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Abstract In this paper, the vibrational behavior of
micro- and nano-scale viscoelastic beams under differ-
ent types of end conditions in the linear and nonlinear
regimes is investigated based on the fractional calculus.
To capture the effects of small scale, themodified strain
gradient theory is utilized. Also, the beams aremodeled
based on the Timoshenko beam theory, von Kármán
nonlinear relations and the fractional Kelvin–Voigt vis-
coelastic model. Derivation of governing equations is
performed using Hamilton’s principle. For the linear
solution, the generalized differential quadrature and
finite difference methods are employed. Moreover, in
the nonlinear solution procedure, the Galerkin method
is first used to convert the fractional integro-partial
differential governing equations into fractional ordi-
nary differential equations which are then arranged in
an effective state-space form. The predictor–corrector
technique is finally used to solve the set of non-
linear fractional time-dependent equations. Selected
numerical results are given on the linear and nonlin-
ear time responses of the fractional viscoelastic small-
scale beams to study the effects of fractional-order, vis-
coelasticity coefficient and length scale parameter.
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1 Introduction

In recent years, research into the mechanical behaviors
of beam-type micro- and nano-structures has attracted
considerable attention due to their several applications.
A literature review on the studies performed on this
issue shows that the majority of them are based on
the continuum mechanics. The acceptability of con-
tinuum approaches can be attributed to their compu-
tational efficiency when they are compared with the
atomistic approaches.

It has been proved that the mechanical behaviors
of structures at small scales are size dependent [1–6],
and continuum models used for the mechanical analy-
ses of micro- and nano-structures must be size depen-
dent in order to give accurate results. There are several
size-dependent continuum theories by which the size
effects can be incorporated into the continuum mod-
els. Among them, the surface stress [7,8], couple stress
[9–11] and nonlocal [12] theories can be mentioned.
Up to now, numerous applications of these theories to
different problems of small-scale structures have been
reported (e.g., [13–24]).

In the middle of 1960s, Mindlin [25,26] devel-
oped a size-dependent continuum theory called the
strain gradient theory (SGT) in which the first and
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second derivatives of the strain tensor effective on
the strain energy density were taken into account. In
2003, Lam et al. [27] made some modifications to
this theory and proposed the modified strain gradi-
ent theory (MSGT). Based on MSGT, three length
scale parameters corresponding to the dilatation gra-
dient tensor, deviatoric gradient tensor and symmet-
ric rotation gradient tensor are considered. One can
find many papers in which MSGT has been used to
capture the size effects on the mechanics of small-
scale structures. For example, Ansari et al. [28] studied
the size-dependent vibrations of curved micro-beams
made of functionally graded materials (FGMs) based
on MSGT. Akgöz and Civalek [29,30] investigated the
buckling of micro-beams using MSGT. Abbasi and
Karami Mohammadi [31] developed a strain gradient
model to study the resonant frequency and sensitivity
of atomic forcemicroscopymicro-cantilevers. Instabil-
ity of electrostatic nano-bridges and nano-cantilevers
was analyzed by Tadi Beni et al. [32] within the frame-
work ofMSGT.Zeighampour andTadiBeni [33] devel-
oped a strain gradient Euler–Bernoulli beam model
in order to investigate the free vibrations of nano-
beams made of FGMs with radius varying along the
length. Mohammadimehr et al. [34] studied the free
vibrations of double-bonded piezoelectric Timoshenko
micro-beams based on MSGT and surface stress elas-
ticity theory.

Recently, studying the mechanical behaviors of vis-
coelastic micro- and nano-structures based on the size-
dependent continuum theories has attracted the atten-
tion of some researchers. Herein, some of them are
cited. Lei et al. [35] studied the free vibration of damped
viscoelastic Euler–Bernoulli beams based on the non-
local theory and Kelvin–Voigt model. In another work,
Lei et al. [36] developed a Timoshenko beam model
to analyze the damped vibrations of nonlocal Kelvin–
Voigt viscoelastic beams. The dynamic stability prob-
lem of viscoelastic nano-beams subjected to compres-
sive axial loadingwas addressed by Pavlović et al. [37].
The Kelvin–Voigt model in conjunction with the non-
local theory was applied for modeling the nano-beams
in that work. Cajic et al. [38] investigated the free
damped transverse vibrations of nano-beams based on
the nonlocal theory and the fractional derivative vis-
coelasticity. In the context of nonlocal theory and frac-
tional calculus, Ansari et al. [39,40] analyzed the lin-
ear and nonlinear vibrations of fractional viscoelastic
nano-beams.

