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Abstract The dynamics of a diffusive predator–prey
model with time delay and Michaelis–Menten-type
harvesting subject to Neumann boundary condition is
considered. Turing instability and Hopf bifurcation at
positive equilibrium for the system without delay are
investigated. Time delay-induced instability and Hopf
bifurcation are also discussed. By the theory of normal
form and center manifold, conditions for determining
the bifurcation direction and the stability of bifurcat-
ing periodic solution are derived. Some numerical sim-
ulations are carried out for illustrating the theoretical
results.

Keywords Reaction–diffusion · Delay · Michaelis–
Menten-type harvesting · Turing instability · Hopf
bifurcation

1 Introduction

Dynamics of predator–prey model is one of impor-
tant subjects in ecology and mathematical ecology,
and many researchers have studied it and derive some
important results [1–9]. Leslie–Gower model [10,11]
is one of the classical predator–prey models. Chen et
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al. [12] discussed the stability/instability of the coex-
istence equilibrium and associated Hopf bifurcation in
a diffusive Leslie–Gower predator–prey model. Aziz-
Alaoui and Okiye [13] studied the boundedness and
global stability in a modified Leslie–Gower predator–
prey model with Holling type II functional response:

ẋ(t) = x (r1 − b1x) − a1xy

k1 + x
,

ẏ(t) = y

(
r2 − a2y

k2 + x

)
,

(1.1)

where x and y represent the population densities of prey
and predator, respectively. All parameters are positive
parameters. r1 and r2 are the growth rate of prey and
predator. b1 represents the competition among individ-
uals of prey. a1 and a2 are the maximum value which
per capita reduction rate of prey and predator can attain.
k1 is the average saturation rate. In this model, in the
case of prey severe scarcity, predator can switch to other
foods denoted as k2.

Considering time delay in the negative feedback of
the predator’s density, Nindjina et al. [14] investigated
the following model:

ẋ(t) = x (r1 − b1x) − a1xy

k1 + x
,

ẏ(t) = y

(
r2 − a2y(t − τ)

k2 + x(t − τ)

)
,

(1.2)

In [14], Nindjina et al. discussed the global stability of
the positive equilibrium by constructing a Lyapunov
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function. In [15], Yafia et al. investigated the Hopf
bifurcations at the positive equilibrium.

For economic reasons, human needs to exploit bio-
logical resources and harvest some biological species,
such as in fishery, forestry and wildlife management.
Therefore, it is necessary to study the suitable popu-
lation model with harvesting. Many researchers have
studied system (1.2) with different types of harvesting,
constant harvesting [16], linear harvesting[17], non-
selective harvesting [18] and so on. Among these types
of harvesting, Yuan et al. [19] suggest that Michaelis–
Menten-type prey harvesting is more realistic than
other types of harvesting from biological and economic
points of view. They studied the following model:

ẋ(t) = x (r1 − b1x) − a1xy

k1 + x
− qEx

m1E + m2x
,

ẏ(t) = y

(
r2 − a2y(t − τ)

k2 + x(t − τ)

)
.

(1.3)

All parameters are positive. q represents the catch abil-
ity, E is the effort applied to harvest prey, and m1 and
m2 are suitable constants. In [19], Yuan et al. assume
that the environment provides the same protection to
both the predator and prey (k1 = k2), and discuss the

stability of the equilibria and obtained the critical con-
ditions for the saddle-node-Hopf bifurcation.

In the real world, predators and their preys distrib-
ute inhomogeneous in different spatial location at time
t . And they will move or diffuse to areas with smaller
population concentration or more food to get a good
living environment. Hence, taking into account dif-

fusion appears to be more reasonable. In mathemat-
ics, predator–prey with diffusion will exhibit complex
dynamical properties. Many researchers have shown
that the diffusion coefficients may induce Turing insta-
bility and spatially non-homogeneous bifurcating peri-
odic solution [20–23]. Hence, taking into account dif-
fusion appears to bemore reasonable and interesting. In
this manuscript, we suppose the region prey and preda-
tor lived is closed and no species (prey or predator)
entering and leaving region at the boundary. Therefor,
we choose Neumann boundary condition. On the other
hand, time delay plays an important role in many bio-
logical dynamical systems, being particularly relevant
into predator–prey models [24–27]. In predator–prey
models, time delay exists in maturation time, captur-
ing time, gestation time or others. Many scholars have
devote to investigating delayed predator–prey models
and suggest that time delay contributes critically to the
stable or unstable outcomeof prey and predator’s densi-
ties. Time delay may induce bifurcating periodic solu-
tion, and prey and predator’s densities exhibit oscilla-
tory behavior. Different from works in [19], we intro-
duce time delay in the resource limitation of the prey
which is one of important aspects [25–27]. Based on
these reasons, we investigate the following system:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u(x,t)
∂t = D1�u + u (r1 − b1u(t − τ)) − a1uv

k+u − qEu
m1E+m2u

,

∂v(x,t)
∂t = D2�v + v

(
r2 − a2v

k+u

)
, x ∈ �, t > 0

ux (x, t) = vx (x, t) = 0, x ∈ ∂�, t > 0
u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ �, θ ∈ [−τ, 0].

(1.4)

For simplicity, we also assume k1 = k2 = k. After
the following nondimensionalization: u = r1

b1
ũ, v =

r1
a1b1

ṽ, t = t̃
r1

, d1 = D1
r1

, d2 = D2
r1

, α = 1
r1

, β =
a2
r2a1

,m = kb1
r1

, s = r2
r1

, h = qEb1
r21m2

, c = m1Eb1
m2r1

and

drop the tilde, system (1.1) can be changed to

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= d1�u + u

(
1 − u(t − τ) − αv

m + u
− h

c + u

)
,

∂v(x, t)

∂t
= d2�v + sv

(
1 − βv

m + u

)
, x ∈ �, t > 0

ux (x, t) = vx (x, t) = 0, x ∈ ∂�, t > 0
u(x, θ) = u0(x, θ) ≥ 0, v(x, θ) = v0(x, θ) ≥ 0, x ∈ �, θ ∈ [−τ, 0].

(1.5)
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In this paper, we assume � = (0, lπ), l > 0.
The organization of this paper is as follows. In

Sect. 2, we study the dynamics of non-delay system,
including stability, Turing instability and existence of
Hopf bifurcation at positive equilibrium. In Sect. 3, we
study the effect of delay on the model including sta-
bility and Hopf bifurcation at positive equilibrium. In
Sect. 4, we give some numerical simulations. Finally,
we end the paper with a brief conclusion in Sect. 5.

