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Abstract A quasi-zero stiffness (QZS) vibration iso-
lator outperforms other passive control strategies in
vibration attenuation especially in a low-frequency
band, but it also has an intrinsic limitation of low
roll-off rate in the effective frequency range of vibra-
tion isolation. To overcome this limitation, a two-stage
QZS vibration isolation system (VIS) is proposed, in
which the QZS feature is realized by combining a ver-
tical liner spring with two parallel cam-roller—spring
mechanisms. Considering a possible disengagement
between the cam and the roller under large amplitude
vibration, a piecewise nonlinear dynamical model is
developed and approximately solved by the averag-
ing method. The analytical solutions for amplitude—
frequency relationship and force transmissibility are
derived. The results reveal that the two-stage QZS VIS
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has both advantages of low-frequency vibration isola-
tion and high roll-off rate. It is also found that the sec-
ond resonance can be eliminated when heavy damping
is present in the upper stage, and hence, a broader effec-
tive frequency range of isolation can be achieved. High
intermediate mass and soft vertical springs in the lower
stage are also found to result in high-quality isolation
performance.

Keywords Two-stage vibration isolation - Quasi-
zero stiffness - Piecewise nonlinear dynamics -
Cam-roller—spring mechanism

1 Introduction

As well known, for a single-stage linear vibration isola-
tion system (VIS), there is a trade-off between isolation
efficiency and static deflection. An ideal passive isola-
tor should possess large static stiffness to support the
weight of a structure whose vibration should be con-
tained and at the same time have low-dynamic stiff-
ness to achieve outstanding vibration isolation effec-
tiveness. A type of isolators, made from a negative
stiffness mechanism in parallel with a spring suspen-
sion, can achieve a high-static-low-dynamic (HSLD)
stiffness characteristic. When the positive stiffness is
entirely counteracted by the negative stiffness mech-
anism at the static equilibrium position, a so-called
quasi-zero stiffness (QZS) isolator is produced.

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-3065-x&domain=pdf

634

X. Wang et al.

The design and analysis of QZS VIS have been well
documented in the monograph by Alabuzhev [1] and in
comprehensive reviews by Ibrahim [2] and Liu et al. [3],
respectively. Carrella et al. [4,5] studied the static and
dynamic characteristics of a QZS isolator constructed
by connecting a vertical spring in parallel with two
geometrically symmetric oblique springs, which indi-
cated that a QZS isolator outperformed the correspond-
ing linear one under excitations whose amplitudes are
smaller than some critical values. Hao and Cao [6]
focused on frequency responses of primary, sub/super-
harmonic and chaotic behaviour of a QZS VIS based
on the SD oscillator [7] without truncating for QZS
isolation mechanism. Le and Ahn [8] studied the dis-
placement transmissibility of a QZS isolator consisting
of coil springs, and their results showed that adding
a negative stiffness mechanism notably improved the
isolation performance. To prevent oblique springs from
possible buckling, Lan et al. [9] proposed specific pla-
nar springs instead of oblique coil springs for their QZS
isolator [4,8]. Xu et al. [10] constructed prototypes of
QZS isolators by connecting a vertical coil spring with
four oblique coil springs and then carried out experi-
mental tests. The superior vibration isolation effective-
ness of the QZS isolators was confirmed, especially
for low-frequency excitations. Platus [11] proposed a
compact QZS isolator using a laterally loaded flexural
beam as the negative stiffness element to cancel the
stiffness of the spring suspension, and thereby produc-
ing an ultra-low resonant frequency of the VIS. Liu
et al. [12] developed a QZS mechanism from buckled
Euler beams, and then, Huang Liu et al. [13] studied the
effect of system imperfections on the dynamic response
of this kind of vibration isolation system. Shaw et al.
[14] built an apparatus of a QZS isolator implemented
by connecting linear springs in parallel with a bi-stable
composite plate. Sun et al. [15] proposed an isolation
platform with a multi-layer scissor-like truss structure
to achieve QZS property and further analysed the non-
linear characteristics of stiffness and damping by con-
sidering friction and inertia of the links [16]. Robert-
son et al. [17] presented a QZS isolator by using mag-
netic levitation. Xu et al. [18] proposed a QZS isolator
consisting of horizontal magnetic springs and vertical
coil springs. Wu et al [19] also developed a magnetic
spring with negative stiffness to counteract the positive
stiffness of the system to seek excellent isolation per-
formance. For torsional vibration isolation in a shaft
system, Zhou et al. [20] developed an isolator with tor-
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sional QZS characteristic. For vibration control of a
rotor, Abbasi et al. [21] carried out design optimiza-
tion of a suspension with HSLD stiffness.

