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Abstract This paper describes a robust, accurate and
efficient scheme based on a cubic spline interpola-
tion. The proposed scheme is applied to approximate
variable-order fractional integrals and is extended to
solve a class of nonlinear variable-order fractional
equations with delay. Modified Hutchinson equation
and delay Ikeda equation are solved using the proposed
scheme. The efficiency and accuracy of the proposed
method are analyzed in the perspective of the mean
absolute error and experimental convergence order.
Numerical results confirm the accuracy and efficiency
of the proposed scheme.
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1 Introduction

Fractional calculus and its applications inmany areas in
science and engineering have attracted more intention
of research communities [1–4]. As given in [5–8] point
out, research carried out in recent years shows that the
fractional-order differential equations are an effective
tool for describing complex dynamics and many physi-
cal and engineering systems can be modeled efficiently
using them.

Recent decades have witnessed a fast-growing
research on developing applications of variable-order
(VO) fractional calculus to diverse scientific and engi-
neering fields. More specifically, VO formulations
employed to describe the mechanics of an oscillat-
ing mass subjected to a variable viscoelasticity damper
and a linear spring [9], to characterize the dynamics of
van der Pol equation [10] and history of drag expres-
sion [11], to analyze elastoplastic indentation prob-
lems [12], to interpolate the behavior of systems with
multiple fractional terms [13], to develop a statistical
mechanics model [14], to obtain variable- order frac-
tional noise [15] and to design new control algorithms
[16,17]. TheVOoperator definitions recently proposed
in the literature include the Riemann–Liouville, Mar-
chaud, Coimbra and Grunwald definitions [9,13,18].
There are several set of definitions for the general-
ized fractional integration operators among which we
adopted the one proposed by Leronzo and Hartley [19],
VO fractional integration with strongmemory of order,
stated as
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V (.)
0+ Jα(t)

t y(t) =
∫ t

0+
1

Γ (α(t, τ ))
(t − τ)α(t,τ )−1y(τ )dτ ,

Re(α(t, τ )) > 0. (1)

and VO fractional derivative in the Caputo-base,
expressed as follows

V (.)
0+ Dα(t)

t y(t) =
∫ t

0+
1

Γ (κ − α(t, τ ))

yκ(τ )dτ

(t − τ)α(t)+1−κ
,

κ − 1 < α(t) < κ. (2)

where κ ∈ Z
+, y(t) is (κ − 1) times continuously dif-

ferentiable, y(κ)(t) is once integrable and Γ (·) is the
gamma function.

There are threemain type of VO fractional operators
that characterizedby changing the formof the argument
ofα(t, τ ). The followingdefinitionswill be considered:
α(t, τ ) = α(t), α(t, τ ) = α(τ), and α(t, τ ) = α(t −
τ).

Definition 1.1 The VO fractional integration type 1
(V 1) is given by

V 1
0+ Jα(t)

t y(t) = 1

Γ (α(t))

∫ t

0+
(t − τ)α(t)−1y(τ )dτ ,

Re(α(t)) > 0. (3)

Definition 1.2 The VO fractional integration type 2
(V 2) is given by

V 2
0+ Jα(t)

t y(t) =
∫ t

0+
1

Γ (α(τ))
(t − τ)α(τ)−1y(τ )dτ ,

Re(α(t)) > 0. (4)

Definition 1.3 The VO fractional integration type 3
(V 3) is given by

V 3
0+ Jα(t)

t y(t) =
∫ t

0+
1

Γ (α(t − τ))
(t − τ)α(t−τ)−1

y(τ )dτ , Re(α(t)) > 0. (5)

More details about these operators and their application
can be found in [20,21].

In VO fractional differential equations (VOFDEs),
the order of the derivative changeswith respect to either
the dependent or the independent variables (or both),
or parametrically with respect to an external functional
behavior [22,23]. Since the kernel of the VO opera-
tors has variable exponent, analytical solutions for the
VOFDEs are more difficult to obtain. These naturally
lead to rapid increasing developments of numerical
methods for VOFDEs [24–27].

