff stress tensor o using a linear Hookean
material model. The virtual work of the elastic forces
SW, = — fv o : 6edV, where V is the element vol-
ume, is used to define the generalized elastic forces
associated with coordinates of the elements including
the finite rotation coordinates at the node. It is impor-
tant to point out that the same approach for formulating
the elastic forces is used when the bilinear CRBF finite
element is introduced in a latter section of this paper.

3.4 Comparison with the analytical solution

In order to compare the results obtained using the new
higher-order ANCF/CRBF element introduced in this
section against the analytical solution, a simple can-
tilever beam problem is considered. The elastic line
approach is used instead of the general continuum
mechanics approach for formulating the elastic forces
in order to get closer to the assumptions used in the sim-
plified analytical approach in which the deflection of
the tip point is defined as § = P/(3EI/Z3), where P is
the load, E is the modulus of elasticity, I is the second
moment of area, and / is the length of the beam. Since
the simplified approach is based on a linear theory, the
properties used are selected to ensure small deforma-
tion. The length of the beam is assumed to be 1 m, the
load P is assumed to be 10N, the modulus of elasticity
E and Poisson’s ratio are assumed to be 2 x 10'! N/m?
and 0.3, respectively, and the rectangular cross sec-
tion is assumed to have length and height of 0.01 m.
Neglecting the effect of gravity, the analytical solution
is 8 = 1.9908 x 102 and the solution predicted using
12 ANCF/CRBF elements is § = 1.990 x 1072, show-
ing a relatively good agreement despite the fundamen-
tal formulation differences.

3.5 Discussion

For the finite elements presented in this section and
the following section, the transverse gradient vector is
interpolated linearly, that is, ry = (1 —&)a; + &ay.
Since a; and a, remain unit vectors, it follows that the
square of the norm of the transverse gradient vector
r, within the finite element is given by 1')T,ry =1+
2(1-§&)¢ (alTag — 1). This equation shows that the
norm of the transverse vector ry, does not remain equal
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to one, and the maximum deviation from a unit vector
occurs at § = 0.5. Simple calculations can show that
this deviation from unity remains very small as long as
the relative rotation of the unit vector a; with respect
to the unit vector a; does not exceed 30° [26].

A shear-non-deformable beam element that has 3
coordinates per node can be also developed using the
ANCEF assumed displacement field presented in this
section. In this case, the two gradient vectors at the
node must be expressed in terms of the rotation para-
meter. To this end, one can use the following two
conditions at node k: rX = [cos 6 sin 6y ]T, r’;
[ — sin 6 cos by ]T. Applying these two conditions at
each node leads to ANCF/CRBEF finite element that
has three coordinates per node, two translations and
one rotation. In this case, since no extensibility para-
meter is used with the longitudinal gradient vector ry,
the use of the general continuum mechanics approach
to formulate the elastic forces will lead to zero stresses
at the nodal points. This is consistent with the Euler—
Bernoulli beam theory in which the centerline of the
beam is assumed to be stress free. An ANCF/CRBF
shear non-deformable finite element can be used to
shed light on the assumptions used in Euler—Bernoulli
beam theory and the role of the position vector gra-
dients and interpolation in defining the classical beam
theory linear stress distribution along the cross section.
That is, classical beam formulations can be systemati-
cally obtained from the general continuum mechanics
strain and stress formulations using the ANCF/CRBF
finite elements.

In the case of shear deformable beam elements, and
when higher order of interpolation is used, the vector
p can include the gradient vectors r, at the nodes. If a
lower-order bilinear element is used, the inclusion of
this position gradient vector is not necessary [1]. Using
alower order of interpolation, another new CRBF shear
deformable finite element that has three coordinates per
node can be developed as described in the following
section. This element, however, will not be referred to
as ANCEF finite element because of the low order of
interpolation.

4 Lower-order bilinear CRBF finite element

If the continuity at the element nodes is not required for
r,, lower-order polynomials in x can be used to reduce
the number of coordinates to 3 coordinates per node.