Howeyver, the intrinsic limitation of both the linear
and nonlinear single-stage VISs is that the force trans-
missibility decreases at a rate of 1/w? in the effective
frequency range of vibration isolation [22], where
is the excitation frequency. To overcome this limita-
tion, an intermediate mass and stiffness are inserted
into the single-layer system to construct a two-stage
VIS, which has a high transmissibility roll-off rate up
to l/a)4 [22]. Nevertheless, there exist two peak val-
ues of transmissibility at the two natural frequencies
of the linear two-stage system. Thus, such an isola-
tor would most likely give rise to an increase in reso-
nance effect in low-frequency vibration isolation. Like
a single-stage VIS, a small stiffness is needed to reduce
the natural frequencies, but this results in a large static
deflection. Hence, the mechanism with negative stift-
ness was incorporated into the linear two-stage VIS to
achieve excellent vibration isolation performance and
at the same time to ensure small static deflection [23].

A two-stage QZS VIS with cam-roller—spring mech-
anism (CRSM) is proposed in this paper. The QZS
properties in both stages are achieved by connecting a
vertical spring in parallel with CRSMs, each of which
consists of a pair of cam and roller and a horizontal
spring. The CRSMs can provide negative stiffness in
the vertical direction, which is utilized to counteract
the positive stiffness of the vertical spring and hence
obtain the QZS property, which was validated by the-
oretical analysis and experimental test in a previous
work by the main authors of this paper [24]. The cam
is always in contact with the roller when the displace-
ment amplitude of the mass is lower than a certain
value, determined by geometrical dimensions of the
roller and the cam, but it disengages from the roller
in the case of large displacement. Therefore, the force—
displacement relationship can be expressed completely
by a piecewise linear—nonlinear function. Further, the
piecewise linear—nonlinear dynamic model of the two-
stage QZS VIS is established, and then, its approximate
solutions are determined by the averaging method [25]
to obtain the amplitude—frequency (A-F) relationship.
Base on those results, the vibration isolation perfor-
mance is evaluated analytically in terms of the force
transmissibility. It is worth noting that, to analytically
achieve fundamental responses of the two-stage QZS
VIS, the following approximations are made: (1) the
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force—displacement expression is approximated by its
third-order Taylor’s expansion at the equilibrium posi-
tion; (2) only the primary resonance (or the first approx-
imation) is considered when we calculate the funda-
mental responses.

The paper is organized as follows. Section 2 presents
the model of the two-stage QZS VIS and static char-
acteristics. In Sect. 3, the piecewise linear—nonlinear
dynamic model is established, and the A-F relation-
ship is obtained analytically. The dynamic behaviour
and vibration isolation performance are analysed in
Sects. 4 and 5, respectively. Finally, Sect. 6 draws some
conclusions of this work.

2 Stiffness characteristics of the two-stage QZS
VIS

Consider a two-stage VIS with quasi-zero stiffness in
Fig. 1. It is developed based on the design concept of
QZS isolators in a previous work of the main authors
of this paper [24]. For the sake of brevity, the detailed
working principle of a QZS isolator is not given in the
present paper, which can be found in [24]. m is the sus-
pended mass, and m» is the mass of the intermediate
stage. k,1 and k,» denote stiffness of the upper verti-
cal spring and the lower one, respectively, and kj,1 and
kno represent stiffness of the upper horizontal spring
and the lower one, respectively. The roller with radius
r1 connected with the horizontal spring can not only
roll against the cam but also move along the horizon-
tal direction, while the semicircular cam with radius
ro fixed on the mass support is designed to just move
along the vertical direction. The cam keeps contact with
the roller when the displacement is less than a critical
value, but disengagement occurs when the displace-
ment is larger than the critical value. The VIS is ini-
tially in the static equilibrium position without exter-
nal excitations as shown in Fig. 1. At that position, the
centres of semicircular cam and roller are required to
lie on the same horizontal line. The vertical and hor-
izontal springs in the upper stage are compressed by
deflections of AX| = mg/ky1 and &1, respectively.
At the same time, the vertical and horizontal springs
in the lower stage are compressed by deflections of
AXy = (my +my) g/ky2 and 8>, respectively. Fric-
tion between a roller and a cam is very small and thus
is neglected.
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Fig. 1 Schematic of the two-stage QZS VIS under a harmonic
excitation. / cam, 2 roller, 3 slider

When the suspended mass (upper stage) and the
intermediate mass (lower stage) oscillate vertically
about the static equilibrium position, the centres of
semicircular cam deviate from their static equilibrium
positions. The absolute displacements of the suspended
mass and the intermediate stage are designated by xi
and x;, respectively. The upper stage is mounted on the
intermediate stage, and the relative displacement of the
upper stage is given by x| — x». The cam-roller—spring
mechanisms in both stages act as a negative stiffness in
the vertical direction, which can counteract the positive
stiffness of vertical springs and hence reduce stiffness
of the whole VIS. At the equilibrium positions, when
the negative stiffness is equal to the positive stiffness
of vertical spring, the stiffness for both stages is zero,
which is the so-called zero stiffness condition.

