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Abstract A nonlinear transmission line (NLTL) is
comprised of a transmission line periodically loaded
with varactors, where the capacitance nonlinearity
arises from the variable depletion layer width, which
depends both on the DC and AC voltages of the prop-
agating wave. An equivalent circuit model of NLTL is
discussed analytically, in this article, and different type
of solutions are celebrated. The improved extended
tanh-function method has been applied successfully to
extract the solutions. The obtained solutions are soli-
tary wave solutions, singular periodic solutions, sin-
gular soliton solutions, Jacobi elliptic doubly periodic
type solutions and Weierstrass elliptic doubly periodic
type solutions. It is a very convenient tool to study
the propagation of electrical solitons which propagate
in the form of voltage waves in nonlinear dispersive
media.
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1 Introduction

Nonlinear phenomena can be observed in many areas
such as physics, chemistry, biology, ocean engineering,
and communication engineering. In physics precisely,
nonlinearity is present in fluid dynamics, nonlinear
optics, plasma physics, communication technology and
soon [1-16]. In order to understand the mechanisms of
those physical phenomena which can be described by
nonlinear evolution equations (NLEES), it is necessary
to explore their solutions and properties. At the present
time, there are many powerful methods for seeking
the exact and approximated solutions of these NLEEs,
such as inverse scattering method [17, 18], Hirota bilin-
ear transformation [19], the modified simple equation
method [20,21], the (G'/G)—expansion method [22],
the trial equation method [23] and many more.

In communication engineering, a transmission line
is a specialized medium or other structure designed
to carry alternating current of radio frequency, that is,
currents with a frequency high enough that their wave
nature must be taken into account. Transmission lines
are used for purposes such as connecting radio transmit-
ters and receivers with their antennas, distributing cable
television signals, trunklines routing calls between tele-
phone switching centers, computer network connec-
tions and high speed computer data buses.

In this paper, we apply the improved extended tanh-
function method to seek the soliton wave solutions in a
NLTL. The NLTLs are very convenient tools to study
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Fig.1 A nonlinear E
transmission line

the propagation of electrical solitons which can propa-
gate in the form of voltage waves in nonlinear disper-
sive media. The NLTL model used in this work is shown
in Fig. 1 using inductors ¢, and voltage dependent (and
hence nonlinear) capacitors, ¢ (V). By applying Kirch-
hoff current law at node n, whose voltage with respect
to ground is V,, and applying Kirchhoff voltage law
across the two inductors connected to this node, the
voltages of adjacent nodes on this NLTL are related
via:

d dv,
[V =37 | = Vot + Va1 = 2V). (1.1)

The right-hand side of (1.1) can be approximated
with partial derivatives with respect to distance x, from
the beginning of the line, assuming that the spacing
between two adjacent sections is § (i.e., x, = nd).
An approximate continuous partial differential equa-
tion can be obtained by using the Taylor expansions of
V(x —§), V(x), and V(x + §) to evaluate the right-
hand side of (1.1). Assuming a small §, and ignoring
the high order terms, we obtain:

3 vy v §2 9%V
L= |lcon= =5+ =,

ot |: ot i| ax2 12 9x4

where C and L are the capacitance and inductance per
unit length, respectively. For more detail see also [10].

(1.2)

2 Description of the method

In this section, we outline the main steps of the
improved extended tanh-equation method as follow-
ing:

Suppose that we have a nonlinear evolution equation
in the form:

) =0, (2.1)

F (u, us, vy, ey, Uys, .
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where u = wu(x,t) is an unknown function, F is a
polynomial in « and its various partial derivatives u;, uy
with respect to ¢, x, respectively, in which the highest
order derivatives and nonlinear terms are involved.
Step 1. Using the traveling wave transformation
ulx,t)y =UE), & =k(x — ), 2.2)

where k, ¢ are constant to be determined later. Then,
Eq. (2.1) is reduced to a nonlinear ordinary differential
equation of the form

P (U, —koU', kU, K2U", .. ) —0, 2.3)

Step 2. We assume that the solution of Eq. (2.3) can be
expressed in the form

UE) =D aio + ) pio, 2.4)
i=0 i=1

where w satisfies

o = evag + a0 + m0? + a30° + as?, (2.5)

where ¢ = =*1. This equation gives various kinds of
fundamental solutions [ 15]. From these solutions, more
new exact solutions for (2.1) can be obtained.