Linear polynomials were used for both the position and
rotation interpolations in the literature [1]. In such a
case of lower-order element, r, is not considered as
a coordinate vector, and one can only use r and ry
as nodal coordinates. The displacement field r of the
bilinear element considered in this section is defined in
the global coordinate system as

r =

_a0+a1x+a2y+a3xy] ®

| bo + b1x + boy + b3xy

In this case of lower-order shear deformable beam ele-
ment, the vector of nodal coordinates is defined as

[ T T AT 5T
e e
ment field and the element nodal coordinates, the ele-

ment shape function can be defined as

S_S10S20S30S40
10 st 0 s 0 53 0 s

e=|r r

T
] . Using the assumed displace-

©)
where the functions s; = s; (¢, n) are defined as
si=1-§ s2=nl-§),

s3=§, sa=46nl (10)
and £ = x/I,n = y/l, and [ is the element length.
Using a procedure similar to the one used in the previ-

ous section, the time derivatives of the vector of element
nodal coordinates can be written as

il I 0 0 07!
il 0a 0 0 6,
R o
e=12(=lo o 1 of||=B D
i2 00 0a][6
In this case, one has
I 0 0 0 B3
loa 00| . |46
B=lo o1 0| P=| 2)
0 0 0 a | 6,

Using the velocity transformation matrix B, the finite
element equations can be obtained as previously
described as Mp = Q. This equation can be inte-
grated numerically to determine the coordinate vector
p which includes the rotation parameters. Knowing the
rotations, the transverse gradient vectors at the nodes
can be determined and used in the formulation of the
elastic forces.

The bilinear element discussed in this section
ensures the continuity of the rotation field. It does
not, however, ensure the continuity of the longitudi-
nal gradient vector r, at the nodal points. The use of
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Fig. 2 Free falling flexible pendulum

the low order of interpolation from the outset does not
allow imposing continuity on r and r, at the same time.
This element also reduces to a truss element at the
element centerline, and its use in accurately modeling
curved geometry may require the use of very fine mesh.
Nonetheless, one can develop a higher-order element
that has three coordinates per node (two translations
and one rotation) by using internal nodes.

5 Numerical examples

In this section, a numerical example that has results
reported in the literature is considered in order to eval-
uate the performance of the two proposed CRBF shear
deformable finite beam elements introduced in this
investigation. The example considered, shown in Fig. 2,
is the free falling of a flexible pendulum under its own
weight [12]. As shown in the figure, the beam is con-
nected to the ground by a pin joint at one end and
is assumed to be initially horizontal. The beam has
length of 1.2 m, cross-sectional area of 0.0016 m2, sec-
ond moment area of 8.533 x 10~ °m?, a mass den-
sity of 5540 kg/m3 , Poisson’s ratio of 0.3, and a mod-
ulus of elasticity of 0.70 x 10°Pa. The gravity con-
stant is assumed to be 9.81 m/s%. Three element types
are considered in the analysis of the falling pendulum.
The first type is the planar shear deformable ANCF
finite element [12], the second type is the higher-order

ANCF/CRBF element, and the third type is the lower-
order bilinear CRBF element. The simulations of the
beam with the three element types are performed using
different numbers of elements in order to check the
convergence of the solutions of different models. Since
different variables (displacements and strain variables
for example) converge at different rates when different
elements are used, a number of elements that achieves
convergence for the variable examined is used. For this
reason, some results are reported using 12 elements and
some other results are reported using 100 elements. The
CPU times for the simulations performed are shown in
Table 1. The CPU times are reported for the models
with numbers of elements that achieve convergence.
For the third element type (lower order), because the
continuity at the element nodes is not required for r,,
and lower-order polynomials in x reduce the number of
coordinates to 3 coordinates per node only, significant
saving in computer time was achieved as compared to
the first two element types in the case of a small mesh
size. It was observed that the new element is about
five times faster than the general ANCF element when
the mesh size is not very large. As the mesh size and
number of elements increase, the original ANCEF finite
element becomes efficient since the mass matrix is con-
stant. This fact is particularly important when develop-
ing complex MBS models that may include thousands
of finite elements. The CPU times reported in Table 1
are obtained using a MATLAB code and sequential PC
computations.