To carry out the static analysis of the upper stage,
the intermediate mass is assumed to be fixed, and thus,
x2 = 0. A quasi-static force fi is applied at the sus-
pended mass, leading to a vertical displacement Ax
relative to the intermediate mass from the static equi-
librium position, as shown in Fig. 2. In this figure, f,
and fj, denote the restoring forces of vertical and hor-
izontal coil springs, respectively, and f,. represents the
contact force between the cam and the roller. When
|Ax1| < x4 = /2 2r1 + 1), the roller always keeps
contact with the cam. Nevertheless, when |Ax{| > xg4,
the roller disengages from the cam and moves along
the vertical wall of the support. Thus, the relationship
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(b) (0 (@)

Fig.2 Schematic diagram of a static analysis of the support and
the roller in the upper stage, and three typical relative positions
between the cam and the roller: b contact, ¢ critical position, d
disengagement

between the applied force and the displacement can be
represented as a piecewise linear—nonlinear function. It
is noted that the restoring force of the system is equal
to the applied force, but in the opposite direction.

The static force—displacement relationship for the
upper stage can be given by

S1(Axy)
k1 Ax1 — 2kp1 Axq
=1 A A < g ()
(r1+r2)2—Ax12
ky1 Axy [Axi| > x4
Using A% = Axi/(ri+m) and fi = fi/

[ky1 (r1 + r2)], Eq. (1) can be rewritten in the non-
dimensional form:

Ax1 —2B81AXx
A ai) =1 |1+ 2= | AR <% 2
S1(Axy) [ m:| |Axy] d ()
Axy |[Ax1] > X4

where 81 = 81/(r1 + r2) and B1 = kj,1/ky1. To design
a QZS isolator, the assumption that the mass oscillates
about the equilibrium position with small amplitude,
ie. |Axy| < x4, is employed. The non-dimensional
stiffness of the system can be obtained by differentiat-
ing the first expression of Eq. (2) with respect to the
non-dimensional displacement and this yields

Ki=1-2B |1+ 3)
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As expected, there is a unique relationship between
parameter 1 and &1, resulting in zero stiffness charac-
teristics at the static equilibrium position, which can be
obtained by setting K (AX; = 0) = 0, which leads to

- 1

8qQzs1 = 5 “)
T 2

By substituting Eq. (4) into the first expression of
Eq. (2), the force—displacement relationship of the
upper stage with QZS characteristic can be given by

_ 1 5 -1
fazst (A%)) =A% | 1— 14 29281

Sqzsi J1— Ax

Then, considering the disengagement between the
roller and the cam, the complete expression of the
restoring force of the upper stage can be given by

(&)

fazs1 (A%y)

_ 5 -1 _ _

Ax | 1=-L 142988 AXxi| < x

_ 1 [ Sz ( + oot [Axi| < xq
A%y [AX1] > X4

(6)
where Xy = /1y (2r1 4+ r2)/(r1 + r2). In order to sim-

plify the subsequent dynamic analysis, the first expres-
sion of Eq. (6) is approximated by its third-order Tay-
lor’s expansion at the equilibrium position

|[AX| < X4
|Ax1] = X4

=3
Fzs1 G = [Qﬁxl ™
where Y= (1 — SQ251) / (ZSQZS]).

The exact force—displacement relationship is
depicted in Fig. 3, which is compared with the approxi-
mate one. It can be seen that the expression of the restor-
ing force is a discontinuous function, i.e. the value of
the restoring force undergoes a jump at the critical posi-
tion |Ax1| = Xx4. As expected, the exact but complex
expression of the restoring force can be replaced by the
approximate one in the subsequent dynamic analysis,
which is verified in Sect. 4.

By utilizing the same method for static analysis of
the upper stage, and on the assumption that there is
no relative displacement between the two stages, the
complete expression of the restoring force of the lower
stage is given by
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Fig. 3 Exact force-displacement relationship (hollow cycle)
compared with the approximate one (asterisk) when 8qzs1 = 0.9

f2(Ax2)
ko Axo — 2k Axp

_ [1+

kva Axa

M} |AX2| < x4 (8)

(r1+r2)*=Ax3

[Axz| > x4

where f>(Axy) is a static force applied on the inter-
mediate mass m>. Using Ax, = Axy/(r; +r2) and
fz = fa/lky1 (r1 + r2)], the above can be rewritten as
non-dimensional form

2 (A%)
NAB =2 AKy | 1+—22 | AR < &g
J1-A%3
nAx; |Axz| > X4

(€))

where 8, = 82/(r1 +12), B2 = kna/ ko1, 1 = kv /ky1.
The zero stiffness condition of the lower stage at the
static equilibrium position is given by

Ui

Sqzs2 = 2% (10)

By substituting Eq. (10) into the first expression of
Eq. (9), the complete force—displacement relationship
of the lower stage with QZS characteristic can be
given by

fazs2 (A%2)

_ 1 Sqzs2—1 - - =
_ [1 S (Hﬁ)} nan ARl <t

nAxy [AXz| > X4

(1)

The first expression of Eq. (11) can be also approxi-
mated to a cubic function by using a third-order Tay-

lor series expansion at Ax, = 0. Hence, the force—
displacement relationship in the lower stage can be
approximately given by

AT |A%| < g

nAT: AR = i (12)

]Fézsz (Axp) = I

where y» = (1 — 8qzs2) / (28qzs2).

