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Abstract In this paper, a generalized higher-order
variable-coefficient nonlinear Schrödinger equation is
studied, which describes the propagation of subpi-
cosecond or femtosecond pulses in an inhomoge-
neous optical fiber. We derive a set of the integrable
constraints on the variable coefficients. Under those
constraints, via the symbolic computation and mod-
ified Hirota method, bilinear equations, one-, two-
,three-soliton solutions and dromion-like structures are
obtained. Properties and interactions for the solitons
are studied: (a) effects on the solitons resulting from
the wave number k, third-order dispersion δ1(z), group
velocity dispersion α(z), gain/loss Γ2(z) and group-
velocity-related γ (z) are discussed analytically and
graphically where z is the normalized propagation dis-
tance along the fiber; (b) bound state with different val-
ues of α(z), δ1(z), γ (z) and Γ2(z) are presented where
some periodic or quasiperiodic formulae are derived.
Interactions between the two solitons and between the
bound states and a single soliton are, respectively, dis-
cussed; and (c) single, double and triple dromion-like
structures with different values of α(z), δ1(z), γ (z) are
also presented, distortions of which are found to be
determined by those variable coefficients.
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1 Introduction

Soliton study has been seen in fluids [1–8], plas-
mas [9–11], Bose–Einstein condensations [12–15],
biophysics [16,17] and fiber communication systems
[18–21]. In order to derive the soliton solutions for
nonlinear evolution equations, the Hirota’s bilinear
method has been reported, which plays an important
role in soliton theory [22,23]. As application of the
Horita’s bilinear method, many analytical solutions for
some nonlinear evolution equations have been con-
structed [24–31]. Furthermore, the Hirota’s bilinear
method has been generalized [32] and a refined invari-
ant subspacemethod has been systematically presented
and analyzed for solving nonlinear equations [33,34].
Nonlinear Schrödinger (NLS) equation with the group
velocity dispersion (GVD) and self-phase modulation
(SPM) [35,36],

iΩx + 1

2
Ω|Ω|2 + Ωττ = 0, (1)

is a model for the propagation and interaction of opti-
cal solitons in the picosecond domain, where x and
τ , respectively, are the normalized propagation dis-
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tance along the fiber and the retarded time, Ω(x, τ )

is the slowly varying envelope of the electric field, and
the subscripts represent the partial derivatives. Opti-
cal solitons in a dielectric fiber have been regarded as
an alternative data bit carrier to the next generation of
ultrafast optical telecommunication systems [37,38]. A
systematic study for Eq. (1) has been reported in [39].
For the inhomogeneous optical fiber, the subpicosec-
ond or femtosecond soliton pulses can be governed
by the following higher-order variable-coefficient NLS
equation [40–42]:

iuz + α(z)utt + β(z)u|u|2 + iγ (z)ut

+ iδ1(z)uttt + iδ2(z)(u|u|2)t + iδ3(z)u(|u|2)t
+ [Γ1(z) + iΓ2(z)]u = 0, (2)

where z and t are the normalized propagation dis-
tance along the fiber and retarded time, u(z, t) rep-
resents the complex envelope of the electric field in
the comoving frame, all of the variable coefficients
are the real functions of z, α(z) and β(z) denote the
GVD and SPM, respectively, the term proportional to
γ (z) results from the group velocity, Γ1(z) is the fre-
quency shift parameter, Γ2(z) is the linear gain/loss,
δ1(z) denotes the third-order dispersion (TOD), δ2(z)
is the self-steepening (SS), and δ3(z) is related to the
delayed nonlinear response effect.

In general, Eq. (2) is not integrable [43–45]. Two
sets of the integrable constraints for Eq. (2) via the
Painlevé analysis have been reported [41], one of
which, α(z) = −3β(z)δ1(z)/δ3(z) and δ3(z) =
q1δ1(z)e2

∫
(Γ2(z)dz) where q1 is a constant, is simi-

lar to that shown in Refs. [45–47]. Under the other
set, α(z) = −3q2δ1(z)/(2c3) and δ3(z) = q3δ1(z)
e2

∫
(Γ2(z)dz) where q2 �= 0 and q3 �= 0 are a cou-

ple of constants, the 2 × 2 Lax pair has been trans-
formed to a 3×3 linear eigenvalue problem with some
soliton solutions obtained via the Darboux transforma-
tion [41,48]. Anti-dark solitons for Eq. (2) have been
constructed [42].