The VO fractional delay differential equation
(VOFDDE) is a generalization of the fixed-order
delay differential equation to arbitrary functional order.
Compared to fractional delay differential equations
(FDDEs), VOFDDEs have not received much atten-
tion, although the potential to characterize complex
behavior by the functional order of differentiation or
integration is clear, along with necessary background
from the application area, in order tomotivate our study
of VOFDDEs [28–31].

In this paper, we focus our attention on VOFDDEs
that formulated bymeans of VO integration and deriva-
tion with α(t, τ ) = α(τ). The importance of this type
of VO derivative was recognized recently, and there
is a limited knowledge about its application. Ingman
andSuzdalnitsky [32] employed typeV2 and attempted
to create computational algorithms involving satisfac-
tory agreement between the experimental and theoret-
ical distributions of the numerical data in studies of
deformation and vibration of systems made from vis-
coelastic materials resulted in a variety of concepts and
models. In [33], Sun et al. the advantage and potential
applications of two VO fractional derivate definitions
(types V1 and V2) are highlighted through a compar-
ative analysis of anomalous relaxation process. In this
line of thought, in [34],Moghaddam andMachado pur-
pose a stable three-level explicit spline finite difference
scheme based on the linear B-spline approximation of
the time VO fractional derivative of type V2 and the
Du FortFrankel algorithm for a class of nonlinear time
variable-order fractional partial differential equations.

Having these ideas in mind, the rest of this paper is
organized as follows. In Sect. 2, we design an efficient
approach for the VO fractional integral based on cubic
spline interpolation. In Sect. 3, two numerical examples
are included to illustrate the effectiveness of the numer-
ical approach. In Sect. 4,we extend numerical approach
for solving a class of nonlinear VOFDDEs. Moreover,
we apply the proposed method to the Hutchinson and
Ikeda VOFDDEs. In Sect. 4, we outline the main con-
clusions.

2 Discretization of the VO fractional integral

Throughout the paper, we always assume y(t) a smooth
function defined on [a, T ], along with the notations
t j = a + jh, y(t j ) = y j , y′(t j ) = y′

j , α(t j ) = α j

and β(t j ) = β j , j = 0, 1, . . . , [(T − a)/h], where h

123



An efficient cubic spline approximation for VOFDEs with delay 817

denotes the uniform step size and [x] takes the integer
part of x , being the maximum integer that does not
exceed x .

For the time instant t j , j = 1, . . . , N − 1, we need
to calculate

V 2
a+ Jα(t)

t j y(t) =
∫ t j

a+
1

Γ (α(ζ ))
(t j − ζ )α(ζ )−1y j (ζ )dζ,

Re(α(t)) > 0, (6)

where ζ is an auxiliary variable belong to the interval
[a, t j ].

We compute the integral by means of a cubic spline
y j (ζ ), with nodes and knots chosen at instants tk, k =
0, 1, 2, . . . , j−1. The cubic spline y j (ζ ) is of the form

y j (ζ ) =
j∑

k=0

N j,k(ζ )yk +
j∑

k=0

Mj,k(ζ )y′
k+1, (7)

where N j,k(ζ ) and Mj,k(ζ ) are shape functions and in
each interval [tk, tk+1], for 1 ≤ k ≤ j − 1, given by

N j,k(ζ ) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − 2 ζ−tk
tk−tk+1

)(
ζ−tk+1
tk−tk+1

)2, tk−1 ≤ ζ ≤ tk

(1 − 2 ζ−tk+1
tk+1−tk

)(
ζ−tk

tk+1−tk
)2, tk ≤ ζ ≤ tk+1

0, otherwise

,

and

Mj,k(ζ ) =

⎧⎪⎨
⎪⎩

(ζ − tk)(
ζ−tk+1
tk−tk+1

)2, tk−1 ≤ ζ ≤ tk
(ζ − tk+1)(

ζ−tk
tk+1−tk

)2, tk ≤ ζ ≤ tk+1

0, otherwise

.