3 Approximate analytical solutions for two-stage
QZS VIS

Considering the influence of damping, two linear vis-
cous dampers are added in parallel with the vertical
springs in both stages, respectively. Note that damp-
ing in horizontal springs is neglected. The equations of
motion for the two-stage VIS under harmonic force
excitation applied on the suspended mass mj are
given by

miX1 + c1 (k1 — x2) + fi1 (x1 — x2) = F cos(wt)
maXs — c1 (k1 — x2) (13)
+eaXy — fi(x1 —x2) + f2(x2) =0

where F is the excitation amplitude, ¢; and ¢, are
the damping coefficients of the upper stage and lower
stage, respectively, and f1 (x; — x2) and f> (x») are the
restoring force defined by Eqs. (1) and (8), respectively.
Recall that x1 and x, denote absolute displacements of
the suspended mass and the intermediate mass, respec-
tively. For the two-stage QZS VIS, substituting Eqgs. (4)
and (10) into Eq. (13), the equations of motion can be
written in the non-dimensional form as
X+ 241 (X] — X5) + fazsi (X1 — X2)
= F cos(Q21)
ux"y =281 (x't — x'2) + 2p2x’a (14)
—fQzs1 (X1 — X2)
+fozs2 (x2) =0

where
w kyi = F
T=wyt, Q=—, oy=,|—, F= ———|
wp, mi kyi (r1 +r2)
my Cl 2
M= ;1 = ) §2 = (15)
mi 2miwy, 2mowy,

and ()’ denotes differentiation with respect to . In
addition, fozsi (X1 — %2) and fozss (X2) are defined
by Eqgs. (6) and (11). As mentioned previously, restor-
ing forces can be simplified to be cubic functions. The
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Table 1 Control

parameters of the system Parameter  Definition
my, my Suspended mass and intermediate mass, respectively
kyt, ky2 Stiffness of vertical springs in the upper and lower stages, respectively
k1, kno Stiffness of horizontal springs in the upper and lower stages, respectively
€1, 2 Damping coefficients in the upper and lower stages, respectively

SQZS 1 Sstz Non-dimensional pre-compressions of horizontal springs in the upper and lower

stages, respectively

F Non-dimensional amplitude of the harmonic excitation

n Ratio of the intermediate mass to suspended mass

n Ratio of the stiffness of vertical spring in the lower stage to that in the upper stage
C1, 8 Damping factors in the upper and lower stages, respectively

dynamic equations, therefore, can be approximately
given by

X 426 (¢ —x2) + Fzs1 (F1 — X2)

= F cos(27)

px"y =221 (x'1 = x'2) + 2u2x"2 (16)

—fGzs1 B1 — X2)

+f(3252 (x2) =0

where anZSl (X1 — Xx») and f(gzsz (xp) are defined by
Egs. (7) and (12), respectively. Furthermore, the matrix
form of Eq. (16) can be given by

Mx” +Cx +Kx=f (17)

X1 - 10
H N [
- 28 =2¢ - =
€= [—24“1 2§1+2/L§2} B [00} and £ =
[F:COS(QT) — fozsi (x1 - iz)}

f(3251 (X1 —Xx2) — fézsz (*2) '

To make a better understanding of this two-stage vibra-
tion isolation system, the control parameters, which
have significant effects on the dynamic response and
vibration isolation performance, are summarized in
Table 1.

Due to the piecewise nonlinear characteristics, the
fundamental response solution of the dynamic equa-
tions will be obtained by using the averaging method
[25]. For the derivate linear system of the nonlinear sys-
tem represented by Eq. (17), the steady state responses
can be given by

where X

X (t) =ucos¢ + vsing¢

X' (t) = —uQsin¢g + vQ cos ¢ (%)
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where u = [u;, u2]T, v = [v1, v2]T are constant and
¢ = Qrt. However, for the original nonlinear system,
the solution of Eq. (17) can be still expressed in the
form of Eq. (18) provided that u and v are functions of
T rather than constants.