5.1 Higher-order finite elements

Figure 3 shows the position of the tip point of the
beam using 6 and 12 higher-order ANCF/CRBF ele-
ments when the gravity constant is equal to 9.81 m/s.
It is clear from the results presented in this figure that
there is a good agreement between the two models. The

Table 1 CPU times from

MATLAB code zzrlzzrftrs o gl:n?iltﬁ(z)ne ﬁil;lg:-/(?rl;gilement (s) eBlg:ler?E (CSFBF
6 elements 38.6 39.1 8.2
12 elements 173.7 178.5 32.3
24 elements 782.9 828.9 144.6
60 elements 8932.2 11,028.3 1483.9
80 elements 22,754.1 25,815.5 3864.1
100 elements 51,382.6 58,213.9 8662.7
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Fig. 4 Tip point vertical displacement using 6 elements (solid
line higher-order ANCF/CRBF element, dashed line ANCF finite
element)

results demonstrate that the solution converges with
small number of elements. Figure 4 shows a compar-
ison between the vertical displacements of the beam
tip point obtained using the higher-order ANCF/CRBF
element and the ANCEF finite element previously pre-
sented in the literature [12]. The results presented in this
figure show a good agreement between the two differ-
ent models. Figure 5 compares the magnitudes of the
transverse position gradient vector ry at the midpoint
of the last element as predicted by the higher- order
ANCF/CRBF element model and the ANCEF finite ele-
ment model. In the case of the ANCF/CRBF model,
because of imposing the unit vector condition on the
gradient vector ry at the nodes, the magnitude of ry at
the nodes is equal to 1, but it is not in general equal to 1
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Fig. 5 Magnitude of the ry at the midpoint of the last element
(100 elements) (solid line higher-order ANCF/CRBF element,
dashed dotted line ANCF finite element)
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Fig. 6 Shear angle at the midpoint of the last element (100 ele-
ments) (solid line higher-order ANCF/CRBF element, dashed
dotted line ANCEF finite element)

inside the element. From the results presented in Fig. 5,
one can observe that the magnitude of ry at the midpoint
of Element 100 as predicted by the ANCF/CRBF model
is very close to 1, and therefore, there is no significant
violation of this condition as the result of the interpo-
lation. Figure 6 shows the shear angle at the midpoint
of the last element as predicted by the ANCF/CRBF
and ANCEF finite element models. The results presented
in Fig. 6 show that there is again a good agreement
between the solutions obtained using the two different
models. Figure 7 shows the shear strain as predicted
by the higher-order ANCF/CRBF and ANCEF finite ele-
ment models. The results presented in Fig. 7 show again
a good agreement.
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Fig. 7 Shear strain at the midpoint of the last element (100 ele-
ments) (solid line Higher-order ANCF/CRBF element, dashed
dotted line ANCEF finite element)
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Fig.8 Vertical displacement of the beam tip point using bilinear
CRBF elements (curve with square 6 elements, curve with circle
12 elements, curve with triangle 24 elements)