In the current work, the linear and nonlinear vibra-
tion characteristics of fractional viscoelastic micro-
/nano-beams are studied within the framework of
MSGT. The nonlinear fractional viscoelastic beam
model is developed on the basis of the Timoshenko
beam theory, von Kármán hypothesis and the Kelvin–
Voigt model. Hamilton’s principle is utilized to obtain
the governing equations and associated boundary con-
ditions which are then solved in the linear and nonlin-
ear regimes. The GDQ and FD methods are employed
for solving the linear problem. Moreover, solving the
nonlinear problem is done using the Galerkin and
predictor–corrector methods. In the numerical results,
the effects of different parameters including fractional-
order, length scale parameter and viscoelasticity coeffi-
cient on the time response of viscoelastic beams under
different boundary conditions are analyzed.

2 Derivation of governing equations

Based on MSGT [27], the strain energy in a deformed
isotropic linear elastic material occupying region �

(with a volume element V ) is given by

U = 1

2

∫
�

(
σi jεi j + Piγi + τ

(1)
i jk η

(1)
i jk + mS

i jχ
S
i j

)
dV

(1)

where the deformation measures, i.e., the strain ten-
sor, εi j , the dilatation gradient tensor, γi , the deviatoric

stretch gradient tensor, η(1)
i jk , and the symmetric rotation

gradient tensor, χ S
i j , are defined as

εi j = 1

2

(
ui, j + u j,i

)
, (2)

γi = εmm,i , (3)

η
(1)
i jk = 1

3

(
ε jk,i + εki, j + εi j,k

)

− 1

15

[
δi j
(
εmm,k + 2εmk,m

)
+ δ jk

(
εmm,i + 2εmi,m

)
+ δki

(
εmm, j + 2εmj,m

)]
(4)

χ S
i j = 1

2

(
eipqεq j,p + e jpqεqi,p

)
(5)

in which ui denotes the displacement vector, εmm

denotes the dilatation strain, and δi j and ei jk denote the
Kronecker delta and permutation tensor, respectively.
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Throughout this paper, the repeated indices (subscripts)
signify summation from 1 to 3.

The stress measures consist of the classical stress,
σi j , and the higher-order stresses, Pi , τ

(1)
i jk , and mS

i j ,
which are the work-conjugate to the deformation mea-
sures, given by the following constitutive relations

σi j = 2μ

(
εi j + ν

1 − 2ν
εmmδi j

)
, (6)

Pi = 2μl20γi , (7)

τ
(1)
i jk = 2μl21η

(1)
i jk, (8)

mS
i j = 2μl22χi j , (9)

In these relations, μ and ν are shear modules and Pois-
son’s ratio, respectively. Also, l0, l1 and l2 are the addi-
tional and independentmaterial length scale parameters
associated with the dilatation gradients, and symmetric
rotation gradients, respectively.

Consider a beam with length L , thickness h and
width b. On the basis of the Timoshenko beam theory,
the displacement field can be expressed as

u1=u (x, t) − zψ (x, t) , u2=0, u3 = W (x, t) (10)

where u stands for the axial displacement of the cen-
troid of sections and W is the lateral deflection of the
beam. Using the von Kármán hypothesis, the strain
components can be approximated as

ε11 = ∂u1
∂x

+ 1

2

(
∂W

∂x

)2

= ∂u

∂x
+z

∂ψ

∂x
+ 1

2

(
∂W

∂x

)2

,

γ12 = ∂W

∂x
+ ψ (11)

Using Hamilton’s principle, the geometrically nonlin-
ear governing equations of motion and boundary con-
ditions of the beam with immovable supports are then
derived as [41]

k3

(
∂2W

∂x2
+ ∂ψ

∂x

)
+ (

k6 − k7
) ∂4W

∂x4

+ (2k6 + k7
) ∂3ψ

∂x3

⎡
⎣ k1
2L

L∫

0

(
∂W

∂x

)2

dx

⎤
⎦ ∂2W

∂x2

= ρA
∂2W

∂t2
− F sin (�t)

k2
∂2ψ

∂x2
− k3

(
∂W

∂x
+ ψ

)
− k4

∂4ψ

∂x4

− (k7 − 2k6
) ∂3W

∂x3
+ (

k7 + 4k6
) ∂2ψ

∂x2
= ρ I

∂2ψ

∂t2

(
k2

∂ψ

∂x
− k4

∂3ψ

∂x3
+ (

k7 − 2k6
) ∂2W

∂x2

+ (k7 + 4k6
) ∂ψ

∂x

)
= 0 or δψ = 0

k3

(
∂W

∂x
+ ψ

)
− (

k6 + k7
) ∂3W

∂x3

+ (2k6 − k7
) ∂2ψ

∂x2
= 0 or δW = 0

k4
∂2ψ

∂x2
= 0 or δ

(
∂ψ

∂x

)
= 0

(
k6 + k7

) ∂2W

∂x2
+ (

k7 − 2k6
) ∂ψ

∂x

= 0 or δ

(
∂W

∂x

)
= 0 (12)

