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Abstract In this paper, the constrained problemof the
joint angles for a flexible marine riser is investigated.
Boundary control based on the integral-barrier Lya-
punov function is achieved by three actuators equipped
at the top boundary of the riser. Under the time-varying
disturbances, the designed control can suppress the
vibration of the riser and ensure the joint angles in
the constrained ranges. The stability is proved under
the designed control laws. Numerical simulations are
given to illustrate the effectiveness of the designed con-
trol laws.
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List of symbols

L Length of the riser
M Mass of the vessel
ρ Uniform mass per unit len-

gth of the riser
EI Bending stiffness of the

riser
EA Axial stiffness of the riser
T Tension of the riser
Cx ,Cy,Cz Constraints on x ′

L , y
′
L and

z′L
ux (t), uy(t), uz(t) Boundary control inputs in

X, Y, Z directions
fx (s, t), fy(s, t), fz(s, t) Distributed disturbances of

the riser in X,Y, Z direc-
tions

dx (t), dy(t), dz(t) Boundary disturbances of
the riser in X,Y, Z direc-
tions

x(s, t), y(s, t), z(s, t) Displacements in X,Y, Z
directions

1 Introduction

The flexible marine riser is the connection between the
well head in the sea bed and the platform/vessel on sea
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618 S. Zhang et al.

surface for transporting the crude oil and natural gas.
With the trend of extracting natural resources in deep
ocean environment growing [1], the riser plays a cru-
cial role. The riser is mainly subjected to environmen-
tal disturbance (waves, wind and ocean currents) and
its internal forces. These may cause the vibration and
deformation of the riser, which produce the premature
fatigue problems. Besides, the American Petroleum
Institute requires that maximum non-drilling angles
should be limited to 4◦ [2]. Therefore, it is necessary to
give an effective control to suppress vibration and pre-
vent the violation of the angle constraints for the riser
system.

The dynamics of the riser is generally described
by the model of an Euler–Bernoulli beam, which is
a distributed parameter system (DPS) [3–9]. The main
challenge for solving the control problem of DPS is to
control the infinite-dimensional state space using finite
sensors and actuators [10–13,13,14]. Common meth-
ods to use the finite-dimensional techniques are finite
element method [15,16], Galerkin’s method [17,18]
and assumed modes method [19–21]. In these meth-
ods, only some critical modes are considered. It would
happen that the controller does not stabilize the orig-
inal infinite-dimensional system, which was docu-
mented by Balas in [22] and termed as the “spillover”
effect.

Boundary control gains increasingly attention rec-
ently due to its practicality in implementation [23–
25,25–29]. Since actuators [30–33] and sensors [34–
36] are applied at the boundary of the flexible struc-
ture, the dynamics of the system will not be influ-
enced. Then, boundary control can be designed based
on the original infinite-dimensional model, and then,
the spillover problem is avoided. Lastly, in this paper,
novel barrier terms are proposed in the boundary con-
trol laws. These terms can ensure the constraints of
the joint angles. Without these barrier terms, the con-
straints would be violated. Therefore, boundary con-
trol is widely used in the control design for DPSs
[37–43]. In [44], a static output feedback control is
designed via the Euler–Bernoulli beam boundary and
ODE measurements. Using the proposed control, the
closed-loop system is proved to be exponentially sta-
ble by the Lyapunov’s direct method. In [45], the ves-
sel dynamics is taken into consideration when model-
ing. In [46], an actuator at the upper riser is designed
to control the transverse deflection of the riser with
input saturation. The control problem for a flexible

air-breathing hypersonic vehicle (FAHV) is addressed
by boundary output feedback control in [47], where
a coupled system including both PDEs and ODEs is
used to model the FAHV. In [48], boundary and adap-
tive control laws are designed for a moving beam
system.

In practical application and industrial environment,
constrained problems [49,50] are commonly existing
in physical stoppages, saturation and safety specifi-
cations. The barrier Lyapunov function [51–55] is an
effective method to handle constraints.