2 The effect of diffusion on the non-delay model

Without delay, system (1.5) becomes

∂u

∂t
= d1�u + u

(
1 − u − αv

m + u
− h

c + u

)

∂v

∂t
= d2�v + sv

(
1 − βv

m + u

)
.

(2.1)

In [19], Yuan et al. have discussed the existence of
trivial and positive equilibria. For convenience, in this
paper we assume system (2.1) has a positive equilib-
rium and denote as E∗(u∗, v∗).

2.1 Local stability analysis of the model without
diffusion

For system (2.1) without diffusion, the Jacobian matrix
at E∗(u∗, v∗) is

J =
(

a1 a2
s/β −s

)
,

where

a1 = u∗
(

h

(c + u∗) 2
+ αv∗

(m + u∗) 2
− 1

)
,

a2 = − αu∗
m + u∗

. (2.2)

Obviously, a2 < 0. The characteristic equation corre-
sponding to E∗(u∗, v∗) is

λ2 − λ(a1 − s) − s(a1 + a2/β) = 0. (2.3)

Makeing the following hypotheses:

(H1) a1 + a2/β < 0.

Theorem 2.1 Suppose (H1) holds. Then for system
(2.1) without diffusion, the following statements are
true.

(i) If a1 ≤ 0, for s > 0 the equilibrium E∗(u∗, v∗) is
local asymptotically stable;

(ii) If a1 > 0, for s > a1 the equilibrium E∗(u∗, v∗) is
local asymptotically stable;

(iii) If a1 > 0, the system undergoes Hopf bifurcation
at E∗(u∗, v∗) when s = a1.

Proof Obviously, the roots of Eq. (2.3) are given by

λ1,2 = 1

2

[
(a1 − s) ±

√
(a1 − s)2 + 4s(a1 + a2/β)

]
.

Under condition (i) (or (ii)), a1 − s < 0 holds; then,
the roots of Eq. (2.3) have negative real parts. There-
fore, the equilibrium E∗(u∗, v∗) is local asymptotically
stable.

When s = a1, Eq. (2.3) has a pair of pure imaginary
roots ±√−4s(a1 + a2/β). Meanwhile, when s near
a1, Eq. (2.3) has a pair of complex eigenvalues α(s) ±
iω(s), where

α(s) = 1

2
(a1 − s),

ω(s) = 1

2

√
−4s(a1 + a2/β) − (a1 − s)2.

And hence, we have

α(a1) = 0, α′(s)|s=a1 = −1/2, ω(a1) > 0.

Therefore, the system undergoes Hopf bifurcation at
E∗(u∗, v∗) when s = a1.

2.2 Turing instability and Hopf bifurcation

For system (2.1), the characteristic equation at
E∗(u∗, v∗) is

λ2 − λTn(s) + Dn(s) = 0, n ∈ N0, (2.4)

where

{
Tn(s) = − (d1 + d2)

n2

l2
+ a1 − s,

Dn(s) = d1d2
n4

l4
− (d2a1 − sd1)

n2

l2
− s(a1+a2/β),

(2.5)

and the eigenvalues are given by

λ
(n)
1,2(s) = Tn(s) ± √

T 2
n (s) − 4Dn(s)

2
, n ∈ N0.

(2.6)
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Obviously, if a1 − s < 0, then Tn(s) ≤ T0(s) < 0 for
n ∈ N0. Suppose (H1) holds; then, D0(s) = −s(a1 +
a2/β) > 0, and if s ≥ d2a1

d1
also holds, then Dn(s) ≥

D0(s) > 0.
Denote

s∓ = d2
d1

[
− (2a2/β + a1) ∓ 2

√
a2/β (a2/β + a1)

]

(2.7)

z∓ = 1

2d1d2
[d2a1 − sd1

∓
√

(d2a1 − sd1)2 + 4d1d2s(a1 + a2/β)

]
,

(2.8)

and

σ = 1

a1

[
−2a2/β − a1 − 2

√
a2/β (a2/β + a1)

]
.

(2.9)

Remark 2.1 Under the hypotheses (H1), we can obtain
the following relationship about a1,

d2a1
d1

and s±:

{
if d1

d2
< σ, then 0 < a1 < s− < d2a1

d1
< s+,

if d1
d2

> σ, then 0 < s− < a1 < d2a1
d1

< s+.

Lemma 2.1 Suppose (H1) holds; then, the following
statements are true.

(i) If for s ∈ (0, s−) ∪ (s+,∞), there exists a k ∈ N

such that k2

l2
∈ (z−, z+), then Dk(s) < 0;

(ii) If one of followings holds:

(1) s ∈ (s−, s+),

(2) s ∈ (0, s−) ∪ (s+,∞), but there are no k ∈ N

such that
k2

l2
∈ (z−, z+),

then Dk(s) > 0 for n ∈ N0,.

Proof Define

h(z) = z2d1d2 − z(d2a1 − sd1) − s(a1 + a2/β).

(2.10)

If (d2a1 − sd1)2 + 4d1d2s(a1 + a2/β) > 0 that is
s ∈ (0, s−)∪ (s+,∞), then h(z) = 0 has two roots z∓.
And if there exists a k ∈ N such that k2

l2
∈ (z−, z+),

then Dk(c) = h
(
k2

l2

)
< 0. This completes the proof

of (i).

From the discussion above, we know that Dn(s) > 0
for n = 0, 1, 2, . . . , under the conditions of (ii). Hence,
the conclusion of (ii) follows.

Theorem 2.2 Suppose (H1) holds, and σ and s− are
defined by (2.9) and (2.7), respectively. Then for system
(2.1), the following statements are true.

(i) If s > a1 and s ≥ d2a1
d1

, then the equilibrium
E∗(u∗, v∗) is asymptotically stable;

(ii) If a1 < s < d2a1
d1

and d1
d2

> σ , then the equilib-
rium E∗(u∗, v∗) is asymptotically stable;

(iii) If a1 < s < d2a1
d1

and d1
d2

< σ , then the equi-
librium E∗(u∗, v∗) is asymptotically stable when
one of the followings holds: (1) s ∈ (s−, d2a1

d1
);

(2) s ∈ (a1, s−), but there does not exist a k ∈ N

such that k2

l2
∈ (z−, z+);

(iv) If a1 < s < s− and d1
d2

< σ , and there exists a k ∈
N such that k2

l2
∈ (z−, z+), then the equilibrium

E∗(u∗, v∗) is Turing unstable;
(v) If a1 > 0, the system (2.1) undergoes a Hopf

bifurcation at E∗(u∗, v∗) when s = sn, for 0 ≤
n ≤ n∗−1, where sn and n∗ are defined in the fol-
lowing proof. Moreover, the bifurcating periodic
solution is spatially homogeneous when s = s0
and spatially non-homogeneous when s = sn for
1 ≤ n ≤ n∗ − 1.