Special cases of Eq. (2) in the optical fibers have
been seen: (a) When α(z) = d0(z)/2, β(z) = h0(z),
δ1(z) = b0(z)/6, δ2(z) = −l0(z), δ3(z) = −ik0(z) and
γ (z) = Γ1(z) = Γ2(z) = 0, Eq. (2) can be reduced
to a perturbed NLS equation which describes the long
distance propagation for the very short optical soli-
tons in a nonlinear optical fiber, where d0(z) and b0(z)
are the second-order and third-order dispersion profiles
between the amplifiers, and h0(z), k0(z) and l0(z) are

chosen to incorporate both the exponential factor due
to the linear loss and the lumped amplification [49]; (b)
Eq. (2) can be reduced to a higher-order NLS equation
with α(z) = α1, β(z) = α2, δ1(z) = −α3, δ2(z) =
−α4, δ3(z) = −α5 and γ (z) = Γ1(z) = Γ2(z) = 0,
which governs the femtosecond light pulses in an opti-
cal fiber, where α1, α2, α3, α4 and α5 are all the real
parameters with some soliton solutions for the higher-
order NLS equation that have been constructed via a
scaling transformation [50,51]; (c) when α(z) = 1/2,
β(z) = 1, δ1(z) = α3, δ2(z) = α1, δ3(z) = α2−α1 and
γ (z) = Γ1(z) = Γ2(z) = 0, Eq. (2) can be reduced
to a extended third-order cubic NLS equation which
describes the slow evolution of the wave envelope
in nonlinear dispersive system, and soliton solutions
have been derived based on the Galilean transforma-
tion and generalized Galilean invariance [52]; and (d)
under the Hirota conditions α(z)δ2(z) = 3β(z)δ1(z)
and δ2(z) = −δ3(z), Eq. (2) can be reduced to a
variable-coefficient Hirota equation [45–47], analytic
multi-soliton solutions for which have been obtained
via the bilinear method [46] and Darboux transforma-
tion [47], respectively.

Dromion structures have been investigated in the
(2+1)- or higher- dimensional partial differential equa-
tions (PDEs) [53–58], which have hardly been obtained
in the (1 + 1)-dimensional PDEs [59]. For instance,
dromion solutions for the (2 + 1)- and (3 + 1)-
dimensional Korteweg-de Vries equations have been
reported [53,54], respectively. Dromion solutions for
the Davey–Stewartson (DS) have been obtained explic-
itly [55] and numerically [56]. Dromion solutions for
the noncommutative DS equations have been derived
via the Darboux transformation [57]. Dromions for
the (2+ 1)-dimensional NLS equation with nonlinear-
ity coefficients have been constructed via the Hirota’s
bilinear method [58]. Dromion-like structures for the
variable-coefficient Ginzburg–Landau equation have
been studied [59]. Lump solitons, which is a kind of
dromion-like solutions, for the KP and the generalized
KP and BKP equations have been constructed [60]

However, to our knowledge, for Eq. (2), interac-
tions between/among the subpicosecond or femtosec-
ond solitons and dromion-like structures based on the
analytic soliton solutions have not been discussed. In
this paper, wewill devote to obtain the soliton solutions
and dromion-like structures via the Hirota’s bilinear
method and to discuss the interactions between/among
the subpicosecond or femtosecond solitons. In Sect. 2,
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we will derive the variable-coefficient bilinear equa-
tions for Eq. (2) via symbolic computation. In Sect. 3,
one-, two- and three-soliton solutions for Eq. (2) will
be obtained, interactions between/among the two and
three solitons will be discussed with different values
of variable coefficients, and bound states and dromion-
like structures will be presented. Our conclusions will
be given in Sect. 4.

2 Bilinear equations and integrable constraints for
Eq. (2)

With the dependent-variable transformation [45]

u(z, t) = A(z)g(z, t)/ f (z, t), (3)

Eq. (2) can be transformed into

i A(z)
Dzg · f

f 2
+ i A(z)z

g

f
+ α(z)A(z)

×
(
D2
t g · f

f 2
− g

f

D2
t f · f

f 2

)

+ β(z)A(z)3
g2g∗

f 3

+ iγ (z)
Dtg · f

f 2
+ i A(z)δ1(z)

×
(
D3
t g · f

f 2
− 3

Dtg · f

f 2
D2
t f · f

f 2

)

+ iδ2(z)A(z)3
(
g2Dtg∗ · f

f 4
+ 2gg∗Dtg · f

f 4

)

+ iδ3(z)A(z)3
(
g2Dtg∗ · f + gg∗Dtg · f

f 4

)