In this paper, boundary control is designed to sup-
press the vibration of the marine riser system by three
actuators at the top end. In case of lager vibrations, the
control system restricts the joint angles within given
ranges via the feedback signals. The stability of the riser
systems is obtained by using integral-barrier Lyapunov
function. The boundary control is directly designed for
the original infinite-dimensional riser system, without
any model discretization. Thus, the spillover problem
can be eliminated entirely. The main contributions of
this paper are summarized as follows:

(i) To be more precise, the distributed disturbances
along the riser are considered. Under the dis-
tributed disturbances, the governing equations of
the flexible riser are descried by three nonlin-
ear non-homogeneous PDEs, making the dynamic
modelmore complex. Therefore, the control meth-
ods based on the homogeneous PDEs cannot be
applied directly.

(ii) A novel Lyapunov function including an integral
Lyapunov termand a barrier Lyapunov term is con-
structed to guarantee the stability of the system,
and the constraints of the joint angles are not vio-
lated. The construction of the integral Lyapunov
term is based on the mechanical energy Ek(t) and
Ep(t) shown in Sect. 2.

2 Dynamics and preliminaries

Figure 1 shows a three-dimensional marine riser with
its end fixed on at origin and tip clamped with a pay-
load (vessel). The control is implemented at the tip
by the actuator. In this paper, the effect of gravity is
ignored. Let s and t be the independent spatial and time
variables, respectively. For clarification, the notations
(∗̇) = ∂(∗)/∂t, (∗)′ = ∂(∗)/∂s are used throughout
this paper.
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Fig. 1 A nonlinear three-dimensional marine riser

2.1 Dynamics analysis

The kinetic energy Ek(t) and the potential energy Ep(t)
of the riser system can be represented as

Ek(t) = 1

2
M[(ẋL)2 + (ẏL)2 + (żL)2]

+ 1

2
ρ

∫ L

0
[(ẋ)2 + (ẏ)2 + (ż)2]ds (1)

Ep(t) = 1

2
T

∫ L

0
[(x ′)2 + (y′)2]ds

+1

2
E I

∫ L

0
[(x ′′)2 + (y′′)2]ds

+1

2
E A

∫ L

0
[z′ + 1

2
(x ′)2 + 1

2
(y′)2]2ds (2)

where ẋ = ẋ(s, t), x ′ = x ′(s, t), x ′′ = x ′′(s, t) and
ẋL = ẋ(L , t) have been used, and similar abbreviations
are used in the sequel.

The virtual work done by external distributed dis-
turbances fx (s, t), fy(s, t), fz(s, t) on the riser and
boundary disturbances dx (t), dy(t), dz(t) on the tip
payload is given by

δW f (t) =
∫ L

0
( fxδx + fyδy + fzδz)ds

+ dxδxL + dyδyL + dzδzL (3)

The virtualwork done by the control force ux (t), uy(t),
uz(t) to suppress vibration and prevent angle constraint
violation can be represented as

δWm(t) = uxδxL + uyδyL + uzδzL (4)

Therefore, the virtual work δW done on the system can
be represented as

δW (t) = δW f (t) + δWm(t) (5)

Using theHamilton’s principle
∫ t2
t1

δ[Ek−Ep+W ]dt =
0 [56],we can obtain the following governing equations

ρ ẍ = T x ′′ + E A(z′′x ′ + x ′′z′) + 3

2
E A(x ′)2x ′′

+ 1

2
E A[x ′′(y′)2 + 2x ′y′y′′] − E I x ′′′′ + fx (6)

ρ ÿ = T y′′ + E A(z′′y′ + y′′z′) + 3

2
E A(y′)2y′′

+ 1

2
E A[y′′(x ′)2 + 2y′x ′x ′′] − E I y′′′ + fy (7)

ρ z̈ = E Az′′ + E Ax ′x ′′ + E Ay′y′′ + fz (8)

∀(s, t) ∈ [0, L]× [0,∞), and the boundary conditions
as follows

x0 = y0 = z0 = 0 (9)

x ′′
0 = y′′

0 = z′′0 = 0 (10)

x ′′
L = y′′

L = z′′L = 0 (11)

ux + dx = MẍL + T x ′
L + 1

2
E A(x ′

L)3 + E Ax ′
L z

′
L

+ 1

2
E Ax ′

L(y′
L)2 − E I x ′′′

L (12)

uy + dy = MÿL + T y′
L + 1

2
E A(y′

L)3 + E Ay′
L z

′
L

+ 1

2
E Ay′

L(x ′
L)2 − E I y′′′

L (13)

uz + dz = Mz̈L + E Az′L + 1

2
E A(x ′

L)2 + 1

2
E A(y′

L)2

(14)

∀t ∈ [0,∞).