For k = 0 and k = j, N j,k(ζ ) is of the form

N j,0(ζ ) =
{

(1 − 2 ζ−t1
t1−t0

)(
ζ−t0
t1−t0

)2, t0 ≤ ζ ≤ t1
0, otherwise

,

and

N j, j (ζ ) =
{

(1 − 2
ζ−t j

t j−t j+1
)(

ζ−t j+1
t j−t j+1

)2, t j−1 ≤ ζ ≤ t j
0, otherwise

,

and for k = 0 and k = j, Mj,k(ζ ) is of the form

Mj,0(ζ ) =
{

(ζ − t1)(
ζ−t0
t1−t0

)2, t0 ≤ ζ ≤ t1
0, otherwise

,

and

Mj, j (ζ ) =
{

(ζ − t j )(
ζ−t j+1
t j−t j+1

)2, t j−1 ≤ ζ ≤ t j
0, otherwise

.

Therefore, substituting (7) into (6) gives

V 2
a+ Jα(t)

t y(t) ≈
j∑

k=0

V 2
a+ Jαk

tk yk

=
j∑

k=0

yk
Γ (αk)

∫ tk

a+
(t j − ζ )αk−1N j,k(ζ )dζ

+
j∑

k=0

y′
k

Γ (αk)

∫ tk

a+
(t j − ζ )αk−1

× Mj,k(ζ )dζ (8)

and after some calculations, we obtain

V 2
a+ Jα(t)

t y(t) ≈
j∑

k=0

hαk

Γ (αk + 4)
a j,k yk

+
j∑

k=0

hαk+1

Γ (αk + 4)
b j,k y

′
k (9)

where

a j,k =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−6(2 j + 1 + α0)(−1 + j)α0+2

+ jα0((−6α0 − 18) j2 + 12 j3 + α3
0 + 6α2

0 + 11α0 + 6), k = 0
6(( j − k − 1)α j+2(2k − 2 j − αk − 1)

+( j − k + 1)α j+2(2k − 2 j − αk + 1 + 4( j − k)αk+3)), 1 ≤ k ≤ n − 1
6(α j + 1), k = n

, (10)

and

b j,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−(6 j + 2α0)( j − 1)α0+2 + (α2
0 + (−4 j + 5)α0 + 6(−1 + j)) jα0+1, k = 0

2(3k − 3 j − αk)( j − k − 1)αk+2

−2(3k − 3 j + αk)( j − k + 1)αk+2 − 8( j − k)αk+2(αk + 3), 1 ≤ k ≤ n − 1
−2α j , k = n

. (11)
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Fig. 1 The numerical
approximation of the VO
integral of function
y(t) = t4 (left) and
magnitude of the log10(AE)
(right), with various values
of α(t) and step size
h = 0.01 in the interval
t ∈ [0, 5]

Thus, we get the following discretization formula for
the VO fractional integral.

Proposition 2.1 Let y(t) be a function inC4[a, T ] and
Re(α(t)) > 0. Then

V 2
a+ Jα(t)

t j y(t) =
j∑

k=0

hαk

Γ (αk + 4)
a j,k yk

+
j∑

k=0

hαk+1

Γ (αk + 4)
b j,k y

′
k + EV 2(t j ),

(12)

where EV 2(t j ) is the approximation error at t j and is
bounded by

|EV 2(t j )| ≤ (t j − a)α
∗ |y(4)(t j )|

Γ (α∗ + 1)
O(h4), (13)

where j = 1, . . . ,
[

(T−a)
h

]
and

α∗ =
{
sup{α(t)|α(t) > 0, t ∈ R

+}, if t j ≤ 1
inf{α(t)|α(t) > 0, t ∈ R

+}, if t j > 1
.

3 The numerical method based on cubic spline
approximation

In this section, we consider the following initial value
problem (IVP) for VOFDDE:{

V 2
0+Dα(t)

t y(t) = f (t, y(t), y(t − τ)), t > 0
y(t) = φ(t), −τ≤t ≤ 0

,

(14)

where κ − 1 < α(t)≤κ, τ is the delay time and φ(t) is
the history function defined on the interval t ∈ [−τ, 0].