+ A(z) [Γ1(z) + iΓ2(z)] g/ f = 0, (4)

where f (z, t) and A(z) are the real functions, g(z, t) is
a complex one, the asterisk denotes the complex con-
jugate, Dz and Dt are the Hirota’s bilinear derivative
operators defined by [61]

Dm
z Dn

t 	(z, t) · 
(z, t) ≡
(

∂

∂z
− ∂

∂z′

)m

×
(

∂

∂t
− ∂

∂t ′

)n

	(z, t)
(z′, t ′)|z′=z,t ′=t , (5)

where z′ and t ′ are the formal variables, 	(z, t) and

(z, t) are the differentiable functions of z and t ,
m and n are the nonnegative integers. Assuming that
D2
t f · f = κgg∗, where κ is a positive constant, we

can transform Eq. (4) into

A(z)
[
i Dz + α(z)D2

t + iγ (z)Dt + iδ1(z)D3
t + Γ1(z)

]
g · f

f 2

+ ig[A(z)Γ2(z) + A(z)z]
f

+ A(z)g

f 4
{|g|2 f [

A(z)2β(z)

− κα(z)] + i A(z)2g [δ2(z) + δ3(z)] Dt g
∗ · f

+ g∗Dt g · f
[
3κδ1(z) − A(z)2(2δ1(z) + δ3(z))

]} = 0.

(6)

Splitting Eq. (6) [45,62] yields
[
i Dz + α(z)D2

t + iγ (z)Dt + iδ1(z)D
3
t + Γ1(z)

+ i A(z)Γ2(z) + i A(z)z
]
g · f = 0, (7a)

A(z)2β(z) − κα(z) = 0, (7b)

δ2(z) + δ3(z) = 0, (7c)

3κδ1(z) − A(z)2 [2δ2(z) + δ3(z)] = 0. (7d)

For Eq. 6, we can choose i A(z)Γ2(z) + i A(z)z = 0
which leads to A(z) = e− ∫

Γ2(z)dz . From Eq. 7b–d, we
get the constraints

β(z) = κα(z)e2
∫

Γ2(z)dz, δ3(z) = −δ2(z),

δ2(z) = 3κδ1(z)e
2

∫
Γ2(z)dz,

(8)

which are similar to the Hirota conditions [45–47].
Under Constraints (8), the variable-coefficient bilinear
equations are derived as

D2
t f · f = κgg∗,
[
i Dz + α(z)D2

t + iγ (z)Dt + iδ1(z)D
3
t + Γ1(z)

]
g

· f = 0. (9)

3 Soliton solutions for Eq. (2) under Constraints
(8)

In this part, we will derive the soliton solutions for
Eq. (2) by expanding f and g as

f = 1 + ε f1 + ε2 f2 + ε3 f3 · · · ,

g = g0(1 + εg1 + ε2g2 + ε3g3) . . . ,
(10)

with ε as a formal expansion parameter, g′
i s (i =

1,2,3…) are the complex functions of z and t , and f ′
ks

(k =1,2,3…) are the real ones. The solutions can be
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constructed by substituting Expressions (10) intoBilin-
ear Equation (9) and collecting terms proportional to
the same powers of ε.

3.1 One-soliton solutions for Eq. (2) under
Constraints (8)

Truncating Expressions (10) as

g = εg1, f = 1 + ε2 f2, (11)

substituting Expressions (11) into Bilinear Equations
(9) and setting ε = 1, we can obtain the one-soliton
solutions for Eq. (2) under Constraints (8) as

u = A(z)
g1

1 + f2
(12)

where

g1 = eη, f2 = Beη+η∗
, B = κ

2(k + k∗)2
,

η = kt+
∫

[
ik2α(z)+iΓ1(z)−kγ (z)−k3δ1(z)

]
dz +φ

with k being a complex constant, and φ is a real one.
Taking k = kR + kI i , where the subscripts R and I
denote the real and imaginary parts, respectively, we
obtain the intensity of the optical pulse as

|u|2 = e−2
∫

Γ2(z)dz
2k2R
κ

sech2
(

ηR + 1

2
ln

κ

8k2R

)

,

(13)

with

ηR = kRt − kR

∫ [
2kIα(z) + γ (z) + (k2R

− 3k2I )δ1(z)
]
dz.

(14)

To derive the velocity for a soliton, we can track a point
of the soliton where the intensity keeps unchanged,
fromwhich a characteristic line equation can bewritten
as

kRt − kR

∫ [
2kIα(z) + γ (z) + (k2R

− 3k2I )δ1(z)
]
dz + 1

2
ln

κ

8k2R
= constant.