where F sin (�t) is related to the forced vibration prob-
lem, and

k1 = E A, k2 = E I + 2μAl20 , k3 = ksμA,

k4 = μI

(
2l20 + 4

5
l21

)
, k5 = μA

(
2l20 + 4

5
l21

)
,

k6 = 8

15
μAl21 , k7 = 1

4
μAl22 (13)

Based on the fractional Kelvin–Voigt viscoelastic

model, E and μ are replaced with E
(
1 + ḡ ∂α

∂tα

)
and

μ
(
1 + ḡ ∂α

∂tα

)
, where ḡ and α indicate the viscoelastic-

ity coefficient and fractional derivative order, respec-
tively. Furthermore, the fractional derivative is defined
as [42]

Dα
t (w) = I 1−α (ẇ) = 1

Γ (1 − α)

∫ t

0

w′ (t − τ)

τα
dτ

+ w (0)

Γ (1 − α) tα
, 0 < α < 1

(14)

Accordingly, the governing equations of the fractional
viscoelastic Timoshenko beam on the basis of the strain
gradient theory and the Kelvin–Voigt linear viscoelas-
tic model can be obtained as
(
1 + ḡ

∂α

∂tα

)⎧⎨
⎩k3

(
∂2W

∂x2
+ ∂ψ

∂x

)

+ (k6 − k7
) ∂4W

∂x4
+ (

2k6 + k7
) ∂3ψ

∂x3

+
⎡
⎣ k1
2L

L∫

0

(
∂W

∂x

)2

dx

⎤
⎦ ∂2W

∂x2

⎫⎬
⎭
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= ρA
∂2W

∂t2
− F sin (�t) (15a)

(
1 + ḡ

∂α

∂tα

)[
k2

∂2ψ

∂x2
− k3

(
∂W

∂x
+ ψ

)

− k4
∂4ψ

∂x4
− (

k7 − 2k6
) ∂3W

∂x3

+ (k7 + 4k6
) ∂2ψ

∂x2

]
= ρ I

∂2ψ

∂t2
(15b)

Introducing the following dimensionless parameters

w = W

L
, ζ = x

L
, O = L2

√
ρA

E I
, {�0, �1, �2}

= {l0, l1, l2}
L

, {τ, g} = {t, ḡ}
O

, k1 = AL2

I
,

k2 =
(
E I + 2μAL2�20

)
E I

, k3 = ksμAL2

E I
,

k4 = μ
(
2�20 + 4

5�
2
1

)
E I

,

k5 = μA
(
2�20 + 4

5�
2
1

)
L2

E I
, k6 = 8μAL2�21

15E I
,

k7 = μAL2�22

4E I
,

f = FL3

E I
, ω = � × O (16)

Equation (15) can be rewritten in the following dimen-
sionless form(
1 + g

∂α

∂τα

)[
k3

(
∂2w

∂ζ 2 + ∂ψ

∂ζ

)
+ (k6 − k7)

∂4w

∂ζ 4

+ (2k6 + k7)
∂3ψ

∂ζ 3 +
⎡
⎣k1

2

1∫

0

(
∂w

∂ζ

)2

dζ

⎤
⎦ ∂2w

∂ζ 2

⎤
⎦

= ∂2W

∂τ 2
+ f sin (ωτ) (17a)

(
1 + g

∂α

∂τα

)[
k2

∂2ψ

∂x2
− k3

(
∂W

∂x
+ ψ

)

− k4
∂4ψ

∂x4
− (k7 − 2k6)

∂3W

∂x3

+ (k7 + 4k6)
∂2ψ

∂x2

]
= 1

k1

∂2ψ

∂τ 2
(17b)

3 Solution approaches

3.1 Linear analysis

First, the linear vibration problem of the fractional vis-
coelastic beam is solved. To this end, the governing
equations are discretized by the GDQ and FD methods
in space and time domains.