5.2 Bilinear CRBF element

In this section, the performance of the CRBF finite ele-
ment developed using a lower-order bilinear polyno-
mial is examined. This element will not be referred to
as an ANCEF finite element because of the low inter-
polation order. Figure 8 shows the position of the tip
point of the beam using 6, 12, and 24 lower-order
bilinear CRBF elements when the gravity constant is
equal to 9.81m/s?. It is clear from the results pre-
sented in this figure that there is a good agreement
between 12-element and 24-element solutions. These
results demonstrate that this model requires more ele-
ments to converge than the other two higher-order
elements, and the solution for this element converges
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Fig. 9 Tip point vertical displacement using 12 elements (curve
with circle bilinear CRBF element, curve with square higher-
order ANCF/CRBF element)
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Fig. 10 Magnitude of ry at the midpoint of the last element (12
elements) (solid line bilinear CRBF element, dashed dotted lines
higher-order ANCF/CRBF element)

with 12 elements. Figure 9 shows the vertical dis-
placement of the beam tip point as predicted by the
bilinear CRBF element model and the higher-order
ANCF/CRBF element model. The results presented in
Fig. 9 show a good agreement between the two models.
Figure 10 shows the magnitude of ry at the midpoint
of the last element (Element 12) as predicted using the
bilinear CRBF element and higher-order ANCF/CRBF
element models. In these two models, the magnitude of
ry at the nodes is equal to 1, but it is not necessarily
equal to 1 inside the finite element. The results show
that, in general, the magnitude of ry at the midpoint of
Element 12 is close to 1, demonstrating that there is no
significant violation of the constraints inside the ele-
ment as the result of the interpolation. Figure 11 shows
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Fig. 11 Shear angle at the midpoint of the last element (100
elements) (solid line bilinear CRBF element, dashed dotted line
higher-order ANCF/CRBF element)

the shear angle at the midpoint of the last element (Ele-
ment 100) predicted using the bilinear CRBF element
and higher-order ANCF/CRBF element models. The
results presented in this figure show a good agreement
between the solutions obtained using the two CRBF
models. Figure 12 shows a comparison of the shear
strains at the midpoint of the last element obtained
using the two CRBF models. Figure 12 shows that the
variation trends of the two curves are similar, and the
biggest difference is about 0.0005. In order to explain
the results of the two models, one can examine the mag-
nitude and orientation of the position gradient vector
r, predicted by the two models. Figure 13 shows the
magnitude of r, predicted by the two models, while
Fig. 14 shows the orientation of r,. Figures 13 and 14
show a good agreement between the two models. Fig-
ure 15 shows the orientation of ry at the midpoint of
Element 100. The results presented in this figure show
also a good agreement between the solutions obtained
using the two models.

Using the ANCF/CRBF approach, large rotations
due to deformation can still be described using a rel-
atively small number of elements. The use of an alge-
braic equation to enforce the condition }ry| = 1at
the nodes does not lead to significant violation of this
condition inside the finite element. While this condi-
tion leads to the elimination of a degree of freedom,
the shear is not necessarily constant inside the ele-
ment since ry can change depending on the order of
interpolation in x, and consequently, the shear strain
(1/2)rx - 1y can vary from one point to another
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Fig. 12 Shear strain at the midpoint of the last element (100
elements) (solid line bilinear CRBF element, dashed dotted line
higher-order ANCF/CRBF element)
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Fig. 13 Magnitude of r, at the midpoint of the last element (100
elements) (solid line bilinear CRBF element, dashed dotted line
higher-order ANCF/CRBF element)
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Fig. 14 Orientation of r, at the midpoint of the last element

(100 elements) (curve with circle bilinear CRBF element, curve
with square higher- order ANCF/CRBF element)
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Fig. 15 Orientation of r, at the midpoint of the last element
(100 elements) (curve with circle bilinear CRBF element, curve
with square higher- order ANCF/CRBF element)

within the element. The ANCF/CRBF approach clearly
demonstrates that there is no need for introducing
an independent rotation field to capture the shear
effect. Such an CRBF approach can lead to reason-
ably accurate results without violating basic dynam-
ics and continuum mechanics principles. The analy-
sis presented in this paper also shows that the inter-
polation of the gradient vectors is not equivalent to
the interpolation of rotations. It is important also to
note that the gradient vectors are not interpolated
independently.