Proof Obviously, under conditions (i), (ii) or (iii),
Tn(s) < 0 and Dn(s) > 0 for n ∈ N0. Then, all
roots of Eq. (2.4) have negative real parts. Therefore,
the equilibrium E∗(u∗, v∗) is asymptotically stable.
Under condition (iv), by Lemma (2.1, there exists a
k ∈ N such that Dk(s) < 0. Then, Eq. (2.4) has a root
λ(k)(s) with positive real parts. Therefore, the equilib-
rium E∗(u∗, v∗) is Turing unstable.

Suppose (H1) holds, and a1 > 0, from (2.6), we
know that (2.4) has purely imaginary roots if and only
if

s = sn := a1 − n2

l2
(d1 + d2), n ∈ N0 (2.11)

and Dn(sn) > 0. From (2.11), we know that there
exists a integer n∗

1 ≥ 1 such that sn > 0 for n =
0, 1, 2, . . . , n∗

1 −1, and sn ≤ 0 for n = n∗
1, n

∗
1 +1, . . ..

Substituting sn into Dn(s) (see (2.5)) yields
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Dn(sn) = −d21
n4

l4
+ (2a1d1 + a2/β (d1 + d2))

×n2

l2
− a1 (a2/β + a1) .

By D0(s0) = −a1 (a2/β + a1) > 0, we know that
there exists an integer n∗

2 ≥ 1 such that Dn(sn) > 0
when n = 0, 1, . . . , n∗

2 − 1, and Dn(sn) ≤ 0 when
n ≥ n∗

2. Let n
∗ = min{n∗

1, n
∗
2} and

λn(s) = αn(s) ± iωn(s), n = 0, 1, . . . , n∗ − 1

be the roots of Eq. (2.4) satisfying

αn(sn) = 0, ωn(sn) = √
Dn(sn).

Then, when s is near sn

αn(s) = Tn(s)

2
, ωn(s) =

√
Dn(s) − α2

n(s),

and from the definition of Tn in (2.5), it follows that

α′
n(sn) = −1

2
< 0. (2.12)

This implies that the transversal condition is satisfied at
each sn, n = 0, 1, 2, . . . , n∗ −1. Therefore, the system
(2.1) undergoes a Hopf bifurcation at E∗(u∗, v∗) when
s = sn , for 0 ≤ n ≤ n∗ − 1.

3 The effect of delay on the system

3.1 Stability analysis and existence of Hopf
bifurcation

In the following, by analyzing the associated charac-
teristic equation at E∗(u∗, v∗), we investigate stability
of E∗(u∗, v∗) and existence of Hopf bifurcation for
system (1.5). We always suppose (H1) and one of con-
ditions (i-iii) in Theorem (2.2) hold.

Denote

u1(t) = u(·, t), u2(t) = v(·, t), U = (u1, u2)
T ,

X = C([0, lπ ],R2), and Cτ := C([−τ, 0], X).

Linearizing system (1.5) at E∗(u∗, v∗), we have

U̇ = D�U (t) + L(Ut ), (3.1)

where

D =
(
d1 0
0 d2

)
,

dom(D�) = {(u, v)T : u, v ∈ C2([0, lπ ],R2),

ux , vx = 0, x = 0, lπ},

and L : Cτ �→ X is defined by

L(φt ) = L1φ(0) + L2φ(−τ),

for φ = (φ1, φ2)
T ∈ Cτ with

L1 =
(
a1 + u∗ a2
s/β −s

)
, L2 =

(−u∗ 0
0 0

)
,

φ(t) = (φ1(t), φ2(t))
T ,

φt (·) = (φ1(t + ·), φ2(t + ·))T .

From Wu [28], we obtain that the characteristic
equation for linear system (3.1) is

λy − d�y − L(eλy) = 0, y ∈ dom(d�), y = 0.

(3.2)

It is well known that the eigenvalue problem

−ϕ′′ = μϕ, x ∈ (0, lπ); ϕ′(0) = ϕ′(lπ) = 0

has eigenvalues μn = n2/ l2 (n = 0, 1, · · · ) with cor-
responding eigenfunctions

ϕn(x) = cos
nπ

l
, n ∈ N0.

Substituting

y =
∞∑
n=0

(
y1n
y2n

)
cos

nπ

l

into the characteristic Eq. (3.2), it follows that(
a1 + u∗ − u∗e−λτ − d1

n2

l2
a2

s/β −s − d2
n2

l2

) (
y1n
y2n

)

= λ

(
y1n
y2n

)
, n = 0, 1, · · · .

Therefore, the characteristic Eq. (3.2) is equivalent to

�n(λ, τ ) = λ2 + λAn + Bn + u∗(λ + Cn)e
−λτ = 0

(3.3)

where

An = (d1 + d2)
n2

l2
− a1 + s − u∗,

Bn = d1d2
n4

l4
− (d2 (a1 + u∗) − sd1)

n2

l2

−s (a2/β + a1 + u∗) ,

Cn = d2
n2

l2
+ s.
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When τ = 0, system (1.5) becomes (2.1); if one of
conditions (i–iii) in Theorem (2.2) holds, then all the
roots of Eq. (3.3) with τ = 0 have negative real parts
for n ∈ N0 and �n(0, τ ) > 0.

We shall seek critical values of τ such that there
exists a pair of simple purely imaginary eigenvalues.
iω (ω > 0) is a root of Eq. (3.3) if and only if ω

satisfies

−ω2 + iωAn + Bn + u∗(iω + Cn)(cosωτ − isinωτ)

= 0.

Then, we have{−ω2 + Bn + ωu∗sinωτ + Cnu∗cosωτ = 0,
ωAn + ωu∗cosωτ − Cnu∗sinωτ = 0.

which lead to

ω4 + ω2(A2
n − 2Bn − u2∗) + B2

n − C2
nu

2∗ = 0. (3.4)

Let z = ω2, then (3.4) can be rewritten into the follow-
ing form

z2 − z(2Bn + u2∗ − A2
n) + B2

n − C2
nu

2∗ = 0. (3.5)

Denote

P = 2Bn + u2∗ − A2
n,

R = (2Bn + u2∗ − A2
n)

2 − 4(B2
n − C2

nu
2∗),

and Q = B2
n − C2

nu
2∗.