Based on the GDQmethod [43], the r th-order deriv-
ative of function f (x) including N grid points in the
domain is approximated as

∂r f (x)

∂xr

∣∣∣∣
x=xi

=
N∑
j=1

W
(r)
i j f

(
x j
)

(18)

in which x j signifies the coordinates of a discrete grid
point in the variable domain, f

(
x j
)
represents the

value of function at the grid point x j , andW
(r)
i j denotes

the corresponding weighting coefficients which is
approximated through the following formula

W
(r)
i j =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ix , where Ix is a N × N identity matrix, r = 0
P(xi )

(xi−x j)P(x j)
, where P (xi ) = ∏N

j=1; j �=i

(
xi − x j

)
, i �= j and i, j = 1, . . . , N

r

[
W

(1)
i j W

(r−1)
i i − W(r−1)

i j
xi−x j

]
, i �= j and i, j = 1, . . . , N and r = 2, 3, . . . N

−∑N
j=1; j �=i W

(r)
i j , i = j and i, j = 1, . . . , N and r = 1, 2, 3, . . . N − 1

(19)

By inserting the function values f
(
x j
)
in a column

vector as follows

F = [ f (x1) f (x2) · · · f (xN )]T (20)

Equation (18) is rewritten as

dr

dxr
F = D(r)

x F (21)

inwhichD(r)
x =

[
W

(r)
i j

]
is the operationalmatrix of dif-

ferentiation, i, j =1, . . . , N and r =0, 1, 2, . . . , N−1.
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Now, the FD scheme is employed. The fractional-
order derivative of a function at time t can be calculated
according to the values of the function at times before
t as [44]

1

� (1 − α)

∫ tk+1

0

w′ (tk+1 − τ)

τ α
dτ

= τα

� (2 − α)

k∑
j=0

bα
j

[
w
(
tk+1− j

)− w
(
tk− j

)]

bα
j = ( j + 1)1−α − j1−α, j = 0, 1, 2, . . . , n (22)

In this equation, 0 < α < 1 is the order of fractional
derivative, τ is time step, and n + 1 is number of grid
points.

In order to discretize the space domain, the grid
points are generated via the shifted Chebyshev–Gauss–
Lobatto equations as

ζi = 1

2

(
1 − cos

i − 1

n − 1
π

)
, i = 1, 2, 3, . . . , n (23)

In addition, the grid points in the time domain are
located with invariant distances given by

τ j = j
T

m + 1
, j = 0, 2, 3, . . . ,m (24)

Now, introducing matrices W and ψ as

W =

⎡
⎢⎢⎢⎢⎣

w10 w12 · · · w1n

w20
. . .

. . . w2n
...

. . .
. . .

...

wm0 wm2 · · · wmn

⎤
⎥⎥⎥⎥⎦ ,

ψ =

⎡
⎢⎢⎢⎢⎣

θ10 θ12 · · · θ1n

θ20
. . .

. . . θ2n
...

. . .
. . .

...

θm0 θm2 · · · θmn

⎤
⎥⎥⎥⎥⎦ ,

i = 1 . . .m, j = 0 . . . n (25)

in which wi j = w
(
xi , t j

)
and using the GDQ and FD

methods, one can arrive at[
k3
(
D2

ζW
(
ITt + gDαT

τ

)
+ D1

ζ ψ
(
ITt + gDαT

τ

))

+ (k6 − k7)D4
ζW

(
ITt + gDαT

τ

)

+ (2k6 + k7)D3
ζ ψ
(
ITt + gDαT

τ

)]

+ g

(
1

� (1 − α) τα

)

⊗ (k3D1
ζ ψ0 + k3D2

ζW0 + (k6 − k7)D4
ζW0

+ (2k6 + k7)D3
ζ ψ0

)T
= IζWD2T

τ + sin (ωτ ) ⊗ f (ζ ) (26a)[
k2D2

ζ ψ
(
ITt + gDαT

τ

)
− k3

(
D1

ζW
(
ITt + gDαT

τ

)

+ Iζ ψ
(
ITt + gDαT

τ

))
− k4D4

ζ ψ
(
ITt + gDαT

τ

)

− (k7 − 2k6)D3
ζW

(
ITt + gDαT

τ

)

+ (k7 + 4k6)D2
ζ ψ
(
ITt + gDαT

τ

)]

+ g

(
1

� (1 − α) τα

)

⊗ (k2D2
ζ ψ0 − k3D1

ζW0 − k4D4
ζ ψ0 − k3Iζ ψ0

− (k7 − 2k6)D3
ζW0

)T

= 1

k1
Iζ ψD2T

τ (26b)
(
k2D1

ζ ψ−k4D3
ζ ψ+(k7−2k6)D2

ζW+(k7+4k6)D1
ζ ψ
)

(
ITt + gDαT

τ

)
= 0 or δψ = 0 (26c)

(
k3
(
D1

ζW+ψ
)−(k6+k7)D3

ζW+(2k6−k7)D2
ζ ψ
)

(
ITt + gDαT

τ

)
= 0 or δW = 0 (26d)

k4D2
ζ ψ
(
ITt + gDαT

τ

)
= 0 or δ

(
D1

ζ ψ
) = 0 (26e)

(
(k6+k7)D2

ζW+(k7 − 2k6)D1
ζ ψ
) (

ITt +gDαT

τ

)
=0

or δ
(
D1

ζW
) = 0 (26f)

In these equations, ψ0 andW0 are the initial values of
W and ψ ; τ is the vector of time; ⊗ shows the Kro-
necker product; I denotes the unit matrix; andDα

t is the
fractional derivative operator of order α.