Differentiating the first formula of Eq. (18) with
respect to the time 7 yields

X' () =u (1)cos¢p —u(r) Lsing + v/ (7) sin ¢
+v(t)R2cos¢ (19)

Comparing the second formula of Egs. (18) and (19),
it can be found that

u (t)cos¢p +V (r)sing =0 (20)

Differentiating the second formula of Eq. (18), we
obtain

(1) =—u (1) Qsing —u (r) Q% cos ¢
+v (1) Qcosd — v (r) 2 sing (21)

Substituting the expressions about X” (t), X' (t) and
X (7) into Eq. (17), the following equation is obtained

(MV/Q — MuQ? + CvQ + Ku) cos ¢
- (MU/Q +MvQ? + CuQ — KV) sing = f
(22)

Then, the result of adding Eq. (20) multiplied by
MS cos ¢ and Eq. (22) multiplied by — sin ¢ is given
by

Mu'Q = [(K - 1\71522) v—széu] sin ¢
+ [(f( - 1\_/[92) u+ QCV] sin ¢ cos ¢
—fsing (23)
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Similarly, the result of adding Eq. (20) multiplied by
M sin ¢ and Eq. (22) multiplied by cos ¢ is given by

My'Q = — [(I_( - 1\7[522) u-+ QCV] cos® ¢
— [(K - 1\71522) vV — QCu] sin ¢ cos ¢
+fcos¢ (24)

Then, integrating the resultant equations of (23) and
(24) with respect to T from 0 to 27 and taking the
average value, one obtains

Mu'Q =3 (K-M2)v—3Cu+3q g
MV Q = _% (K—MQ?)u— %CVQ + %qz
where @ = [gm1, gm2]" (m =1,2), q=-1 027T

fsingdp, q» = % fozn f cos ¢pd¢, and the elements
of q,, are given by

Steady-state vibration occurs when
v=v=0 31)

Substituting conditions (31) into Eq. (25), a set of
coupled nonlinear algebraic equations for u and v is
obtained

(K—MQ?)v—CuQ+q; =0
- - = (32)
(K-—MQ*)u+CvQ—qy =0

It is reminded that q; = [qi1,¢12]T and @ =

[g21, qzz]T. The response amplitudes of the interme-
diate mass and the suspended mass are denoted as A;
(already given previously under Eq. (29)) and A (given
below), respectively

A = Ju} +v? (33)

[ %71 (v1 — vp) A}, A < X4
a1 =1 LA3, {singp [3 Q21 + 490) + sin 2y + & sindyro]} (26)
+42 [singp1 (=290 — sin 2y0)] A = X4
[ F — ;31)/1 (w1 — uz) A}, A < X4
=1 5 . . 27
PUZF - 143, {cos g1 [3 2 + 44) + sin 29 + & sindy]} @7)
— 42 [cos pr1 (=29 — sin 20)] A2 = X
[ 20120243 — g1y Ay < %4
= . . . 28
a2 n%A% {singp> [% 2m 4 4®g) + sin2dq + % sin4dg]} (28)
+n 22 [singpz (—2@g — sin2P¢)] — g1 Ay > Xq
—%77)/21421‘\% —g +F Ay < Xq
= : ) 2
a2 —nL2 A3 {cos gra [% 2m + 4dg) + sin2dg + % sin4dg ]} (29)
—n2 [cos g (—2®g — sin2P0)] — g1 + F Ay = iy
where Ay = \/(ul — )+ (0 —wm)2, Ay = Therefore, the response amplitudes can be found by
> 2 and ’ solving the amplitude—frequency (A-F) Eq. (32), and
Uy + v, an then, vibration isolation performances can be evalu-
. V] — V2 ated by force transmissibility. Note that considering
Smert = 2 ok the di t between the roller and th th
V@ — u2)? + (v — ) e disengagement between the roller and the cam, the
) v amplitude—frequency functions, i.e. Eq. (32), are usu-
SIMgr2 = ally cannot be solved analytically, and thus, the explicit
1 Ju2 + v?
202 relationship between the response and control parame-
Xd ters is difficult to be described. Therefore, these equa-
Ccos WO = ’ .
V@ —u2)? + (v — )2 tions are solved by means of the least squares method
X4 embedded into the function fsolve of the commercial
cos &g = (30) software MATLAB®. And then the effects of control

/2 2
u2+v2
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AS-Stable == == == AS-Unstable
250 Numerical solutions of Eq. (14)
Numerical solutions of Eq. (16)
2t
150
1k,
0.5-
0

Fig. 4 Displacement A-F responses of the two-stage QZS VIS.
Solid lines and dash line denote stable and unstable analytical
solutions (AS) of Eq. (16), respectively, and ‘0’ and “*’ denote
numerical solutions of Eqgs. (14) and (16), respectively, when
5Q251 = 8QZS2 =09, F=05u=15n1n=2,{1=4=0.1

parameters on the response are demonstrated by para-
metric analysis.