Then, the roots of (3.5) are given by z± = P±√
R

2 .

We discuss the existence of positive roots for Eq. (3.5)
under these three cases:

Case 1. (i) R < 0; (i i) R > 0, Q > 0, P < 0; (i i)
R = 0, P ≤ 0.
Case 2. (i) Q < 0; (i i) R = 0, P > 0.
Case 3. (i) P > 0, Q > 0, R > 0.

Obviously, in Case 1, Eq. (3.5) has no positive root;
then, Eq. (3.3) has no root with purely imaginary. In
Case 2, Eq. (3.5) has one positive root; then, Eq. (3.3)
has a pair of purely imaginary roots±iω+

n at τ j,+
n , j =

0, 1, 2, . . .. In Case 3, Eq. (3.5) has two positive roots;
then, Eq. (3.3) has two pair of purely imaginary roots
±iω±

n at τ j,±
n , j ∈ N0 where

ω±
n = √

z±, τ
j,±
n = τ 0,±n + 2 jπ

ω±
n

, ( j = 0, 1, 2, . . .),

τ 0,±n = 1

ω±
n
arccos

(ω±
n )2 (Cn − An) − BnCn(

(ω±
n )2 + C2

n

)
u∗

.

(3.6)

Fix parameters α, h, m, c, β, s, d1, d2, l, define

D={k ∈ N0 | Eq. (3.5) has positive roots with n=k.}
(3.7)

Lemma 3.1 Suppose one of conditions (i−i i i) in The-
orem (2.2) and (H1) hold.

(i) If R = 0, then Re
( dλ
dτ

) |
τ=τ

j,±
n

= 0;

(ii) If R > 0, then Re
( dλ
dτ

) |
τ=τ

j,+
n

> 0,Re( dλdτ )|
τ=τ

j,−
n

< 0 for τ ∈ D and j ∈ N0.

Proof Differentiating two sides of (3.3) with respect
τ , we have

(
dλ

dτ

)−1

= 2λ + An + u∗e−λτ

λu∗(λ + Cn)e−λτ
− τ

λ
.

Then

[
Re

(
dλ

dτ

)−1
]−1

τ=τ
j,±
n

=
[
2λ + An + u∗e−λτ

λu∗(λ + Cn)e−λτ
− τ

λ

]
τ=τ

j,±
n

=
[
u∗+An cosωτ −2ω sinωτ +i(2ω cosωτ)+An sinωτ

−u∗ω2+iCnu∗ω
− τ

iω

]
τ=τ

j,±
n

= ± 1

�
(ω

j,±
n )2(2(ω j,±

n )2 − 2Bn + A2
n − u2∗)

= ± 1

�
(ω

j,±
n )2

√
(A2

n − 2Bn − u2∗)2 − 4(B2
n − u∗C2

n )

= ± 1

�
(ω

j,±
n )2

√
R,

where� = (ω
j,±
n )4u2∗ +C2

nu
2∗(ω

j,±
n )2 > 0. Therefore,

α′
n(τ

j,n
n ) > 0(< 0).

From (3.6), we have τ
0,±
n < τ

j,±
n ( j ∈ N). For

k ∈ D, define the smallest τ so that the stability will
change, τ∗ = min{τ 0,±k or τ

0,+
k | k ∈ D}. According

to the above analysis, we have the following theorem.

Theorem 3.1 Suppose (H1) and one of conditions (i–
iii) in Theorem (2.2) hold; for system (1.5), the follow-
ing statements are true.

(i) In Case 1, the equilibrium E∗(u∗, v∗) is local
asymptotically stable for all τ ≥ 0;

(ii) In Case 2 or Case 3, the equilibrium E∗(u∗, v∗)
is local asymptotically stable for τ ∈ [0, τ∗) and
unstable for τ ∈ [τ∗, τ∗ + ε) with some ε;

(iii) In Case 2 or Case 3, system (1.5) undergoes a
Hopf bifurcation at the equilibrium E∗(u∗, v∗)
when τ = τ

j,+
n (τ = τ

j,−
n ), j ∈ N0, n ∈ D.
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3.2 Stability and direction of Hopf bifurcation

In this section, we shall study the direction of Hopf
bifurcation and stability of the bifurcating periodic
solution by applying center manifold theorem and nor-
mal form theorem of partial functional differential
equations [28,29]. Let ũ(x, t) = u(x, τ t) − u∗ and
ṽ(x, t) = v(x, τ t) − v∗. For convenience, we drop the
tilde. Then, the system (1.5) can be transformed into

∂u

∂t
= τ [d1�u + (u + u∗)

×
(
1−u(t−τ)−u∗ − α (v+v∗)

m+u+u∗
− h

c + u + u∗

)]
,

∂v

∂t
= τ

[
d2�v + s (v + v∗)

(
1 − β (v + v∗)

m + u + u∗

)]
.

(3.8)

for x ∈ (0, lπ), and t > 0. Let

τ = τ̃ + μ, u1(t) = u(·, t), u2(t) = v(·, t) and

U = (u1, u2)
T .

When μ = 0, system (1.5) undergoes a Hopf bifur-
cation at the equilibrium (0, 0). Then, (3.8) can be
rewritten in an abstract form in the phase space C1 :=
C([−1, 0], X)

dU (t)

dt
= τ̃D�U (t) + L τ̃ (Ut ) + F(Ut , μ), (3.9)

where Lμ(φ) and F(φ, μ) are defined by

Lμ(φ) = μ

(
(a1 + u∗)φ1(0) − u∗φ1(−1) + a2φ2(0)

s/βφ1(0) − sφ2(0)

)

(3.10)

F(φ, μ) = μD�φ + Lμ(φ) + f (φ, μ), (3.11)

with

f (φ, μ) = (τ̃ + μ)(F1(φ, μ), F2(φ, μ))T ,

F1(φ, μ) = (φ1(0) + u∗)

×
(
1−φ1(−1) − u∗− α (φ2(0)+v∗)

m+φ1(0)+u∗
− h

c + φ1(0)+u∗

)

− (a1 + u∗)φ1(0) + u∗φ1(−1) − a2φ2(0),

F2(φ, μ) = s (φ2(0) + v∗)
(
1 − β (φ2(0) + v∗)

m + φ1(0) + u∗

)

− s

β
φ1(0) + sφ2(0).

respectively, for φ = (φ1, φ2)
T ∈ C1.