(15)

Differentiating Eq. (15) with respect to z, we obtain

dt

dz
−

[
(k2R − 3k2I )δ1(z) + 2kIα(z) + γ (z)

]
= 0, (16)

from which we derive the velocity for the soliton as

v = dz

dt
= 1

(k2R − 3k2I )δ1(z) + 2kIα(z) + γ (z)
. (17)

From the intensities of one-soliton solutions (12),
we find that the soliton amplitude is related to the
real part of the wave number, k, and that the veloc-
ity of the soliton is determined by the TOD δ1(z),
GVD α(z) and γ1(z) resulting from the group veloc-
ity. Linear gain/loss term, Γ2(z), can directly affect
the soliton amplitude. Soliton width is related to the
TOD, GVD, γ1(z) and wave number k. We present
some figures with different values of the variable coef-
ficients to illustrate those properties. In Fig. 1, we find
that the variable coefficients, α(z), δ1(z) and γ (z), can

Fig. 1 One solitons via Solutions (12), with the parame-
ters as k = 1/4 + i/3, κ = 2, Γ1(z) = z, Γ2(z) =
1/10, φ = 0 : aα(z) = z/2, γ (z) = z/4, δ1(z) =
z/3; bα(z) = z2/10, γ (z) = z2/20, δ1(z) = z2/15; cα(z) =
3sin(z/2), γ (z) = 3sin(z/2), δ1(z) = 3cos(z/2)
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Fig. 2 The same as Fig. 1 except that Γ2(z) = z/50

influence the structure, amplitude and velocity of the
soliton: Velocity and amplitude change all the time
along the z-axis; when α(z) = z/2, δ1(z) = z/3 and
γ (z) = z/4, we obtain a parabolic soliton via Solu-
tions (12), as shown in Fig. 1a; when α(z) = z2/10,
δ1(z) = z2/15 and γ (z) = z2/20, we plot a cubic soli-
ton via Solutions (12), as seen in Fig. 1b. In Fig. 1c,
when α(z) = 3sin(z/2), δ1(z) = 3cos(z/2) and
γ (z) = 3sin(z/2), we present a periodical oscillating
soliton via Solutions (12). Further, influence of Γ2(z)
can be seen when we compare Figs. (1) and (2): When
Γ2(z) = 1/10, we derive that e−2

∫
Γ2(z)dz = e−z/5

which leads to the soliton amplitude compressed along
the z-axis, as seen in Fig. 1. As Γ2(z) = z/50, we can
derive that e−2

∫
Γ2(z)dz = −ez

2/50 which leads to the
soliton amplitude compressed along the z-axis on both
directions, as shown in Fig. 2.

3.2 Two-soliton solutions for Eq. (2) under
Constraints (8)

In order to obtain the two-soliton solutions, we truncate
Expressions (10) as

g = εg1 + ε3g3, f = 1 + ε2 f2 + ε4 f4. (18)

Substituting Expressions (18) into Bilinear Equa-
tions (9) and setting ε = 1, we obtain the two-soliton
solutions for Eq. (2) under Constraints (8) as

u = A(z)
g1 + g3

1 + f2 + f4
, (19)

where

g1 = eη1 + eη2 ,

g3 = A123e
η1+η2+η∗

1 + A124e
η1+η2+η∗

2 ,

f2 = A13e
η1+η∗

1 + A23e
η2+η∗

1

+ A14e
η1+η∗

2 + A24e
η2+η∗

2 ,

f4 = A1234e
η1+η2+η∗

1+η∗
2 , ηm = kmt

+wm(z) + φm,

wm(z) =
∫ [

ik2mα(z) − kmγ (z) − k3mδ1(z)
]
dz,

Am,n+2 = κ/2(km + k∗
n)

2, (m = 1, 2), (n = 1, 2),

A12 = 2(k1 − k2)
2/κ, A34 = 2(k∗

1 − k∗
2)

2/κ,

A123 = A12A13A23, A124 = A12A14A24,

A1234 = A123A14A24A34,

with k1 and k2 being the complex constants, and φ′
ms

as the real ones. Via symbolic computation and Solu-
tions (19), intensity of the two-soliton solutions can be
written as

|u|2 = e
∫ [−2Γ2(z)]dz

|ξ1|2 + |ξ2|2 + 2χ

[C0 + 2reη1R+η2R cos(η1I − η2I + ϕ)]2 , (20)

where

C0 = 1 + A13e
η1+η∗

1 + A24e
η2+η∗

2

+ A1234e
η1+η2+η∗

1+η∗
2 ,

A123 = r1e
iϕ1 , A124 = r2e

iϕ2 , A14 = reiϕ,

k1 = a1 + b1i, ξ1 = eη1R + r2e
2η2R+η1R+iϕ2 ,

k2 = a2 + b2i, ξ2 = eη2R + r1e
2η1R+η2R+iϕ1 ,

χ = 2r1e
3η1R+η2R cos(η2I − η1I + ϕ1)