For solving Eqs. (26a) and (26b), both initial dis-
placement and initial velocity must be known. Herein,
the mode shape corresponding to the linear vibration of
elastic beam is used as the initial displacement, and the
initial velocity is considered to be zero. Then, by apply-
ing the discretized boundary conditions to the govern-
ing equations, an algebraic set of equations is achieved
from which the unknown matrices W and ψ can be
determined.

3.2 Nonlinear analysis

In this subsection, the nonlinear problem is solved. To
accomplish this aim, the Galerkin method is utilized
first so as to convert the fractional integro-partial dif-
ferential governing equations into fractional ordinary
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differential equations. In the next step, the obtained
equations are arranged in an effective state-space form.
Finally, the predictor–corrector method is used to solve
the set of nonlinear fractional time-dependent equa-
tions and obtain the time response of fractional vis-
coelastic beam.

For the fractional viscoelastic beam under simply
supported boundary conditions at twoends, the solution
of Eq. (17) can be expressed as follows

w (ζ, τ ) =
∞∑
n=1

ϕn (τ ) pn

ψ (ζ, τ ) =
∞∑
n=1

θn (τ ) �n (27)

in which ϕn (τ ) indicates the time-dependent function;
pn = sin (nπζ) and �n = cos (nπx) are the mode
functions corresponding to the simply supported frac-
tional viscoelastic beam. The function of exciting force
is considered as f = f1 p1 (ζ ).

Substitution of Eq. (27) into (17) and applying the
Galerkin method for the resulting equation give the fol-
lowing fractional ordinary differential equations

⎡
⎣k3

⎛
⎝
⎧⎨
⎩

N∑
j=1

∫ 1

0
pi p

′′
j dζ

⎫⎬
⎭
(
ϕ j + τϕ

(α)
j

)

+
⎧⎨
⎩

N∑
j=1

∫ 1

0
pi�

′
jdζ

⎫⎬
⎭
(
Θ j + gΘ(α)

j

)⎞⎠

+ (k6 − k7)

⎧⎨
⎩

N∑
j=1

∫ 1

0
pi p

I V
j dζ

⎫⎬
⎭
(
ϕ j + τϕ

(α)
j

)

+ (2k6 + k7)

⎧⎨
⎩

N∑
j=1

∫ 1

0
pi�

′′′
j dζ

⎫⎬
⎭
(
Θ j + gΘ(α)

j

)

+
⎧⎨
⎩
k1
2

⎧⎨
⎩

N∑
j=1

N∑
k=1

N∑
l=1

∫ 1

0
pi p

′′
j dζ

∫ 1

0
p′
k p

′
ldζ

⎫⎬
⎭

(
ϕ jϕkϕl + gϕ j (ϕkϕl)

(α)
)}]

=
⎛
⎝ N∑

j=1

∫ 1

0
pi p jdζ

⎞
⎠ ϕ̈ j +

⎛
⎝ N∑

j=1

∫ 1

0
f1 p1 p jdζ

⎞
⎠

sin (ωτ)⎡
⎣k2

⎧⎨
⎩

N∑
j=1

∫ 1

0
�i�

′′
j dζ

⎫⎬
⎭
(
Θ j + gΘ(α)

j

)

− k3

⎛
⎝
⎧⎨
⎩

N∑
j=1

∫ 1

0
�i p

′
jdζ

⎫⎬
⎭
(
ϕ j + τϕ

(α)
j

)

+
⎧⎨
⎩

N∑
j=1

∫ 1

0
�i� jdζ

⎫⎬
⎭
(
Θ j + gΘ(α)

j

)⎞⎠

− k4

⎧⎨
⎩

N∑
j=1

∫ 1

0
�i�

I V
j dζ

⎫⎬
⎭
(
Θ j + gΘ(α)

j

)

− (k7 − 2k6)

⎧⎨
⎩

N∑
j=1

∫ 1

0
�i p

′′′
j dζ

⎫⎬
⎭
(
ϕ j +gϕ(α)

j

)