Consider the linear equation

dU (t)

dt
= τ̃D�U (t) + L τ̃ (Ut ). (3.12)

According to the results in Sect. 2, we know that
�n := {iωn τ̃ ,−iωn τ̃ } are characteristic values of sys-
tem (3.12) and the linear functional differential equa-
tion

dz(t)

dt
= −τ̃D

n2

l2
z(t) + L τ̃ (zt ). (3.13)

By Riesz representation theorem, there exists 2 × 2
matrix function ηn(σ, τ̃ )−1 ≤ σ ≤ 0, whose elements
are of bounded variation functions such that

−τ̃D
n2

l2
φ(0) + L τ̃ (φ) =

∫ 0

−1
dηn(σ, τ )φ(σ )

for φ ∈ C([−1, 0],R2).
In fact, we can choose

ηn(σ, τ ) =
⎧⎨
⎩

τ E σ = 0,
0 σ ∈ (−1, 0),
−τ F σ = −1,

(3.14)

where

E =
(
a1 + u∗ − d1

n2

l2
a2

s/β −s − d2
n2

l2

)
,

F =
(−u∗ 0
0 0

)
. (3.15)

Let A(τ̃ )denote the infinitesimal generators of semi-
group included by the solutions of Eq. (3.13) and A∗
be the formal adjoint of A(τ̃ ) under the bilinear paring

(ψ, φ) = ψ(0)φ(0) −
∫ 0

−1

∫ σ

ξ=0
ψ(ξ − σ)dηn(σ, τ̃ )φ(ξ)dξ

= ψ(0)φ(0) + τ̃

∫ 0

−1
ψ(ξ + 1)Fφ(ξ)dξ.

(3.16)

for φ ∈ C([−1, 0],R2), ψ ∈ C([−1, 0],R2).A(τ̃ )

has a pair of simple purely imaginary eigenvalues
±iωn τ̃ , and they are also eigenvalues of A∗. Let P
and P∗ be the center subspace, that is, the general-
ized eigenspace of A(τ̃ ) and A∗ associated with �n ,
respectively. Then, P∗ is the adjoint space of P and
dimP = dimP∗ = 2.
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It can be verified that p1(θ) = (1, ξ)T eiωn τ̃ σ (σ ∈
[−1, 0]), p2(σ ) = p1(σ ) is a basis of A(τ̃ ) with �n

and q1(r) = (1, η)e−iωn τ̃r (r ∈ [0, 1]), q2(r) =
q1(r) is a basis of A∗ with �n , where

ξ = s/β

d2n2/ l2 + iω + s
, η = s/β

d2n2/ l2 − iω + s
.

Let � = (�1,�2) and �∗ = (�∗
1 , �∗

2 )T with

�1(σ ) = p1(σ ) + p2(σ )

2
=

(
Re

(
eiωn τ̃ σ

)
Re

(
ξeiωn τ̃ σ

)
)

,

�2(σ ) = p1(σ ) − p2(σ )

2i
=

(
Im

(
eiωn τ̃ σ

)
Im

(
ξeiωn τ̃ σ

)
)

for θ ∈ [−1, 0], and

�∗
1 (r) = q1(r) + q2(r)

2
=

(
Re

(
e−iωn τ̃ r

)
Re

(
ηe−iωn τ̃ r

)
)

,

�∗
2 (r) = q1(r) − q2(r)

2i
=

(
Im

(
e−iωn τ̃ r

)
Im

(
ηe−iωn τ̃ r

)
)

for r ∈ [0, 1]. Then, we can compute by (3.16)

D∗
1 := (�∗

1 ,�1), D∗
2 := (�∗

1 ,�2),

D∗
3 := (�∗

2 ,�1), D∗
4 := (�∗

2 ,�2).

Define (�∗,�) = (�∗
j ,�k) =

(
D∗
1 D∗

2
D∗
3 D∗

4

)
and con-

struct a new basis � for P∗ by

� = (�1, �2)
T = (�∗,�)−1�∗.

Then, (�,�) = I2. In addition, define fn := (β1
n , β

2
n ),

where

β1
n =

(
cos n

l x
0

)
, β2

n =
(

0
cos n

l x

)
.

We also define

c · fn = c1β
1
n + c2β

2
n , for c = (c1, c2)

T ∈ C1.

Thus, the center subspace of linear Eq. (3.12) is
given by PCNC1 ⊕ PSC1 and PSC1 denotes the com-
plement subspace of PCNC1 in C1,

< u, v >:= 1

lπ

∫ lπ

0
u1v1dx + 1

lπ

∫ lπ

0
u2v2dx

for u = (u1, u2), v = (v1, v2), u, v ∈ X and <

φ, f0 >= (< φ, f 10 >,< φ, f 20 >)T .
Let Aτ̃ denote the infinitesimal generator of an ana-

lytic semigroup induced by the linear system Eqs.
(3.12), and (3.8) can be rewritten as the following
abstract form
dU (t)

dt
= Aτ̃Ut + R(Ut , μ), (3.17)

where

R(Ut , μ) =
{
0, θ ∈ [−1, 0);
F(Ut , μ), θ = 0.

(3.18)

By the decomposition of C1, the solution above can be
written as

Ut = �

(
x1
x2

)
fn + h(x1, x2, μ), (3.19)

where(
x1
x2

)
= (�,< Ut , fn >),

and

h(x1, x2, μ) ∈ PSC1, h(0, 0, 0) = 0, Dh(0, 0, 0)=0.

In particular, the solution of (3.9) on the center mani-
fold is given by

Ut = �

(
x1(t)
x2(t)

)
fn + h(x1, x2, 0). (3.20)

Let z = x1 − i x2, and notice that p1 = �1 + i�2.
Then, we have

�

(
x1
x2

)
fn = (�1,�2)

( z+z
2

i(z−z)
2

)
fn

= 1

2
(p1z + p1z) fn,

and

h(x1, x2, 0) = h

(
z + z

2
,
i(z − z)

2
, 0

)
.

Hence, Eq. (3.20) can be transformed into

Ut = 1

2
(p1z + p1z) fn + h

(
z + z

2
,
i(z − z)

2
, 0

)

= 1

2
(p1z + p1z) fn + W (z, z), (3.21)

where

W (z, z) = h

(
z + z

2
,
i(z − z)

2
, 0

)
.