+ 2r2e
η1R+3η2R cos(η2I − η1I − ϕ2)

+ 2eη1R+η2R cos(η2I − η1I )

+ 2r1r2e
3η1R+3η2R cos(η2I − η1I + ϕ1 − ϕ2),

η1I = b1t −
∫ [

(b21 − a21)α(z) + b1γ (z)

+ (3a21 − b21)b1δ1(z) − Γ1(z)
]
dz,

η2I = b2t −
∫ [

(b22 − a22)α(z) + b2γ (z)

+ (3a22 − b22)b2δ1(z) − Γ1(z)
]
dz, (21)

it is obvious that periods exist in the two-soliton solu-
tions.
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Fig. 3 Interactions between the two solitons via Solutions (19),
with the parameters as k1 = 1/3 + (1 + √

13/3)i/3, k2 =
1/4 + i/5, κ = 4, Γ1(z) = z, Γ2(z) = 1/10, φ1 = φ2 =
0 : aα(z) = γ (z) = δ1(z) = z/2; bα(z) = γ (z) = δ1(z) =
z2/5; cα(z) = γ (z) = δ1(z) = 3sin(z/2)

Interactions between the two solitons are presented
in Figs. 3 and 4: When α(z) = δ1(z) = γ (z) = z/2,
interaction between a parabolic and static soliton can
be seen in Fig. 3a, where the intensity approaches to
zero quickly along the z-axis; When α(z) = δ1(z) =
γ (z) = z2/5, interaction between the cubic and static
solitons is obtained in Fig. 3b; when α(z) = δ1(z) =
γ (z) = 3sin(z/2), interaction between the periodic
and static solitons is presented in Fig. 3c. Although
the intensities of the two solitons in Fig. 3 decay expo-
nentially along the z-axis, attenuation degree of which
in Fig. 3c is much weaker than that in Fig. 3a, b. Com-
pared with Fig. 3, if we take Γ2(z) = z/10, interaction
features between the two solitons in this case are simi-
lar to those in Fig. 3 except that the intensities decrease
along the z- axis in both directions, as presented in
Fig. 4.

Bound-state solitons can be obtained with certain
parameters: For a bound-state soliton, we choose two
static solitons to satisfy the limitation that the two soli-
tons have the same velocity and to derive an explicit
relation between a and b from Eq. (17) as b =
(α(z) ± √

α(z)2 + 3δ1(z)γ (z) + 3a2δ1(z)2)/(3δ1(z)).
Because b is a constant in the soliton solution, we
need to introduce a set of the constraints among the
variable coefficients as α(z) = c1γ (z) = c2δ1(z),

Fig. 4 The same as Fig. 3 except that Γ2(z) = z/10, κ = 2

with c1 and c2 being two real constants. For the sake
of brevity, we can take α(z) = γ (z) = δ1(z), i.e.,
c1 = c2 = 1, the relation between a and b can
be rewritten as b = (1 ± √

4 + 3a2)/3. For the
two solitons propagating with the same velocity, we
have bρ = (1 ± √

4 + 3ρ2)/3, (ρ = 1, 2) so as to
derive that η2I − η1I = (b2 − b1)t + Γ

∫
α(z)dz,

where Γ = 8

(√
4 + 3a21 +3a21

√
4 + 3a21 −

√
4 + 3a22

− 3a22

√
4 + 3a22

)

.

Studies on the bound-state solitons can be car-
ried out for different variable coefficients: (a) Setting
Γ

∫
α(z)dz = 2nπ and α(z) = ζ z, with ζ being a

real constant, we can obtain |Γ |ζ z2n/2 = 2nπ (n =
1, 2, 3 . . .), which leads to zn = 2

√
n
√

π/|Γ |ζ , from
which the quasiperiodic formulae along the z-axis can
be expressed as Tn = 2(

√
n − √

n − 1)
√

π/|Γ |ζ . In
this case, when we choose the variable coefficients
as α(z) = γ (z) = δ1(z) = 2z, the two-soliton
solutions evolve into a quasiperiodic bound state, as
shown in Fig. 5a. Quasiperiodic attractions and repul-
sions lead to the redistribution of the energy between
the two solitons. Furthermore, we can calculate the
quasi-periods of the bound state. Using the parameters
given in Fig. 5a, we obtain the periods T1 = 7.834,
T2 = 3.245 and T3 = 2.450. Meanwhile, we can
derive the ratio among the quasi-periods, which is
T1 : T2 : T3 · · · = 1 : (