4 Dynamics of the two-stage QZS VIS

The displacement A-F responses of the intermediate
mass are predicted by analytical method based on the
approximate restoring force, i.e. Eq. (16), as shown in
Fig. 4, which is compared with numerical solutions,
when dqzs1 = dqzs2 = 0.9, F = 0.5, 0 = 1.5, = 2,
&1 = & = 0.1, x4 = 0.943. For each selected fre-
quency of excitation, the solution of amplitude is deter-
mined by numerically solving Eq. (32), as depicted in
Fig. 4, in which the solid lines represent stable solu-
tions, and dashed lines unstable ones. The numeri-
cal solutions of Egs. (14) and (16) are obtained by
using a Runge—Kutta method with fourth-order accu-
racy, which is embedded into the function ode45 of
MATLAB® with adaptive variable step size automati-
cally chosen by the algorithm, as also depicted in Fig. 4,
where markers ‘0’ and ‘*’ denote numerical solutions
of Eqs. (14) and (16), respectively. Finally, it is worth
noting that the numerical solutions are obtained by
using both upward and downward frequency sweep.

It can be observed that there exists a good agree-
ment between analytical solutions and numerical ones,
although differences occur at low frequencies due
to involvement of more than one frequency compo-
nent. In other words, in low-frequency range, the
response is complicated, such as sub/super-harmonic,
quasi-periodic or even chaotic. However, the analyti-
cal response is obtained under the approximation that
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it only has one harmonic component at the frequency of
excitation. For example, when 2 = 0.3, the time histo-
ries and magnitude spectra of displacement responses
of the intermediate mass are depicted in Fig. Sa, b,
respectively, which demonstrates that there exist sev-
eral super-harmonic components besides the one at
the excitation frequency. In contrast, in high-frequency
range, the response mostly has one harmonic compo-
nent with the frequency identical to that of excitation,
as shown in Fig. 5S¢, d when Q = 1.5, and thus, the ana-
lytical response excellently matches with the numerical
one.

Furthermore, the good agreement also can be attri-
buted to that when displacement amplitude A, is on the
lower branch, the amplitude is well below x4, and the
restoring force can be approximated by a cubic func-
tion effectively. Moreover, when the amplitude is on
the upper branch, it is above x4, and the approximate
expression of the restoring force is identical to the exact
one. Therefore, the dynamic model with approximate
restoring force can be utilized to predict the funda-
mental responses effectively. Also shown is the solu-
tion structure for the immediate mass. Obviously, there
are two resonance curves bent rightwards. With the
increase in excitation frequency €2, a jump down could
happen depending on which solution branch the sys-
tem state lies on. The bottom branch represents a weak
oscillation state.

4.1 Effects of excitation amplitude

As shown in Fig. 6, the displacement A-F responses
are considerably influenced by the excitation ampli-
tude. When the excitation amplitude is small, such as
F = 0.03, displacement amplitudes on the resonance
branch are close to x;. The maximum amplitude rises
as the excitation amplitude increases. Moreover, large
excitations, such as F = 0.1, will induce resonance at
the frequency equal to the first resonance frequency
of the corresponding two-stage linear system. Note
that the corresponding linear system is constructed by
removing the roller—cam—spring mechanisms from the
QZS system. In addition, the jump-down frequency
also increases with the enlargement of the excitation
amplitude, which will undermine the low-frequency
vibration isolation performance.

Also shown is that displacement amplitudes at very
low-excitation frequencies increase noticeably as the
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Fig. 5 Displacement responses of the intermediate mass. a Time histories and b magnitude spectra when © = 0.3; ¢ time histories and

d magnitude spectra when 2 = 1.5

excitation amplitude increases until disengagement
between the cam and roller occurs (Fig. 6a, b). How-
ever, when the excitation amplitude is large enough
to induce disengagement, displacement amplitudes at
very low frequencies increase slightly as the excitation
amplitude increases (Fig. 6¢, d). This can be attributed
to the fact that the stiffness of the QZS isolator increases
dramatically due to the disengagement, as shown in
Fig. 3.

4.2 Effects of damping

The effects of damping on A-F response are shown in
Fig. 7. It can be seen that the resonance is extremely
sensitive to damping. Comparing Fig. 7a with b reveals
that high damping in the both stages can lower res-
onances and even completely eliminate resonances.
A comparison between Fig. 7c, d shows that large
damping in the upper stage can eliminate the second
resonance, and large damping in the lower stage can
suppress the first resonance. Therefore, a reasonable
amount of damping can effectively decrease the jump-
down frequencies and reduce the displacement ampli-
tude, which is beneficial to performance of two-stage
QZS VIS.

5 Force transmissibility of the two-stage QZS VIS

Assuming that the response is dominated by the funda-
mental harmonic response, the force transmitted to the
base can be given by

—21Lr A, sin QT + nyzA% cos3 Qt
fr (=1 ~-2u0QA;sin Qr+%ny2A% cosQT  Ar<iy
—218r QA7 sin Qt + nAs cos QT Ay > Xy

(34
Therefore, the analytical force transmissibility, defined
as the ratio of the amplitude of the transmitted force to
that of the excitation, can be written in the form of
decibel as
92y2 A /1642t 2)2 A2 _
201og;, \/ ny=A3/ ;rz( 152 2) 2) Ay < By
(35

242 242
2010g10( /wm]gczW) .