From [28], z satisfies

ż = iωn τ̃ z + g(z, z), (3.22)

where

g(z, z) = (�1(0) − i�2(0))〈F(Ut , 0), fn〉.
(3.23)

Let

W (z, z) = W20
z2

2
+ W11zz + W02

z2

2
+ · · · , (3.24)

g(z, z) = g20
z2

2
+ g11zz + g02

z2

2
+ · · · , (3.25)
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from Eqs. (3.21) and (3.24), we have

ut (0) = 1

2
(z + z) cos

(nx
l

)
+ W (1)

20 (0)
z2

2

+W (1)
11 (0)zz + W (1)

02 (0)
z2

2
+ · · · ,

vt (0) = 1

2
(ξ z + ξ z) cos

(nx
l

)
+ W (2)

20 (0)
z2

2

+W (2)
11 (0)zz + W (2)

02 (0)
z2

2
+ · · · ,

ut (−1) = 1

2
(ze−iωn τ̃ + zeiωn τ̃ ) cos

(nx
l

)

+W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz

+W (1)
02 (−1)

z2

2
+ · · · ,

and

F1(Ut , 0) = 1

τ̃
F1 = 1

2
fuuu

2
t (0) + fuvut (0)vt (0)

−ut (0)ut (−1) + 1

2
fvvv

2
t (0)

+1

6
fuuuu

3
t (0) + 1

6
fuuvu

2
t (0)vt (0)

+1

6
fuvvut (0)v

2
t (0)

+1

6
fvvvv

3
t (0) + O(4), (3.26)

F2(Ut , 0) = 1

τ̃
F2 = 1

2
guuu

2
t (0)

+guvut (0)vt (0) + 1

2
gvvv

2
t (0)

+1

6
guuuu

3
t (0) + 1

6
guuvu

2
t (0)vt (0)

+1

6
guvvut (0)v

2
t (0)

+1

6
gvvvv

3
t (0) + O(4), (3.27)

with

fuu = 2ch

(c + u∗)3
+ 2mv∗α

(m + u∗)3
,

fuv = − mα

(m + u∗)2
, guu = − 2sv2∗β

(m + u∗)3
,

guv = 2sv∗β
(m + u∗)2

, gvv = − 2sβ

m + u∗
,

fuuu = − 6ch

(c + u∗)4
− 6mv∗α

(m + u∗)4
,

fuuv = 2mα

(m + u∗)3
, guuu = 6sv2∗β

(m + u∗)4
,

guuv = − 4sv∗β
(m + u∗)3

, guvv = 2sβ

(m + u∗)2
,

fvv = fuvv = fvvv = gvvv = 0. (3.28)

Hence,

F1(Ut , 0) = cos2
(nx

l

) (
z2

2
χ20 + zzχ11 + z2

2
χ02

)

+ z2z

2
cos

(nx
l

)
[W (1)

11 (0)

( fuu + ξ fuv − e−i τ̃ωn ) + W (2)
11 (0) fuv

+W (1)
20 (0)

fuu + ξ fuv − ei τ̃ωn

2

+W (2)
20 (0)

fuv

2
− 1

2
W 1

20(−1) − W 1
1 (−1)]

+ z2z

2
cos3

(nx
l

)
[
1

8
fuuu + 1

24
(ξ + 2ξ) fuuv

]
+ · · · , (3.29)

F2(Ut , 0) = cos2
(nx

l

)

×
(
z2

2
ς20 + zzς11 + z2

2
ς20

)

+ z2z

2
cos

nx

l

[
W 1

11(0) (guu + ξguv)

+W 2
11(0) (guv + ξgvv)

+1

2
W 1

20(0)
(
guu + ξguv

)

+ 1

2
W 2

20(0)
(
guv + ξgvv

)]

+ z2z

2
cos3

(nx
l

) [
1

8
guuu + 1

24
(ξ + 2ξ)guuv

+ 1

24
ξ(2ξ + ξ)guvv

]
+ · · · , (3.30)

〈F(Ut , 0), fn〉 = τ̃ (F1(Ut , 0) f
1
n

+F2(Ut , 0) f
2
n )

= z2

2
τ̃

(
χ20

ς20

)
� + zzτ̃

(
χ11

ς11

)
�

+ z2

2
τ̃

(
χ20
ς20

)
� + z2z

2
τ̃

(
κ1
κ2

)
+ · · · . (3.31)

with

� = 1

lπ

∫ lπ

0
cos3

(nx
l

)
dx,

κ1 =
[(

fuu + ξ fuv − e−i τ̃ωn
)
W (1)

11 (0) + fuvW
(2)
11 (0)
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+1

2
( fuu + ξ fuv − ei τ̃ωn )W (1)

20 (0)

+1

2
fuvW

(2)
20 (0)

+1

2
W 1

20(−1) + 1

2
W 1

1 (−1)

]

× 1

lπ

∫ lπ

0
cos2

(nx
l

)
dx

+
[
1

8
fuuu + 1

24
(ξ + 2ξ) fuuv

]

× 1

lπ

∫ lπ

0
cos4

(nx
l

)
dx,

κ2 =
[
(guu + ξguv)W

(1)
11 (0) + (guv + ξgvv)W

(2)
11 (0)

+1

2
(guu + ξguv)W

(1)
20 (0)

+1

2
(guv + ξgvv)W

(2)
20 (0)

]

× 1

lπ

∫ lπ

0
cos2

(nx
l

)
dx

+
[
1

8
guuu + 1

24
(ξ + 2ξ)guuv

+ 1

24
ξ(2ξ + ξ)guvv

]
1

lπ

∫ lπ

0
cos4

(nx
l

)
dx

and

χ20 = 1

4

(
fuu + ξ2 fuv − 2e−i τ̃ωn

)

χ11 = 1

4

(
fuu + (ξ + ξ) fuv − e−i τ̃ωn − ei τ̃ωn

)

ς20 = 1

4
(guu + ξ(2guv + ξgvv)

ς11 = 1

4

(
guu + (ξ + ξ)guv + ξξgvv

)
. (3.32)

Denote

�1(0) − i�2(0) := (γ1 γ2).

Notice that
1

lπ

∫ lπ

0
cos3

(nx
l

)
dx = 0, n ∈ N,

and we have

(�1(0) − i�2(0)) < F(Ut , 0), fn >

= z2

2
(γ1χ20 + γ2ς20)�τ̃ + zz(γ1χ11 + γ2ς11)�τ̃

+ z2

2
(γ1χ20 + γ2ς20)�τ̃

+ z2z

2
τ̃ [γ1κ1 + γ2κ2] + · · · , (3.33)

Then, by (3.23), (3.25) and (3.33), we have g20 =
g11 = g02 = 0, for n = 1, 2, 3, · · · . If n = 0, we
have the following quantities:

g20 = γ1τ̃χ20 + γ2τ̃ ς20,

g11 = γ1τ̃χ11 + γ2τ̃ ς11,

g02 = γ1τ̃χ20 + γ2τ̃ ς20.