√
2 − 1) : (

√
3 − √

2) · · · ;

123



Solitons and dromion-like structures 857

Fig. 5 Bound states via Solutions (19), with the parameters as
k1 = 1/3+ (1+√

13/3)i/3, k2 = 1/4+ (1+√
67/4)i/3, κ =

2, Γ1(z) = z, Γ2(z) = 1/12, φ1 = φ2 = 0 : aα(z) = γ (z) =
δ1(z) = 2z; bα(z) = γ (z) = δ1(z) = z2/5; cα(z) = γ (z) =
δ1(z) = 10sin(z/5)

(b) if α(z) = ζ z2, with ζ being a real constant, we can
obtain |Γ |ζ z3n/3 = 2nπ (n = 1, 2, 3 . . .), which leads
to zn = 3

√
n 3
√
6π/|(Γ |ζ ) , from which the quasiperi-

odic formulae along the z-axis canbe expressed as Tn =
( 3
√
n − 3

√
n − 1) 3

√
6π/|(Γ |ζ ). As shown in Fig. 5b,

where α(z) = γ (z) = δ1(z) = z2/5, we present a
bound state which is similar to that in Fig. 5a. Using the
parameters given in Fig. 5, we derive the periods of the
bound state (T1 = 9.728, T2 = 2.528 and T3 = 1.774);
and (c) setting α(z) = ζcos(� z), where ζ and � are
both the real constants, we obtain |Γ |ζ sin(� zn)/� =
2nπ(n = 1, 2, 3 . . .). Due to the fact that cos(� z) is
a periodic function, 2π/� is one of the periods. In
addition, the quasiperiodic formulae can be expressed
as Tn = arcsin(2π� n

Γ ζ
)/� − arcsin(2π� n−1

Γ ζ
)/�.

With the parameters given in Fig. 5c, the periods can
also be derived.

As shown in Fig. 6a, when φ1 = −5/2 and φ2 =
5/2 which are related to the initial position, we plot
two static solitons which are parallel to the z-axis. The
two solitons propagate along the z-axis in the optical
fiberwith a constant separation between them.Afterwe
set φ1 = −1/2 and φ2 = 1/2 , an interaction between
the two parallel solitons is obtained, as seen in Fig. 6b.
Whenwe change the parameters toφ1 = 0 andφ2 = 0 ,
the bound is achieved, as depicted in Fig. 5a. When
φ1 = 1/2 and φ2 = −1/2 , an interaction similar to

Fig. 6 The same as Fig. 5a except that aφ1 = −5/2, φ2 =
5/2; bφ1 = −1/2, φ2 = 1/2; cφ1 = 1/2, φ2 = −1/2

that in Fig. 6b between the two solitons is presented,
as seen in Fig. 6c. From the above, we find that the
parameters φ1 and φ2 related to the initial positions
can influence the separation and interaction between
the two solitons.

3.3 Three-soliton solutions for Eq. (2) under
Constraints (8)

To derive the three-soliton solutions for Eq. (2) under
Constraints (8), we truncate Expressions (10) as

g = εg1 + ε3g3 + ε5g5,

f = 1 + ε2 f2 + ε4 f4 + ε6 f6,
(22)

substituting Eq. (22) into Bilinear Equations (9) and
setting ε = 1, we can derive the three-soliton solutions
for Eq. (2) as

u = g1 + g3 + g5
1 + f2 + f4 + f6

, (23)

where

g1 = eη1 + eη2 + eη3 , g3 = A124e
η1+η2+η∗

1

+ A125e
η1+η2+η∗

2 + A126e
η1+η2+η∗

3

+ A134e
η1+η3+η∗

1

+ A135e
η1+η3+η∗

2 + A136e
η1+η3+η∗

3

+ A234e
η2+η3+η∗

1

+ A235e
η2+η3+η∗

2 + A236e
η2+η3+η∗

3 ,
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g5 = A12345e
η1+η2+η3+η∗