Step 3. Determine the positive integer number N in
Eq. (2.4) by balancing the highest order derivatives and
the nonlinear terms in Eq. (2.3).

Step 4. Substitute (2.4) into (2.3) along with (2.5).
As a result of this substitution, we get a polynomial
of w. In this polynomial, we gather all terms of same
powers and equating them to be zero, we get an over-
determined system of algebraic equations which can be
solved by the maple or mathematica to get the unknown
parameters k, v, g, «; and B;(i = 1,2,...). Conse-
quently, we obtain the exact solutions of (2.1).
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3 Exact and soliton solutions

In this section, the improved extended tanh-function
method is applied to our NLTL model. To this end, we
approximate the capacitor’s voltage dependence using
the following first-order linear relationship

C(V)=Co(l =bV), (3.1)

where Cy and b are arbitrary constants. In this case, Eq.
(1.2) reduces to

vV bo*v: 1 3V 82 9V
a2 2 012 LCyax?  12LCoy dx*’

Introduce the voltage in the form of the traveling
wave

Vix, 1) =V(),

where v represent the velocity of propagation. Then,
Eq. (3.2) reduces to the following ODE:

(3.2)

£=x— vt (3.3)

52 " 1 2 " bv2 2 "
e, +(LC0_U)V +T(V) =0
(3.4

Integrating Eq. (3.4) twice with zero constants of
integration, we obtain

b 2
%VZ =0, (3.5)

822
120 V" + (U(Z) _ U2) V 4+

where vg = -

JLCy®
Balancing V" with V2 in Eq. (3.5), then we get N =

2. Then, the solution of Eq. (3.5) has the form
V(E) =ap+ a0 + arw” + o~ + fo 2 (3.6)

Substituting V (&) and its derivatives with (2.5) into
(3.5) and equating all the coefficients of w/,j €
[—4, 4] to be zero, then we obtain a system of alge-
braic equations. Solving this system via mathematica
and consider the various kinds of fundamental solu-
tions [15], we obtain the following cases which leads
to different types of wave propagation of our model
(Eq. 3.2)

Case 1: ap = a; = az = 0. We have the following
results

ag=0a1=p1=pH =0,
3 (v —v3)

2.2
=g

a462v§
v2b

ap) = , 0Oy = (3.7)

769
and
2 (v2 — v%)
=g ay=p1=p=0,
3 (v2 — v%) a482U%
= -, oy = — 38
“ 820} ? v2b ©-8)

We obtain, solitary wave solutions, singular periodic
solutions and rational solution

3 (v2 — v%) 5 3 (U2 - U(2)
V(E) = — sech 50 (x —vt)
v? > v%, (3.9
3 (v2 _ v%) 3 (vg -2
V(E) = 7D sec 50 (x—vt) |,
v? <, (3.10)
V() = 1
b (x—w)?
v? = v} (3.11)
and
v — v% 2 3 (v(z) - v2)
V(E) = — 2~ 3sech T(x—vz) ;
v < w3, (3.12)
vt -} L | V302 =vg)
V(E) = h (2—3sec T(x—vt) R
v > v(z), (3.13)
3 (v2 = v? 8202 1
V(E)::‘l“f‘lﬁ'— o,
v¢b veh (x —vt)
vt = vl (3.14)
Case 2:
2
(i) a1 = a3 =0,a9 = 7%. We have
a22 3 (v2 — v%)
ap =ay =1 =0,a00 = g 0T T o
2
9(v2 — 2 6 (—v2 + v2
0 0
Pr= _(22)2’ = (22) (3.15)
v=82asbvy 3y
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We obtain, singular soliton solution and singular
periodic solution

3 (v% — v2> 5 3 (U2 - v%

V(E) = 7D csch 5u (x —vt)

v > v, (3.16)
3 (v2 _ U%) s 3 (U(% — 'U2)