It should be noted that both the expressions of transmit-
ted force and force transmissibility are discontinuous,
due to the discontinuousness of the restoring force at
|X2| = X4, as defined in Sect. 2.

The analytical force transmissibility will be ver-
ified by the numerical solutions. Under excitations
with different amplitudes, the system will experience

T =
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Fig. 6 Influence of exciting
amplitude on A-F response,
when SQZSI = Sstz =0.9,
nw=15n=2,

¢1 = & = 0.01, where dot
dash line represents

Ay =%4.aF =003;b
F=005c¢F=01;andd
F=0.125

Fig. 7 Influence of
damping on A-F response,
when gQZSl = 5_(1252 = 0.9,
nw=15n=2F=0.1,
where dot dash line
represents Ay = X4. a

21 =0.01,2 =0.01;b

1 =02,5,=02;¢

1 =0.01,5 =0.1;and d
¢1 =0.1,2, =0.01
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complicated dynamical behaviour, such as sub/super-
harmonic motion, quasi-periodic motion and chaotic
motion. Generally, for those types of motions, the
numerical force transmissibility cannot be explicitly
represented by the ratio of the amplitude of the trans-
mitted force to that of the excitation; however, it can
be evaluated in the statistical form, which is defined as
the ratio of the root mean square (RMS) of response to
that of the excitation [26,27], i.e.

RMS [ fr (Ti)])

—_— 36
RMS [ f ()] o

T' =20 logm(

where fr (t;) and f (t;) are time histories of the trans-
mitted force and excitation, respectively, which can be
given by

fr () = 218055 () + fozsa [%2 (1)]
f (1) = F cos(Q1;) (37)

where x» (t;) and ié (7;) are displacement and velocity
time histories of the intermediate mass, respectively,
obtained by numerically solving Eq. (17).

Figure 8 shows the analytical and numerical force
transmissibility of the two-stage QZS VIS, compared
with the corresponding two-stage linear system. The
analytical results of Eq. (35) are obtained by using
approximate expressions of the restoring force, but
numerical solutions of Eq. (36) by using exact ones.
It is observed that there is a good agreement between
the analytical results and numerical ones, especially on
the lower branch. The discontinuity of analytical results
can be attributed to the fact that the expression of the
force transmissibility, i.e. Eq. (34), is discontinuous.

The two-stage QZS VIS is compared with the cor-
responding linear system to evaluate its performance.
It can be seen from Fig. 8 that the first jump-down fre-
quency is almost equal to the first natural frequency
of the linear system (2 = 0.737). The second peak
on the transmissibility curve does not occur at the fre-
quency greater than the second natural frequency of the
linear system. The effective frequency range of vibra-
tion isolation is broadened and force transmissibility
is reduced significantly at high frequencies compared
with the linear system. Furthermore, the transmissi-
bility decreases notably after the second jump-down
frequency. Therefore, the two-stage QZS VIS outper-
forms its linear counterpart, and it has advantages both
in low-frequency isolation and high roll-off rate.

205wt

T(dB)
5

Fig. 8 Force transmissibility of the two-stage QZS VIS. Solid
line and dashed line denote stable and unstable analytical results,
respectively, and solid dots denote numerical results, when
Sqzs1 = dqzsa = 0.9, u = 1.5, 7 = 2, F = 0.1, and dot-
dashed line represents the linear VIS
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Fig. 9 Effect of the mass ratio x on the transmissibility of the
two-stage QZS isolator when ngg] = SQZSQ =09,1n =2,
21 = & = 0.01, F = 0.1. Solid line w = 1; dashed line
= 1.5; and dashed-dotted line p = 2.5

5.1 Effects of mass ratio on force transmissibility

Mass ratio of the intermediate mass m, to the sus-
pended mass m is one of the most concerns in para-
meter design of the two-stage VIS [22]. Figure 9 shows
the influence of the mass ratio u on the force transmis-
sibility. It can be seen that increasing the mass ratio
has two effects. The transmissibility of the first peak
reduces, whereas that of the second peak increases.
Both the frequencies of the first peak and the second
one are reduced to lower values. Therefore, increasing
the mass ratio can reasonably improve vibration isola-
tion performance, which implies that the intermediate
mass should be sufficiently large for the two-stage QZS
VIS.