1+η∗
2

+ A12346e
η1+η2+η3+η∗

1+η∗
3

+ A12356e
η1+η2+η3+η∗

2+η∗
3 ,

f2 = A14e
η1+η∗

1 + A24e
η2+η∗

1

+ A34e
η3+η∗

1 + A15e
η1+η∗

2 + A25e
η2+η∗

2

+ A35e
η3+η∗

2

+ A16e
η1+η∗

3 + A26e
η2+η∗

3 + A36e
η3+η∗

3 ,

f4 = A1245e
η1+η2+η∗

1+η∗
2 + A1246e

η1+η2+η∗
1+η∗

3

+ A1256e
η1+η2+η∗

2+η∗
3 + A1345e

η1+η3+η∗
1+η∗

2

+ A1346e
η1+η3+η∗

1+η∗
3 + A1356e

η1+η3+η∗
2+η∗

3

+ A2345e
η2+η3+η∗

1+η∗
2 + A2346e

η2+η3+η∗
2+η∗

3

+ A2356e
η2+η3+η∗

2+η∗
3 ,

f6 = A123456e
η1+η2+η3+η∗

1+η∗
2+η∗

3 ,

ηp = kpt + wp(z) + φp,

wp(z) =
∫ [

iα(z)k2p − γ (z)kp − δ1(z)k
3
p

]
dz,

Ap,q+3 = κ

2(kp + k∗
q )2

, (p = 1, 2, 3), (q = 1, 2, 3),

A12 = 2(k1 − k2)
2

κ
, A13 = 2(k1 − k3)

2

κ
,

A23 = 2(k2 − k3)
2

κ
, A45 = 2(k∗

1 − k∗
2 )2

κ
,

A46 = 2(k∗
1 − k∗

3 )2

κ
, A56 = 2(k∗

2 − k∗
3 )2

κ
,

Am1m2m3 = Am1m2 Am2m3 Am1m3 , (m1 �= m2 �= m3),

An1n2n3n4 = An1n2 An1n3 An1n4 An2n3 An2n4 An3n4 ,

(n1 �= n2 �= n3 �= n4),

A12345 = A123A145A24A25A34A35,

A12346 = A123A146A24A26A34A36,

A12356 = A123A156A25A26A35A36,

A123456 = A123A145A246A356A16A25A34,

with r1, r2 and r3 being the complex constants.
Figure 7 presents the interactions among the three

solitons for Eq. (2). As seen in Fig. 7a, b, separa-
tions among them decrease along the optical fiber. The
gain/loss term, γ2(z), leads to the exponential decay for
the intensity of solitons. Three parallel solitons propa-
gate along the z-axis periodically, as shown in Fig. 7c,
which is similar to that in Fig. 6a. As the three solitons
are the representative example of the multi-solitons,

Fig. 7 Interactions among the three solitons via Solutions (23),
with the parameters as k1 = 1/2 + i/3, k2 = 1/3 +
i/4, k3 = 1/4 + i/5, κ = 8, φ1 = φ2 = 0, Γ1(z) =
z, Γ2(z) = 1/8 : aα(z) = z/2, γ (z) = z/4, δ1(z) =
z/3; bα(z) = z2/10, γ (z) = z2/20, δ1(z) = z2/15; cα(z) =
2sin(z/2), γ (z) = 2cos(z/2), δ1(z) = 2sin(z/2)

discussing some interactions among them might be
used for the future development of the optical fiber,
andwe consider the interaction between the bound state
and a single soliton: As presented in Fig. 8a, we plot
the interaction between the bound state and a parabolic
soliton, from which we note that the interaction does
not affect the structure and velocity of any of them
except for a constant phase shift in the interaction area.
In Fig. 8b, we can see the cubic soliton passes through
the bound state and propagates along the z- axis and
a constant phase shift is formed as well. Interaction
between the bound state and a periodical oscillating
soliton is plotted in Fig. 8c.

3.4 Dromion-like structures for Eq. (2) under
Constraints (8)

As shown in Fig. 9, we present the single dromion-like
structures with different values of variable coefficients
for Eq. (2) under Constraints (8) and find that the vari-
able coefficients related to Eq. (2) can influence the
dromion-like structures. For the two-soliton solutions,
we present the double dromion-like structures, as pre-
sented in Fig. 10: In Fig. 10a, the double dromion-like
structures do not interact, from which we find that the
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Fig. 8 Interactions between the bound state and a single soli-
ton via Solutions (23), with the parameters as k1 = 1/3 + (1 +√
13/3)i/3, k2 = 1/4+ (1+√

67/4)i/3, k3 = 1/4+ i/3, κ =
4, φ1 = φ2 = φ3 = 0, Γ1(z) = z, Γ2(z) = 1/12 : aα(z) =
γ (z) = δ1(z) = 2z; bα(z) = γ (z) = δ1(z) = z2/5; cα(z) =
γ (z) = δ1(z) = 3sin(z/3)