Fig. 2 Magnitude of the log10(MAE) for approximate VO inte-
gral of function y(t) = t4 for various values of α(t) and step
size h = 0.01 in the interval t ∈ [0, Tn = 0.25n] where
n = 1, . . . , 20

The existence and uniqueness of solution for Eq. (14)
was investigated by Parsa et al. [35]. This form of
nonlinear delayed system is a very general one and
includes all well-known delayed systems such as Ikeda
system [36], Mackey and Glass system [37], Hopfield
delayed neural network [38], delayed Duffing system
[39], Delayed Lorenz system [40], BAM neural net-
work [36] and cellular neural network [41].
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Fig. 3 The numerical
approximation of the VO
integral of function
y(t) = t2 cos(t) (left) and
magnitude of the log10(AE)
(right), with various values
of α(t) and step size
h = 0.01 in the interval
t ∈ [0, 5]

Table 1 Comparison of
MAE, ECO and E-time for
approximate VO integral of
function y(t) = t4 for
various values of α(t) and
different step sizes in the
interval t ∈ [0, 5]

α(t) Step size M AE ECO E − time (s)

α(t) = 1.2 h = 1
32 1.378211316 × 10−6 3.893754293 3.807

h = 1
64 8.263095600 × 10−8 3.921457065 16.608

h = 1
128 4.859786778 × 10−9 3.945208547 73.773

α(t) = 1 + 0.2t h = 1
32 7.943953570 × 10−4 2.059571038 11.950

h = 1
64 1.881421686 × 10−4 2.062648191 53.399

h = 1
128 4.539303824 × 10−5 2.061024204 298.805

Table 2 Comparison of
MAE, ECO and E-time for
integral VO derivative of
function y(t) = t2 cos(t)
for various values of α(t)
and different step sizes in
the interval t ∈ [0, 5]

α(t) Step size M AE ECO E − time (s)

α(t) = 0.6 h = 1
32 2.285069038 × 10−7 4.412251781 4.461

h = 1
64 1.472365956 × 10−8 4.336214743 18.424

h = 1
128 7.417778124 × 10−10 4.332613405 84.521

α(t) = 0.5 + 0.1t h = 1
32 1.917652468 × 10−4 2.469674218 12.293

h = 1
64 6.052423904 × 10−5 2.335354573 57.330

h = 1
128 1.917897719 × 10−5 2.238587813 347.883

It is easily noted that Eq. (14) can be transformed to
Abel–Volterra integral equation

y(t) = Tκ−1[y; 0](t) + V 2
0+ Jα(t)

t f (t, y(t),

y(t − τ)), (15)

where

Tκ−1[y; 0](t) =
κ−1∑
j=0

φ( j)(0)
t j

j ! ,

V 2
0+ Jα(t)

t f (t, y(t), y(t − τ))

=
∫ t

0+
1

Γ (α(ζ ))
(t−ζ )α(ζ ))−1 f (ζ, y(ζ ), y(ζ − τ))dζ.

For solving (15) on [0, T ], the interval [−τ, T ] is
divided into m + n subintervals, where m and n are
integers such that m = τ

h , n = T
h and t j = jh, j =

−m,−m + 1, . . . ,−1, 0, 1, , . . . , n.
The discretized version of (15) is given as

yn = Tκ−1[y; 0](tn)
+

∫ tn

0+
1

Γ (α(ζ ))
(t − ζ )α(ζ ))−1

× f (ζ, y(ζ ), y(ζ − τ))dζ. (16)

Applying proposed technique in the Sect. 2 to the above
equation yields
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Table 3 Model 1:
Comparison of MAE, for
various values of α(t) and
a = 0.3, τ = 1, T = 25 and
different step sizes h