+ (k7+4k6)

⎧⎨
⎩

N∑
j=1

∫ 1

0
�i�

′′
j dζ

⎫⎬
⎭
(
Θ j +gΘ(α)

j

)⎤⎦

= 1

k1

⎧⎨
⎩

N∑
j=1

∫ 1

0
�i� jdζ

⎫⎬
⎭ Θ̈ j (28)

Considering the following relations

Xi1 = ϕi , Xi2 = ϕ̇i , Xi3 = ϕ
(α)
i ,

Xim = (ϕiϕm−3)
(α), Xi5 = θi ,

Xi6 = θ̇i , Xi7 = θ
(α)
i (29)

Equation (28) can be expressed in the following state-
space form
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∂X j1

∂t
= X j2

∂X j2

∂t
=
[
k3
{∑N

j=1

∫ 1
0 pi p

′′
j dζ
}

(k6 − k7)
{∑N

j=1

∫ 1
0 pi p

I V
j dζ

}] (
X j1 + g

(
X j3 + X j10

�(1−α)tα

))
(∑N

j=1

∫ 1
0 pi p jdζ

)

+
k1
2

{∑N
j=1
∑N

k=1
∑N

l=1

∫ 1
0 pi p

′′
j dζ
∫ 1
0 p

′
k p

′
ldζ
} {

X j1Xk1Xl1 + gX j1

(
Xkm + Xk10 Xm10

�(1−α)tα

)}
(∑N

j=1

∫ 1
0 pi p jdζ

)

+
[
(2k6 + k7) + k3

{∑N
j=1

∫ 1
0�i�

′
jdζ
}] {∑N

j=1

∫ 1
0 pi�

′′′
j dζ

} (
X j5 + gX j7

)
(∑N

j=1

∫ 1
0 pi p jdζ

)

+
(∑N

j=1

∫ 1
0 f1 p1 p jdζ

)
sin (X8)(∑N

j=1

∫ 1
0 pi p jdζ

)

∂1−αXi3

∂t1−α
= Xi2

∂1−αXim

∂t1−α
= Xi1X(m−3)2 + X(m−3)1Xi2

∂Xi5

∂t
= Xi6

∂Xi6

∂t
=
[
−k4

{∑N
j=1

∫ 1
0�i�

I V
j dζ

}
+(k7+4k6+k2)

{∑N
j=1

∫ 1
0�i�

′′
j dζ
}
−k3

{∑N
j=1

∫ 1
0�i� jdζ

}] (
X j5+gX j7

)
1
k1

{∑N
j=1

∫ 1
0�i� jdζ

}

+
[
−k3

{∑N
j=1

∫ 1
0�i p′

jdζ
}

− (k7 − 2k6)
{∑N

j=1

∫ 1
0�i p′′′

j dζ
}] {

X j1 + g
(
X j3 + X j10

�(1−α)tα

)}

1
k1

{∑N
j=1

∫ 1
0�i� jdζ

}

∂1−αXi7

∂t1−α
= Xi6

∂X8

∂t
= ω

(30)

The predictor–corrector method [45] is used to solve
this set of nonlinear fractional ordinary equations in
the time domain. Consider the fractional differential
equation and corresponding initial conditions as

{
Dαx (t) = f (t, x (t)) , 0 ≤ t < T

x (k) (0) = x (k)
0 , k = 0, 1, 2, . . . , n − 1

(31)

where n = �α� shows the first integer which is not
less than α and α > 0, but not necessarily α ∈
N . Moreover, x (k) is the ordinary kth derivative of
x (t).

Equation (31) can be rewritten as an equivalent
Volterra integral equation and is defined by the fol-
lowing equation

x (t)=
n−1∑
k=0

x (k)
0 tk

k! + 1

� (α)

∫ t

0
(t−τ)α−1 f (τ, x (t)) dτ

(32)

The integral form of fractional governing equation can
be discretized in the time domain. To this end, the time
domain grid points are written as

t j = j × ts; ts = T

N
, j = 0, 1, 2, . . . , N ∈ Z+

(33)
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where N denotes the number of total grid points. For
the discretized form of Eq. (32), one has

xh (tn+1) =
�α�−1∑
k=0

x (k)
0 tk

k!

+ tαs
� (α + 2)

f
(
tn+1, x

p
h (tn+1)

)

+ tαs
� (α + 2)

n∑
j=0

a j,n+1 f
(
t j , xh

(
t j
))

a j,n+1 =
⎧⎨
⎩
nα+1 − (n − α) (n + 1)α , j = 0
(n− j+2)α+1+(n− j)α+1−2 (n− j+1)α+1 , 1≤ j ≤n
1, j = n + 1

x p
h (tn+1) =

�α�−1∑
k=0

x (k)
0 tk

k!