6 Summary and conclusions

In the case of a simple finite rotation, the rigid body
kinematic equations cannot be written as linear func-
tions of the rotation parameters. The nonlinearity of
the position equations is necessary in order to ensure
that the geometry is invariant under rigid body coor-
dinate transformation. The velocity equations, on the
other hand, are linear in the derivatives. This fact is used
in this investigation to develop new shear deformable
finite elements that employ rotations as nodal coor-
dinates. The approach used in developing these new
finite elements does not violate basic principles of
dynamics and/or continuum mechanics and observes
the non-commutativity nature of the finite rotations.
The use of this approach clearly demonstrates that
there is no need for the interpolation of finite rota-
tions in order to capture shear deformations; finite
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rotations are in general non-commutative, and inter-
polation implies vector addition and commutativity.
As also pointed out in this paper, it is important to
distinguish between the MBS approach used and the
method of formulating the elastic forces. Geometrically
exact beam formulations (GEBFs) are methods for for-
mulating the elastic forces and can be used with any
approach that is defined by the kinematic description
and the coordinates used; for instance, the general con-
tinuum mechanics approach for formulating the elastic
forces is a geometrically exact formulation. For this
reason, the authors refer to approaches that interpo-
late finite rotations as large rotation vector formula-
tions (LRVFs). As it is known, a finite rotation about
a fixed axis is commutative, an example of which is
the planar case considered in this paper. Nonetheless,
the approach presented in this paper can be general-
ized to three-dimensional finite elements as will be
reported by the authors in future publications. The use
of fixed axis of rotation, as it is the case in many rotor-
craft and wind turbine examples reported in the liter-
ature, is not sufficient to justify using an approach as
the basis for developing general MBS algorithms that
are based on non-incremental non-commutative rota-
tion procedures.

In this investigation, an attempt is made to shed
light on some of the fundamental issues discussed
above by using a consistent rotation-based formula-
tion (CRBF) to develop new planar finite elements that
employ rotation parameters as nodal coordinates. A
planar ANCF/CRBF shear deformable beam element
is developed for the large rotation and large deforma-
tion analysis. The formulation defines a unique rotation
field, employs one interpolation, captures shear defor-
mations, does not suffer from the redundancy problem,
allows for systematically describing curved geometry,
and leads to elastic force definitions that eliminate high-
frequency modes associated with the deformation of
the element cross section. Another lower-order bilin-
ear CRBF finite element was also developed, and the
results obtained using the two new CRBF finite ele-
ments are compared with results published in the liter-
ature obtained using a planar ANCF shear deformable
beam element that employs position vector gradients
as nodal coordinates. The numerical comparative study
presented in this paper demonstrates that the kinematic
constraints imposed on the transverse gradient vec-
tors at the nodes are not significantly violated within
the finite elements. The results also show that as the
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mesh size and number of elements increase, the orig-
inal ANCEF finite element that employ position vector
gradients as nodal coordinates can be more efficient
since such an element leads to a constant mass matrix
and zero Coriolis and centrifugal forces. This conclu-
sion is particularly important in MBS applications that
require large meshes that may include thousands of
finite elements.

Future investigations will be focused on develop-
ing three-dimensional beam, plate, and shell elements
using the ANCF/CRBF approach. While ANCEF finite
elements are more general and more powerful for MBS
implementation and can be much more efficient when
large meshes are considered, ANCF/CRBF finite ele-
ments can be of great value in developing new beam,
plate, and shell models for static applications, lower-
dimension dynamic problems, and new floating frame
of reference (FFR) finite elements that can be con-
verted from and to B-spline and non-uniform rational
B-splines (NURBS) CAD geometry. ANCF/CRBF
finite elements can be developed to have numbers
and types of nodal coordinates similar to the num-
bers and types of nodal coordinates used by the
finite elements employed in existing FFR formula-
tions and algorithms. This, as previously mentioned,
will facilitate the development of mechanics-based
CAD/analysis systems envisioned for future MBS
simulations.
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