Step size α(t) = 1 α(t) = 0.8 α(t) = 0.04t

h = 1
8 4.711874836 × 10−3 6.857922068 × 10−3 4.476963400 × 10−3

h = 1
16 2.339301364 × 10−3 3.810693974 × 10−3 2.972195524 × 10−3

h = 1
32 1.165670474 × 10−3 2.137711972 × 10−3 2.039872992 × 10−3

Table 4 Model 1:
Comparison of ECO, for
various values of α(t) and
a = 0.3, τ = 1, T = 25 and
different step sizes h

Step size α(t) = 1 α(t) = 0.8 α(t) = 0.04t

h = 1
8 2.576494357 2.396004258 2.601087920

h = 1
16 2.184926638 2.008932632 2.098563816

h = 1
32 1.948924856 1.773943361 1.787460991

Fig. 4 Magnitude of the log10(MAE) for approximate VO inte-
gral of function y(t) = t4 for various values of α(t) and step
size h = 0.01 in the interval t ∈ [0, Tn = 0.25n] where
n = 1, . . . , 20

yn = Tκ−1[y; 0](tn)

+
n∑
j=0

hα j

Γ (α j + 4)
an, j f (t j , y j , y j−m)

+
n∑
j=0

hα j+1

Γ (α j + 4)
bn, j f

′(t j , y j , y j−m) (17)

where the coefficients an, j and bn, j are given by (10)
and (11), respectively.

Fig. 5 Time response for Eq. (22), for various values of α(t),
with a = 1.4, τ = 1 and step size h = 1

16

For this method, since both side of Eq. (17) include
the unknown variable yn , and due to the nonlinearity
of the functions f and f ′, it is difficult to derive yn .
Therefore, to achieve a better approximate solution, we
substitute a predicted value yn into the right-hand side
of (14).

Let y pn be the predicted value, which can be obtained
by some simple explicit method. For instance, here we
use VO fractional Adams–Bashforth method to drive
the predicted value

y pn =
κ−1∑
j=0

φ( j)(0)
t jn
j ! +

n∑
j=0

c j,n f (t j , y j , y j−m), (18)

where

c j,n = hα j

Γ (α j + 1)
((n − j)α j − (n − j − 1)α j ),

0 ≤ j ≤ n.
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Fig. 6 Time response (left)
and phase-space solution
(right) for Eq. (22), with
α(t) = 1, a = 1.7, τ = 1
and step size h = 1

16

Fig. 7 Time response (left)
and phase-space solution
(right) for Eq. (22), with
α(t) = 0.7, a = 1.7, τ = 1
and step size h = 1

16

Fig. 8 Time response (left)
and phase-space solution
(right) for Eq. (22), with
α(t) = 1 − 0.003t, a =
1.7, τ = 1 and step size
h = 1

16
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Fig. 9 Time response (left)
and phase-space solution
(right) for Eq. (23), with
α(t) = 1, λ = 0, μ =
1, τ = 4, ϕ0 = 2.988 and
step size h = 1

16

Fig. 10 Time response
(left) and phase-space
solution (right) for Eq. (23),
with
α(t) = 0.75, λ = 0, μ =
1, τ = 4, ϕ0 = 2.988 and
step size h = 1

16

Fig. 11 Time response
(left) and phase-space
solution (right) for Eq. (23),
with α(t) =
1 − 0.0025t, λ = 0, μ =
1, τ = 4, ϕ0 = 2.988 and
step size h = 1

16
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Ultimately, replacing y pn in the right-hand side of (14)
by (15) gives

yn+1 =
κ−1∑
j=0

φ( j)(0)
t jn
j ! + 6(αn + 1)hαn

Γ (αn + 4)
f (tn, y

p
n , yn−m)

− 2αnhαn

Γ (αn + 4)
f ′(tn, y pn , yn−m)

+
n−1∑
j=0

hα j

Γ (α j + 4)
an, j f (t j , y j , y j−m)

+
n−1∑
j=0

hα j+1

Γ (α j + 4)
bn, j f

′(t j , y j , y j−m). (19)