+ 1

� (α)

n∑
j=0

b j,n+1 f
(
t j , xh

(
t j
))

b j,n+1 = tαs
α

(
(n − j+1)α −(n − j)α

)
, 1≤ j ≤n (34)

The aforementioned procedure is the well-known
Adams–Bashforth–Moultonpredictor–corrector scheme
[46–48].

4 Results and discussion

In this section, selected numerical results are presented
on the linear and nonlinear time responses of the frac-
tional viscoelastic small-scale beams. C-C, C-SS and
SS-SS end conditions are considered (simply supported
and clamped ends are abbreviated to SS and C, respec-
tively). It is assumed that E = 427GPa, ν = 0.17 and
ρ = 3100 kg/m3 [41].

Lam et al. [27] conducted experimental tests to
evaluate the length scale parameter for an isotropic
homogeneous micro-beam. They assumed that all the
material length scale parameters are the same, i.e.,
l0 = l1 = l2 = l, and obtained l = 17.6 μm. How-
ever, to the authors’ knowledge, there are no available
experimental data for the length scale parameters of vis-
coelastic micro-beams in the open literature. Hence, in
order to quantitatively investigate the size effect on the
behavior of viscoelastic small-scale beams, the values
of length scale parameters are approximately assumed
to be equal to l0 = l1 = l2 = l = 15 μm in the fol-
lowing examples. It should be noted that by choosing
these parameters equal to zero, the governing equations
based on the classical elasticity theorywill be achieved.
Also, by letting l0 = l1 = 0 and l2 = l, the governing

equations based on modified couple stress theory are
obtained.

In Fig. 1, the nonlinear time responses of free vibra-
tion of SS-SSbeambased ondifferent numbers of terms
used in the Galerkin method [see Eq. (27)] are shown.
It is observed that there is no considerable difference
between the results corresponding to different numbers
of terms employed in the Galerkin procedure. There-
fore, one term will be used to generate the results pro-
vided.

In addition, in Fig. 2, the convergence of results is
checked in which the linear time response of free vibra-
tion of SS-SS beam is shown for different numbers
of grid points. This figure indicates quite clearly the
converging trend of the present numerical approach.
Besides, one can find that 13 grid points are enough to
obtain converged results.

The influenceof time step size is shown inFig. 3. The
calculations reveal that by choosing the time step larger
than 0.001, the solution becomes unstable. But, for time
steps smaller than 0.001, stable solutions are obtained.
As shown in Fig. 3, there is no significant difference
between the results by selecting different time steps
smaller than 0.001, so the time step is taken to be 0.001.

In Fig. 4, the time responses of the SS-SS beam
obtained by the FD and predictor–corrector methods
are shown for different fractional orders. It is observed
that there is a good agreement between the results of
two solution methods.

In Fig. 5, the linear time response of the SS-SS beam
is compared with its nonlinear time responses for var-
ious initial displacement values. It is seen that as the
initial displacement decreases, the nonlinear frequency
tends to decrease and the effect of geometrical nonlin-
earity diminishes so that the linear and nonlinear curves
tend to converge.

Figures 6 and7 show the influence of fractional order
on the time response of beams. Three values for the
fractional order including 0.3, 0.6 and 0.9 are consid-
ered. One can find that the frequency of the system
decreases with increasing α. It is also seen that the
decrease in maximum amplitude is intensified as this
parameter gets larger. By elapsing time and the increase
in damping due to increasing fractional order, the dif-
ference between the curves increases.

The effect of dimensionless viscoelasticity coef-
ficient (g) on the vibrational behavior of beams is
shown in Figs. 8 and 9. It is observed that increas-
ing the viscoelasticity coefficient damps the vibrational
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Fig. 1 Nonlinear time response of free vibration of the SS-SS fractional viscoelastic beam obtained by different numbers of terms used

in the Galerkin method
(
g = 0.03, h

l = 1
)

Fig. 2 Linear time
response of free vibration of
the SS-SS fractional
viscoelastic beam obtained
by different numbers
of grid points(
α=0.5, g=0.03, h

l =1
)
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Fig. 3 Nonlinear time
response of free vibration of
the SS-SS fractional
viscoelastic beam obtained
based on different time steps(
α=0.5, g=0.03, h

l =1
)

Fig. 4 Time response of
free vibration of the SS-SS
fractional viscoelastic beam
obtained by the FD and
predictor–corrector methods
for different fractional
orders

(
g = 0.03, h

l = 1,
L
h = 10, b = 2h

)

behavior of the system. This damping is intensified
by elapsing time. As it is expected, by elapsing time
and the decrease inmaximum amplitude, the frequency
decreases more.