V(E) = 7D csc 50 (x —vt)

v? < 3. (3.17)

agzm2 (l—mz)

m. We have

(i) ai =a3 =0,a0 =

3 (v2 — v2) — a282v§

ar=ay=p1=0, ay=

3v2b ’
by = 9m? (—1 +m2) (v2 — v%)2
(1 = 7m? + Tm*) v282asbv3’
3(1 =2 2 2 _ .2
gy = S 2m) (7 —v) 3.18)
J (U= Tm? 4 Tm#) 5202
and
3 (vV2 — v3) — apd?v?
ap = ( 3U)2b 2 0’ _:81 2/32 =0,
82a4v2
“@=- vzbo’
3(1—2m?) (v =23
gy = 2 =2m) (0 —v5) (3.19)

S = Tm? £ Tmt) 52

We obtain, Jacobi elliptic doubly periodic type

solutions
V) = (v —vd) (1 N 1 —2m?
v2b V1= Tm? + Tm*

3(1 —m?
+ ( m) nc2
V1 —Tm? + Tm#
3(1}2—1)3)

VT =Tm? 4+ Tm*52v}

x| &

(3.20)
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and
Vi) = (v2 — v%) (1 n 1 —2m?
T w2 1 —7m? + Tm*
3m? 5
+ cn
V1 —=Tm? + Tm#
3 (v2 — 0?2
S [ sw-w
V1 =Tm? + Tm*82v}
(3.21)
2012
Gil) @) = a3 = 0, a0 = 2" We have
as(2—m?)
3 (v2 — vz) — a262v3
ap=p1=p2=0, ao= 3070 )
82a4v§
= —
2 vZb
3(=2 2 2.2
a = ( +m ) (U UO) (322)
V1 —m?+ m482v8
and
3 (v2 — vz) — 612821}%
= s = = = 0’
) 302h 1 =02 =p
P 9(—1+m?) (v - vé)2
27 (l —m? + m4) v282a4bv8’
3(=2 2 U2 2
V1 —m2+m*23
We obtain
2
VE) =2 —m? (1 + 8%’
2—m
3 (v2 =2
NI
V1 —m?+ m482v8
2
_ ﬂ (3.24)
V1 —m?+m*
and
Vi) = (v —vd) - 2 — m?
- v2b V1 —m?2 + m4
9 (n~2) (>~ 1) ( — )
n

m? (1 —m? +m*) 821)8

X |:\/§§

—vZ 4 v(z)
m(Szv% '
(3.25)
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. 2
@iv) a1 =a3 =0,a9 = % . We have

ag(m 2+1)
2 _ 2) 2.2
(V2 —v 8> v3ay
= = = 0’ = 0 —_ 0 s
ar=p1=H ag b, 302b
826141)(2)
oy = — ,
2 v2b
3 (1 4+ m?) (v —v?
a = ( ) ( 02) (3.26)
V1 —m? + m*82v;
and
v2 — 2 5§22
(10:7( v2b0) 35322, ]:0 0[2:0 }31:0
9m2(v2 —v(z))2
Pr=- (1 —m? + m4) v282a4bv8 '
3(v2 —v2) (1 +m?
ay = (-48) ( ) (3.27)
V1—m2 +m482v8
We obtain
2 2 2
- 1
v = 5 ') (1 ot
v=b 1 —m?+m*
3m? 2
+ ——sn
V1—m?+m*
3 (v? — 02
x | & (44 ) (3.28)
V1 —m? + m482v8
and
2 2 2
- 1
v = U . ) (1 N
b 1 —m? +m*
3
+ - n$’
V1 —m? +m*
3 (v? — 2
x | & (0% ) . (3.29)
V1 —m? + m482v3
Case 3: ap = a4 =0, ap, a; # 0. We have
(v = 3) (7+v21)
g = T , ap=ay =0,
b = [T vbp?
ToVa -y
[7 v*p?p} 202bBy
ay=,/——————, a1 = ————,
0 48 821)(% (v2 - vé) ! 8211%
48(v? — v? 2
as u (3.30)

T T26%b0p,

We obtain Weierstrass elliptic doubly periodic type
solution

(7+v21) (02 - v})