And for n ∈ N0, g21 = τ̃ (γ1κ1 + γ2κ2).
Now, a complete description for g21 depends on the

algorithm forW20(0) andW11(0) which we shall com-
pute.

From [28], we have

Ẇ (z, z) = W20zż + W11 żz + W11zż + W02zż + · · · ,

Aτ̃W (z, z) = Aτ̃W20
z2

2
+ Aτ̃W11zz + Aτ̃W02

z2

2
+ · · · ,

and W (z, z) satisfies

Ẇ (z, z) = Aτ̃W + H(z, z),

where

H(z, z) = H20
z2

2
+ W11zz + H02

z2

2
+ · · ·

= X0F(Ut , 0) − �(�,< X0F(Ut , 0), fn > · fn).
(3.34)

Hence, we have

(2iωn τ̃ − Aτ̃ )W20 = H20,

−Aτ̃W11 = H11, (−2iωn τ̃ − Aτ̃ )W02 = H02,

(3.35)

that is

W20 = (2iωn τ̃ − Aτ̃ )
−1H20,

W11 = −A−1
τ̃

H11, W02 = (−2iωn τ̃ − Aτ̃ )
−1H02.

(3.36)

By (3.33), we have that for θ ∈ [−1, 0),

H(z, z) = −�(0)�(0) < F(Ut , 0), fn > · fn
= −

(
p1(θ) + p2(θ)

2
,
p1(θ) − p2(θ)

2i

)

×
(

�1(0)
�2(0)

)
< F(Ut , 0), fn > · fn

= −1

2
[p1(θ)(�1(0) − i�2(0))

+p2(θ)(�1(0) + i�2(0))]
= 〈F(Ut , 0), fn〉 · fn − 1

2
[(p1(θ)g20
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+p2(θ)g02)
z2

2
+ (p1(θ)g11 + p2(θ)g11)zz

+(p1(θ)g02 + p2(θ)g20)
z2

2

]
+ · · · .

Therefore, by (3.34), for θ ∈ [−1, 0),

H20(θ) =
{
0 n ∈ N,

− 1
2 (p1(θ)g20 + p2(θ)g02) · f0 n = 0,

H11(θ) =
{
0 n ∈ N,

− 1
2 (p1(θ)g11 + p2(θ)g11) · f0 n = 0,

H02(θ) =
{
0 n ∈ N,

− 1
2 (p1(θ)g02 + p2(θ)g20) · f0 n = 0,

and

H(z, z)(0) = F(Ut , 0) − �(�,< F(Ut , 0), fn >)

· fn,
where

H20(0)

=

⎧⎪⎪⎨
⎪⎪⎩
τ̃

(
χ20
ς20

)
cos2

( nx
l

)
, n ∈ N,

τ̃

(
χ20
ς20

)
− 1

2 (p1(0)g20 + p2(0)g02) · f0, n = 0.

H11(0)

=

⎧⎪⎪⎨
⎪⎪⎩
τ̃

(
χ11
ς11

)
cos2

(nx
l

)
, n ∈ N,

τ̃

(
χ11
ς11

)
− 1

2 (p1(0)g11 + p2(0)g11) · f0, n = 0.

(3.37)

By the definition of Aτ̃ and (3.35), we have

Ẇ20 = Aτ̃W20 = 2iωn τ̃W20 + 1

2
(p1(θ)g20

+p2(θ)g02) · fn, − 1 ≤ θ < 0.

That is

W20(θ) = i

2iωn τ̃
(g20 p1(θ)

+g02
3

p2(θ)) · fn + E1e
2iωn τ̃ θ ,

where

E1

=
{
W20(0) n = 1, 2, 3, · · · ,

W20(0)− i
2iωn τ̃

(g20 p1(θ)+ g02
3 p2(θ)) · f0 n = 0.

Using the definition of Aτ̃ and (3.35), we have that for
−1 ≤ θ < 0

−(g20 p1(0) + g02
3

p2(0)) · f0 + 2iωn τ̃ E1

−Aτ̃

(
i

2ωn τ̃
(g20 p1(0) + g02

3
p2(0)) · f0

)

−Aτ̃ E1 − L τ̃

(
i

2ωn τ̃
(g20 p1(0)

+g02
3

p2(0)) · fn + E1e
2iωn τ̃ θ

)

= τ̃

(
χ20

ς20

)
− 1

2
(p1(0)g20 + p2(0)g02) · f0.

As

Aτ̃ p1(0) + L τ̃ (p1 · f0) = iω0 p1(0) · f0,

and

Aτ̃ p2(0) + L τ̃ (p2 · f0) = −iω0 p2(0) · f0,

we have

2iωn E1 − Aτ̃ E1 − L τ̃ E1e
2iωn

= τ̃

(
χ20

ς20

)
cos2

(nx
l

)
, n ∈ N.

That is

E1 = τ̃ E

(
χ20

ς20

)
cos2

(nx
l

)

where

E =
(
2iωn τ̃ + d1

n2

l2
− a1 − u∗ u∗e−2iωn τ̃

−s/β 2iωn τ̃ + d2
n2

l2
+ s

)−1

.

Similarly, from (3.36), we have

−Ẇ11 = i

2ωn τ̃
(p1(θ)g11 + p2(θ)g11) · fn,

− 1 ≤ θ < 0.

That is
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Fig. 1 Phase portraits of system (1.5) without delay and diffusion. Left s = 0.2 and initial condition (0.3, 0.9). Right s = 0.09 and
initial condition (0.3, 0.9)

Fig. 2 For system (1.5) without delay, s = 0.2, and initial condition is (0.3, 0.9). Left component u(x, t) (stable). Right component
v(x, t) (stable)

W11(θ) = i

2iωn τ̃
(p1(θ)g11 − p1(θ)g11) + E2.

Similar to the procedure of computing W20, we have

E2 = τ̃ E∗
(

χ11

ς11

)
cos2

(nx
l

)
,

where

E∗ =
(
d1

n2

l2
− a1 − u∗ u∗
−s/β d2

n2

l2
+ s

)−1

.