@ Springer



644

X. Wang et al.

N

o
.,’
PO
-

Fig. 10 Effect of the stiffness ratio  on the transmissibility of
the two-stage QZS isolator when SQZSI = qusg =09,u = 1.5,
1 =& =0.01, F = 0.1. Solid line n = 3; dashed line n = 2;
and dashed-dotted line n = 1

5.2 Effects of stiffness ratio of the vertical springs

The effects of stiffness ratio n = k> /ky1 on force trans-
missibility are shown in Fig. 10. It can be seen that
the first jump-down frequency and the first peak trans-
missibility increase as the stiffness ratio n increases.
In addition, the transmissibility on the second reso-
nance branch also increases as the stiffness ratio n

increases, which is detrimental to vibration isolation
performance. Therefore, reducing the stiffness ratio n
can shift the beginning vibration isolation frequency to
alower one, which suggests that a softer vertical spring
should be used to support the lower stage.

5.3 Effects of excitation amplitude

The effects of excitation amplitude on the force trans-
missibility are illustrated in Fig. 11. It is found that
the second peak on the transmissibility curve does not
occur at the frequency greater than the second natural
frequency of the linear system no matter how large the
excitation amplitude is. The first resonance occurs at
the first natural frequency (2 = 0.737) of the linear
system, when the excitation amplitude is large. The
first jump-down frequency increases as the excitation
amplitude increases, but it does not exceed 0.737. At
low frequencies, the upper branch of force transmissi-
bility curve rises as the excitation amplitude decreases,
but in the effective frequency range of vibration isola-
tion the force transmissibility is hardly influenced by
the excitation amplitude.

Fig. 11 Influence of (a) 40
exciting amplitude on the
transmissibility, when
8qzs1 = 8qzs2 = 0.9,
w=15n=2,

G =0=00la

F =0.03;b F =0.05;c¢
F=0.1;andd F = 0.125.
Solid line QZS VIS;
dashed-dotted line linear

VIS

(b) 40 o
20k NS g

N S SR
O-w-w-mnn—u-"‘ﬁ—: Litie

7(dB)
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Fig. 12 Influence of

damping on the
transmissibility, when
dqzs1 = dqzs2 = 0.9,
nw=15n=2F=0.1.a
.1 =0.01,2, =0.01;b

1 =02,5,=02;¢

1 =0.01,5, =0.1;and d
Z1 =0.1, % = 0.01. Solid
line QZS VIS;
dashed-dotted line linear
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5.4 Effects of damping

The impact of damping on the force transmissibility is
illustrated in Fig. 12. The transmissibility of the sys-
tem with light damping in both stages, as shown in
Fig. 12a, is compared with the system processing heavy
damping in both stages, as illustrated in Fig. 12b. It
can be observed that heavy damping in both stages can
reduce the first jump-down frequency, suppress reso-
nance, lower force transmissibility peak and broaden
effective frequency range. However, heavy damping
leads to an increase in the force transmissibility at high
frequencies and hence degrades the vibration isolation
performance. Therefore, as a trade-off, a reasonable
level of damping is required to suppress resonance and
simultaneously ensure high vibration isolation effec-
tiveness.

By comparing Fig. 12¢ with d, it can be seen that
heavy damping had better be set up on the upper stage
rather than on the lower stage, because the second
resonance can be completely eliminated when heav-
ier damping is located on the upper stage (Fig. 12d).
This finding can guide the design on the allocation of
damping in the two-stage QZS VIS.

6 Conclusions

The use of quasi-zero stiffness in a two-stage vibration
isolation system to improve its performance was stud-
ied. The QZS property was achieved by developing a
cam-roller—spring mechanism with negative stiffness
to counteract the positive stiffness of a vertical coil
spring. Considering possible disengagement between
the cam and roller at large amplitudes, a piecewise non-
linear dynamic model of the VIS was established. The
equation of motion was approximately solved by using
the averaging method, and then, the resultant coupled
nonlinear algebraic equations of the periodic steady-
state vibration were solved. The A-F curve was plot-
ted which severely bends to the right due to the strong
nonlinearity. The force transmissibility was analysed
to evaluate the performance of vibration isolation. The
effects on force transmissibility of mass ratio, vertical
spring stiffness ratio, excitation amplitude and damp-
ing were discussed.

It was found that mass ratio and stiffness ratio influ-
ence vibration isolation mainly at low frequencies.
Force transmissibility can be reduced by increasing the
mass ratio and decreasing the vertical spring stiffness
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ratio, which implies that the intermediate mass should
be large enough and a softer vertical spring should be
located on the lower stage. Increasing damping in both
stages shortens the resonance branch and even elimi-
nates it, but degrades isolation performance at high fre-
quencies. Therefore, as a trade-off, a reasonable level of
damping is required to suppress resonance and simulta-
neously ensure high vibration isolation efficiency. High
damping on the upper stage is preferred to eliminate the
second resonance and hence to broaden the effective
frequency range of vibration isolation. Furthermore, it
is a significant observation that no matter how large
the excitation amplitude is, the resonance frequencies
will never exceed the natural frequencies of the corre-
sponding linear system, which outperforms other QZS
mechanisms.
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