\% =
é) 775
-1
Jaz
+ B (60 (Té; 82, 83))
7
\/;v2b,812 ( ( /—a3$. ))2
4(v2—v(2)) & > 5 82,83 )
(3.31)
where
h IR (3.32)
g2 = . g3 = — . .
6(v? — v%)2 48(v? — v%)3
Cased: a3 = a4 =0,a9 = %. We have
0 0 0. 82a1v%
g =V, o)1=V, o=V, = ——,
0 1 2 1 202b
4 2.4
B2 = O arvy ,
48v2b (—v? + v(%)
12 (=02 + 2
8§22
0
and
_2(1}2—1)%) o o B 52a1v3
w=—"73—"> a=0 u=0, fi=-—"77%
.2 2
_ 54“1”0 w 12( v +v0)
4802 (—22 + o) 82ug
(3.34)
We obtain two exponential type solutions
(2;:& /3(1;2 -3) )E
288e 0 (Szv%al (v2 — v(z))2
V(E)=— 5
(7"«/ 3(52 ”0))5
v2b | 24e 0 (vg —v ) 82v0a1
(3.35)
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and
96 (v — v?
V(E) = M
48v*b
8%a? Uo
2
(2&/3(\}2)—1‘2) B R
vo &
48v2b (v2 —vd) | e 24(;;0_";%)
Szvoal
(3.36)
2e4/3(F %) :
202 | e v Szvéal
24(v2—3)

Case 5: (i) ag = a; = 0. We have

2 2
a_Z(v —vo) _0 —0 -0
0= 2 ’ al - ’ ﬂl - ’ ,82 - )
veb
2
3 (1 - v_z) ,
L) v bOlz
a) = 8—2, a3z = 0,614 = —W (337)
and
o = 2 (v2 — v%) w — vzba%
vih 12 (v — v(z)) ’
B1=0, Br=0,
12 (v2 — v%)
ao=———-—"=
2 82v§
o — 82v0a3 = v4b2a% (3.38)
T2 T T e (02—

We obtain singular periodic and soliton type solu-
tions

2 _ .2
V() = v~ g 2 — 3esc? ’ (v o (x — 1)
T2 Svo
V2 > v%,
2 U(2) ) 3 (v% — 2
1% 2 + 3csch — vt
€ = —5 0 [ 24 3ese T
2
vy > v (3.40)
and
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4
3(v3-v2)
3sech T&

V() = +
v 3087, T\
1—¢ tanh Tf
2
3 2_.2
6sech|: (;(;0 ’ )§i|
_ - (3.41)
3 )
1 — e tanh |:(;?)0U)§:|
(i) ap = a1 = 0, a3 = 2¢./aras. We have
B 2 (v2 — v%) _ 82vo2as
=T M= T
82a4v8
= — N = O, - 0,
o b A1 B2
o2 -y) 4Ba(g-0?)
4= s “= o
(3.42)
and
-0 _ 82v02a3 i 526141)(2)
050 - ’ al - 2U2b k) Of2 - U2b £
12 (v2 = 02
ﬂlzos /32:()’ a2:¥7
3<vg
4,/3as (v — v%)
aGag=——. (3.43)

)
‘We obtain

V(S)z(vzvz_bvz)<2 6£<1+tanh|:v3 v~ v D

3(1)(2)—1)
+ 3| 1+ tanh

(3.44)
and
3e (v2 — vé) 3 ( - Uo)
VE) = — 1 + tanh o0 e —
J3 (02—
X |2—¢& |1+ tanh M&'
vod
(3.45)
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4 Conclusions

In communication engineering, a transmission line is a
specialized medium to carry the signals in wave form.
It is a very convenient tool to study the propagation of
electrical solitons which propagate in the form of volt-
age waves in nonlinear dispersive media. So, itis impor-
tant to study the NLTL model analytically and discuss
the type of solutions. Thus, the improved extended
tanh-function method has been applied successfully
to construct the solitary wave solutions, singular peri-
odic solutions, singular soliton solutions, Jacobi elliptic
doubly periodic type solutions and Weierstrass elliptic
doubly periodic type solutions.
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