Thus, we can compute the following quantities which
determine the direction and stability of bifurcating peri-
odic orbits:

c1(0) = i

2ωn τ̃

(
g20g11 − 2|g11|2 − |g02|2

3

)
+ 1

2
g21,

μ2 = − Re(c1(0))

Re(λ′(τ j
n ))

,

T2 = − 1

ωn τ̃
[Im(c1(0)) + μ2 Im(λ′(τ j

n ))],
β2 = 2Re(c1(0)). (3.38)

Then, we have the following theorem.
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Fig. 3 For system (1.5) without delay, s = 0.2, l = 2, and initial condition is (0.3, 0.9). Left component u(x, t) (Turing unstable).
Right component v(x, t) (Turing unstable)

Fig. 4 For system (1.5) without delay, s = 0.2, l = 0.5, and initial condition is (0.3, 0.9). Left component u(x, t) (stable). Right
component v(x, t) (stable)

Theorem 3.2 For any critical value τ
j
n , we have

(i) μ2 determines the directions of the Hopf bifurca-
tion: if μ2 > 0 (resp.<0), then the Hopf bifurca-
tion is forward (resp. backward), that is, the bifur-
cating periodic solutions exist for μ > 0 (resp.
μ < 0) ;

(ii) β2 determines the stability of the bifurcating peri-
odic solutions on the center manifold: if β2 < 0
(resp. >0), then the bifurcating periodic solutions
are orbitally asymptotically stable (resp. unsta-
ble) .

(iii) T2 determines the period of bifurcating periodic
solutions: if T2 > 0 (resp. T2 < 0), then the
period increases (resp. decreases).

4 Numerical simulations

Fix parameters

α = 0.3, h = 0.02,

m = 0.1, c = 0.5,

β = 0.5. (4.1)

Hence, E∗(0.3772, 0.9544) is the unique positive equi-
librium, anda1 ≈ 0.1069, a2 ≈ −0.2371, a1+a2/β ≈
−0.3674 < 0; then, (H1) holds.

For system (1.5) without delay and diffusion, by
Theorem (2.1), if s > a1, then equilibrium E∗(u∗, v∗)
is locally asymptotically stable, and the system under-
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Fig. 5 For system (1.5) without delay, s = 0.09 and initial condition is (0.3, 0.9). Left component u(x, t) (periodic solution). Right
component v(x, t) (periodic solution)

Fig. 6 For system (1.5), τ = 1.5 and initial condition is (0.3, 0.9). Left component u(x, t) (stable). Right component v(x, t) (stable)

goes Hopf bifurcation at E∗(u∗, v∗) when s = a1
(shown in Fig. 1).

For system (1.5) without delay, we have σ ≈
0.0637. Set d1 = 0.05, d2 = 0.5 and l = 2, then
d1/d2 > σ . By Theorem (2.2) (i) and (ii), s > a1, then
equilibrium E∗(u∗, v∗) is locally asymptotically stable
and Turing instability will not occur; this is shown in
Fig. 2.

For system (1.5) without delay, set d1 = 0.05, d2 =
3, then d1/d2 < σ and s− ≈ 0.4088. If set s = 0.2,
then s ∈ (a1, s−), z− ≈ 0.4683 and z+ ≈ 1.5691.
If set l = 2, then there exists a k = 2 such that
k2/ l2 ∈ (z−, z+); by Theorem (2.2) (iv), E∗(u∗, v∗)
is Turing unstable, and this is shown in Fig. 3. If set
l = 0.5, then there doesn’t exist k ∈ N such that

k2/ l2 ∈ (z−, z+); by Theorem (2.2) (iii), E∗(u∗, v∗)
is locally asymptotically stable, and this is shown in
Fig. 4. Set s = 0.09, by Theorem (2.2) (v), Hopf bifur-
cation occurs, this is shown in Fig. 5.

For system (1.5), set d1 = 0.05, d2 = 3, l = 2
and s = 0.5. By direct computation, we have D =
[0, 1, 2, 3, 4, 5, 6, 7, 8] and τ∗ = τ 00 ≈ 1.6118. By
Theorem (3.1), we know that if τ ∈ [0, τ∗), then the
equilibrium E∗(u∗, v∗) is locally asymptotically sta-
ble. This is shown in Fig. 6. By Theorem (3.1), system
(1.5) undergoes a Hopf bifurcation at the equilibrium
E∗(u∗, v∗) when τ = τ∗. By Theorem (3.2), we have

μ2 ≈ 11.5932 > 0, β2 ≈ −8.0186 < 0, and

T2 ≈ −3.6610 < 0.
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Fig. 7 For system (1.5), τ = 1.7 and initial condition is (0.3, 0.9). Left component u(x, t) (periodic solution). Right component v(x, t)
(periodic solution)

Hence, the direction of the bifurcation is forward, and
the bifurcating period solutions are locally asymptoti-
cally stable. In addition, the period of bifurcating peri-
odic solutions decreases. This is shown in Fig. 7.

5 Conclusion

In this paper, we have considered a diffusive modified
Leslie–Gower predator–prey model with Michaelis–
Menten-type harvesting in prey. The model shows rich
and varied dynamics.

For the model without delay, we study the effect of
diffusion, including stability and Turing instability of
positive equilibrium. When s > a1 and s ≥ d2a1

d1
, the

equilibrium E∗(u∗, v∗) is asymptotically stable and the
diffusion has no effect on the system.When d1/d2 > σ ,
then for s > a1 equilibrium E∗(u∗, v∗) is locally
asymptotically stable and Turing instability will not
occur. When d1

d2
< σ , for a1 < s < s−, choose a

suitable l (represents the region � = (0, lπ)) such
that there exist a k ∈ N such that k2

l2
∈ (z−, z+),

then Turing instability occurs. But when we change
l such that there doesn’t exist k ∈ N satisfying k2/ l2 ∈
(z−, z+), E∗(u∗, v∗) is locally asymptotically stable.
These results suggest that diffusion coefficients and
the region’s size all affect the stability of equilibrium
E∗(u∗, v∗).

In addition, the time delay in the resource limitation
of the prey plays an important role in coexistence of
predator and prey. We obtained that when τ crosses the
critical value τ∗, the stability of the positive equilibrium

P(u∗, v∗) changes and Hopf bifurcation occurs. That
means the predator and prey coexist and converge to
the coexisting equilibrium point when time delay is
smaller than the critical value, and the predator and the
prey species may coexist in an oscillatory mode when
time delay crosses the critical value.
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