4 Numerical illustrative examples

In this section, we demonstrate the efficiency and accu-
racy of the proposed method. For this purpose, we
can analyze its accuracy and computational efficiency,
in the view point of the mean absolute error (MAE)
defined as

MAE = 1

N

N∑
i=1

AE, (20)

where AE = |yNi − y2N2i |, yNi and y2N2i are approximate
values of y(t) in ti and N denotes the number of interior
mesh points. Furthermore, we apply the measure

ECO = log(MAE)

log(h)
, (21)

where h denotes the uniform step size, for estimating
the experimental convergence order (ECO). Note that
an optimal step size can only be defined in relation to
a given error tolerance. This pre-assigned value of the
error, which is under the user control, will be regarded
as the user-imposed tolerance.It is worth mentioning
that all the numeric computations are performed by
Maple v18 and the results were generated on a desk-
top PC with an AMD Athlon 64 X2 Dual Core Proces-
sor 5200+@2.6GHz. Formeasuring the computational
load, we obtain the elapsed time “E-time.” The E-time
is independent of the CPU time, includes the simplifi-
cation of data structures and shows the duration from
when the process starts until the time it terminates with
units in seconds.

4.1 Approximation of VO fractional integrals

In this subsection, the efficiency and numerical accu-
racy of proposed method are illustrated by two test
examples.We adopt a numerical discretization formula
(12) to approximate the VO fractional integral for a
given functions y(t) = t4 and y(t) = t2 cos(t). Fig-
ures 1 and 3 show the VO fractional integrals of the
functions y(t) = t4 and y(t) = t2 cos(t) and the mag-
nitude of the AEs for various values of α(t) with uni-
form step size h = 0.01 in interval t ∈ [0, 5]. The
computational results presented inTables 1 and 2 reveal
that if we increase the number of mesh points, then the
MAE becomes smaller and we get a better approxima-
tion. Figures 2 and 4 show that when the time interval
becomes larger, the values of MAE increase for con-
stant step size. Therefore, to control the value of MAE,
it is necessary; we reduced the step size by larger time
interval. Furthermore, it is clear from Tables 1 and 2
that the proposed method has a fast convergence.

4.2 Applications

Since Mackey and Glass in 1977 [37] found chaotic
behavior in a delay differential equationmodel of blood
production in patients with leukemia, chaotic time-
delay systems have been employed in numerous other
practical applications in engineering, biology, econ-
omy and other disciplines [42–45].

On the other hand, delay estimation has a variety
of widespread applications from satellite orbit deter-
mination to radar systems and secure communications.
In addition, delay estimation has a critical role in cli-
mate prediction. A good the time-delay estimate can
be a means to achieve a good model, which results in
a good stability analysis [46] or control design.

In this subsection, we concentrate on the two VO
fractional mathematical modeling of nonlinear dynam-
ics, Hutchinson and Ikeda equations. The dynamical
behavior of themodels is studied numerically for fixed-
order andVO fractional derivatives. To demonstrate the
accuracy and efficiency of the proposed method, we
use monotonic solutions for considered models and list
results in the tables. Using a phase plane analysis, both
periodic and chaotically behaving solutions are found
and show the effect of VO on the dynamics behavior
of the models.
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Table 5 Model 2:
Comparison of MAE, for
various values of α(t) and
λ = μ = 0.4, τ =
0.5, ϕ0 = π

2 , T = 25 and
different step sizes h

Step size α(t) = 1 α(t) = 0.95 α(t) = 1 − 0.01t

h = 1
8 2.345115584 × 10−3 3.120694402 × 10−3 2.499312556 × 10−3

h = 1
16 1.220717606 × 10−3 1.660169046 × 10−3 1.321408320 × 10−3

h = 1
32 6.222408782 × 10−4 8.702301770 × 10−4 6.816487856 × 10−4

Table 6 Model 2:
Comparison of ECO, for
various values of α(t) and
λ = μ = 0.4, τ =
0.5, ϕ0 = π