Figures 10 and 11 show the time response of beams
for different dimensionless length scale parameters
defined as h/ l. In fact, the influence of small scale
on the size-dependent behavior of the system can be
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Fig. 5 Comparison
between the linear and
nonlinear time responses of
free vibration of SS-SS
fractional viscoelastic beam
with different initial
displacements(
h
l = 1, L

h = 10,

α = 0.5, b = 2h)

Fig. 6 Effect of fractional
order on the nonlinear time
response of free vibration of
the fractional viscoelastic
beam with SS-SS boundary
conditions( h
l = 1, L

h = 10, g = 0.03
)

studied in these figures. The results indicate that with
decreasing dimensionless length scale parameter, the
frequency of the system increases. Also, the maximum

amplitude in each period decreases to a lesser extent as
h/ l decreases.
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Fig. 7 Effect of fractional
order on the linear time
response of free vibration of
the fractional viscoelastic
beams with a C-C, b C-SS, c
SS-SS boundary conditions( h
l = 1, L

h = 10, g = 0.03
)

(a)

(c)

(b)

Fig. 8 Effect of
non-dimensional
viscoelasticity coefficient on
the nonlinear time response
of free vibration of the
fractional viscoelastic beam
with SS-SS boundary
conditions(
α = 0.6, h

l = 1,
L
h = 10, b = 2h

)
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Fig. 9 Effect of
non-dimensional
viscoelasticity coefficient on
the linear time response of
free vibration of the
fractional viscoelastic
beams with a C-C, b C-SS, c
SS-SS boundary conditions(
α = 0.5, h

l = 1,
L
h = 10, b = 2h

)

(a)

(c)

(b)

Fig. 10 Effect of
dimensionless length scale
parameter on the nonlinear
time response of free
vibration of the fractional
viscoelastic beam with
SS-SS boundary conditions(
α = 0.5, L

h = 10,
g = 0.03)

123



708 R. Ansari et al.

Fig. 11 Effect of
dimensionless length scale
parameter on the linear time
response of free vibration of
the fractional viscoelastic
beams with a C-C, b C-SS, c
SS-SS boundary conditions
(α = 0.5, g = 0.03,
L
h = 10, b = 2h

)

(a)

(c)

(b)

Fig. 12 Effect of fractional
order on the nonlinear time
response of forced vibration
of fractional viscoelastic
beams with SS-SS boundary
conditions(
ω = 10, g = 0.03,
f 1 = 1, h

l = 1, L
h = 10

)

The nonlinear time responses of forced vibration
of fractional viscoelastic beams are also illustrated in
Figs. 12 and 13. FromFig. 12, one can find that changes
in the maximum amplitude of vibration increase with
decreasing fractional order. Also, increasing this para-

meter leads to the increase in period of vibration. The
influence of viscoelasticity coefficient on the nonlin-
ear time response of forced vibration is also shown in
Fig. 13.
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Fig. 13 Effect of
viscoelasticity parameter on
the nonlinear time response
of forced vibration of
fractional viscoelastic
beams with SS-SS boundary
conditions(
ω = 10,α = 0.5, f 1 = 1,
h
l = 1, L

h = 10
)

5 Conclusion

In the context of strain gradient theory, the size-
dependent free and forced vibrations of fractional vis-
coelastic small-scale beamswere studied in this article.
The formulation was based on the Timoshenko beam
theory, von Kármán geometrical nonlinear relations
and the fractional Kelvin–Voigt viscoelastic model.
After deriving the size-dependent governing equations,
two solution approaches were employed to solve the
linear and nonlinear vibration problems. In the linear
solution, the GDQ and FD methods were employed in
order to discretize the governing equations and bound-
ary conditions. In the nonlinear solution approach, the
Galerkin method was used to convert the fractional
integro-partial differential governing equations into
fractional ordinary differential equations that were then
written in an effective state-space form. The predictor–
corrector technique was also used to solve the set
of nonlinear fractional time-dependent equations. The
influences of fractional-order, viscoelasticity coeffi-
cient and length scale parameters on the linear and
nonlinear time responses of the fractional viscoelas-
tic small-scale beams were examined. It was observed
that the frequency of the viscoelastic small-scale beams
decreases as the fractional order increases. In addition,
the damping of vibrations of system with increasing

the viscoelasticity coefficient was shown. It was also
revealed that the frequency of the system increases
with decreasing thickness-to-length scale parameter
ratio.
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