Fig. 9 Single dromion-like structures via Solutions (12), with
the parameters as k = 1/4 + i/3, κ = 1/5, Γ1(z) =
z, Γ2(z) = z/3, φ = 0 : aα(z) = z/2, γ (z) = z/4, δ1(z) =
z/3; bα(z) = z2/10, γ (z) = z2/20, δ1(z) = z2/15; cα(z) =
3sin(z/2), γ (z) = 3sin(z/2), δ1(z) = 3cos(z/2)

distance between them can be influenced by the para-
meters related to the initial positions. Seen in Fig. 10b is
the double dromion-like structure which evolves from

Fig. 10 Double dromion-like structures via Solutions (12), with
the parameters as k1 = 1/3 + i/4, k2 = 1/4 + i/5, κ =
1/5, Γ1(z) = z, Γ2(z) = z/3, φ1 = φ2 = 2 : a α(z) =
γ (z) = δ1(z) = z/2; b α(z) = γ (z) = δ1(z) = z2/5; c α(z) =
γ (z) = δ1(z) = 3sin(z/2)

Fig. 11 Triple dromion-like structures via Solutions (23), with
the parameters as k1 = 1/2 + i/3, k2 = 1/3 + i/4, k3 =
1/4 + i/5, κ = 1/3, φ1 = φ2 = φ3 = 0, Γ1(z) =
z, Γ2(z) = z/3 : a α(z) = z/2, γ (z) = z/4, δ1(z) =
z/3; b α(z) = z2/10, γ (z) = z2/20, δ1(z) = z2/15; c α(z) =
2sin(z/2), γ (z) = 2cos(z/2), δ1(z) = 2sin(z/2)

the two cubic solitons. The double dromion-like struc-
ture in Fig. 10c is from the two periodically oscillating
solitons, the distortion degree of which is much more
serious than that in Fig. 10a, b. Triple dromion-like
structures are shown in Fig. 11: There are three lumps
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in all of the figures, and the maximum values of the
optical solitons are the same. The distortion of the fig-
ures is determined by the variable coefficients α(t) and
γ1(t).

4 Conclusions

In this paper, with symbolic computation and modi-
fied Hirota method, Eq. (2), a higher-order variable-
coefficient NLS equation for the propagation of sub-
picosecond and femtosecond pulses in an inhomoge-
neous optical fiber, has been investigated. Under inte-
grableConstraints (8),BilinearEquations (9) have been
derived and one-, two- and three-soliton solutions have
been obtained, i.e., Solutions (12), (19) and (23). Soli-
ton amplitude has been found to be related to the real
part of the wave number, kR . Velocity of the soliton
has been seen to be determined by the TOD δ1(z),
GVD α(z) and the group-velocity-related γ1(z). Lin-
ear gain/loss term, Γ2(z), has been found to lead to the
soliton amplitude exponential decay along the z-axis.
Soliton width has been seen to be determined by the
TOD, GVD, γ1(z) and wave number kR . Other results
of the paper are summarized as follows:

1. The one-, two- and three-soliton solutions for
Eq. (2) under Constraints (8) with different values
of α(z), δ1(z), γ1(z) and Γ2(z) have been discussed
graphically: As seen in Figs. 1 and 2, we have pre-
sented the parabolic, cubic and periodically oscil-
lating solitons with different values of α(z), γ1(z)
and Γ2(z). In Figs. 3 and 4, interactions between
the two solitons have been obtained.

2. For the two- and three-soliton solutions, we have
presented the interactions and bound states with
different values of α(z), δ1(z), γ1(z) and Γ2(z):
In Fig. 5, we have discussed the bound state evolv-
ing from the two solitons with certain parameters,
and periods or quasi-periods have been calculated
for each case, respectively. Separations and inter-
actions between the two solitons influenced by the
parameters φ1 and φ2 which are related to the ini-
tial positions have been analyzed, as seen in Fig. 6.
Interactions among the three solitons have been
shown in Fig. 7. Interactions between the bound
state and a single soliton have been obtained in
Fig. 8.

3. Dromion-like structures for Eq. (2) have been
depicted in Figs. 9, 10 and 11: In Fig. 9, sin-

gle dromion-like structures with different values
of α(z), δ1(z) and γ1(z) have been plotted. In
Fig. 10, double dromion-like structures have been
presented. Triple dromion-like structures have been
addressed in Fig. 11: There are three lumps in all
of the figures with different values of α(z), δ1(z),
γ1(z) andΓ2(z), and the distortions of the three soli-
tons have been found to be determined by variable
coefficients.
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