2 , T = 25 and
different step sizes h

Step si ze α(t) = 1 α(t) = 0.95 α(t) = 1 − 0.01t

h = 1
8 2.912041752 2.774639067 2.881417652

h = 1
16 2.419513698 2.308613534 2.390926987

h = 1
32 2.130047841 2.033263067 2.103736758

Model 1 The VO fractional Hutchinson equation:
Hutchinson incorporated the effect of delays into the
logistic equation [47,48]. Delays bring about inter-
esting topological changes in the population size like
damped oscillations, limit cycles and even chaos [49].
Wemodified theHutchinsons equation or delay logistic
equation and represent as follows:
⎧⎨
⎩

V 2
0+Dα(t)

t y(t) = ay(t)(1 − y(t−τ)), 0 < α(t) ≤ 1, 0 < t < T

y(t) = 0.1, −τ ≤ t ≤ 0
,

(22)

where a > 0 is the parameter and τ is the delay time.
For comparative study, in Tables 3 and 4 the MAE

and the ECO for various values of α(t) and different
step sizes are listed. Decreasing the step size, one can
obtain highly accuracy approximation solution to (22).
Figure 5 shows the time history of the damped oscil-
latory solutions of (22) by using the proposed method
for various values of α(t) with a = 1.4, τ = 1 and
step size h = 1

16 . The results show that by using the
suitable VO fractional derivative functions, α(t), the
amplitude of oscillation is reduced and damped grad-
ually with time. In Figs. 6, 7 and 8, we depict the
time responses and the phase-space solutions of the
Eq. (22) with a = 1.7, τ = 1 and step size h = 1

16 for
α(t) = 1, α(t) = 0.7 and α(t) = 1 − 0.003t , respec-
tively.

Model 2 The VO fractional Ikeda equation: The
Ikeda system [50–52] was introduced to describe the
dynamics of an optical bistable resonator, and the time
taken for the round trip of the light across the resonator
is considered as the delay time τ . The VO fractional
Ikeda equation states as

⎧⎨
⎩

V 2
0+Dα(t)

t y(t) = μ sin(y(t−τ))− λy(t), 0<α(t) ≤ 1, 0<t<T

y(t) = ϕ0, −τ ≤ t ≤ 0
,

(23)

where λ > 0 and μ > 0 are the parameters and τ is
the delay time.

Physically, y(t) represents the phase lag of the elec-
tric field across the resonator, μ is the light intensity
injected into the system, τ is the feedback delay time
in the resonator and λ is the relaxation coefficient.

We assume thatα(t) = 1−0.0025t andwe study the
dynamic behavior of Eq. (23) in the interval [0, 100]. It
obvious the function α(t) = 1− 0.0025t is decreasing
function and α(t) ∈ [0.75, 1]. As shown in Figs. 9, 10
and 11, decreasing value of VO function α(t) from 1
to 0.75, we observe the transition from a integer-order
(α(t) = 1) behavior to a fixed-order (α(t) = 0.75)
behavior.MAE andECO for Eq. (23) for various values
of α(t) and different step sizes h, calculated by means
of proposed algorithm using embedding delay τ = 4
and embedding λ = μ = 0.4 and T = 25, along with
the initial condition y(t) = π

2 in the range t ∈ (−τ, 0)
are summarized in Tables 5 and 6.

5 Conclusion

In this paper, a new numerical discretization formula,
based on the cubic spline interpolation for approximat-
ing the VO fractional integral, is introduced and imple-
mented. By adopting the approximation formula, we
obtained a predictor–corrector method for the numeri-
cal solution of a class of nonlinear VOFDDEs. Several
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illustrative VO fractional models of nonlinear dynam-
ics are solved by new method, and the results are ana-
lyzed using phase portraits. The numerical experiments
demonstrated the high accuracy and the fast conver-
gence of the new scheme. Moreover, the results reveal
that VO can act as a modulation parameter that may
useful for better describing and chaos controlling of
dynamic systems with time delay.
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