Remark 1 The joint angles of the riser are given as
arctan x ′

L , arctan y′
L and arctan z′L . Except for the

vibration suppression, the control laws are designed
to constrain the joint angles in given regions, i.e.,
| arctan x ′

L | < Ax , | arctan y′
L | < Ay and | arctan z′L | <
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Fig. 2 Schematic illustration of a barrier Lyapunov function

Az , where Ax , Ay, Az > 0. In this paper, the con-
straints of the joint angles are satisfied via the con-
straints of the boundary slopes, i.e., the boundary slopes
of the riser should satisfy |x ′

L | < Cx , |y′
L | < Cy and

|z′L | < Cz , whereCx ,Cy,Cz > 0 and arctanCx = Ax ,
arctanCy = Ay and arctanCz = Az .

2.2 Preliminaries

Definition 1 [51] A barrier Lyapunov function (BLF)
is a scalar function V (x) defined with respect to the
system ẋ = f (x) on an open region D containing the
origin, which is continuous, positive definite, has con-
tinuous first-order partial derivatives at every point of
D, has the property V (x) → ∞ as x approaches the
boundary ofD and satisfies V (x(t)) ≤ b,∀t ≥ 0 along
the solutions of ẋ = f (x) for x(0) ∈ D and a positive
constant b.

The schematic illustration of a barrier Lyapunov
function is shown in Fig. 2.

Property 1 [57] If the kinetic energy of the system
(6)–(14), given by (1), is bounded, then functions
ẋ ′(s, t), ẋ ′′(s, t), ẏ′(s, t), ẏ′′(s, t), ż′(s, t) and ż′′(s, t)
are bounded ∀(s, t) ∈ [0, L] × [0,∞).

Property 2 [57] If the potential energy of the sys-
tem (6)–(14), given by (2), is bounded, then functions
x ′′(s, t), x ′′′(s, t), x ′′′′(s, t), y′′(s, t), y′′′(s, t), y′′′′(s, t)
and z′′(s, t) are bounded ∀(s, t) ∈ [0, L] × [0,∞).

Assumption 1 For the unknown distributed distur-
bances fx (s, t), fy(s, t), fz(s, t) and unknown bound-

ary disturbances dx (t), dy(t), dz(t), we assume that
there exist constants f̄x , f̄ y, f̄z, d̄x , d̄y, d̄z ∈ R+,
such that fx (s, t) ≤ f̄x , fy(s, t) ≤ f̄ y, fz(s, t) ≤
f̄z,∀[s, t] ∈ [0, L] × [0,∞) and dx (t) ≤ d̄x , dy(t) ≤
d̄y, dz(t) ≤ d̄z,∀t ∈ [0,∞). This is a reason-
able assumption as the disturbances fx (s, t), fy(s, t),
fz(s, t), dx (t), dy(t) and dz(t) have finite energy and
hence are bounded, i.e., fx (s, t), fy(s, t), fz(s, t),
dx (t), dy(t), dz(t) ∈ L∞. The knowledge of exact val-
ues of the disturbances is not required.

3 Control design

The control objectives are to suppress the vibration
of the riser in three-dimensional space and guarantee
that the joint angles of the marine riser remain in con-
strained ranges in the presence of environment distur-
bances. The IBLF-based method is used to construct
the control inputs ux , uy, uz and analyze the stability
of the closed-loop system.

For the system given by the governing Eqs. (6)–
(8) and boundary conditions (9)–(14), we propose the
following control laws:

ux = −sgn(ẋL + βLx ′
L)d̄x + τx (t)

− MβLẋ ′
L − k1x (ẋL + βLx ′

L) − (ẋL − βLx ′
L)

×
(
k2x + M

x ′
L ẋ

′
L

C2 − x ′2
L

)
/A − τx (t)/A (15)

uy = −sgn(ẏL + βLy′
L)d̄y + τy(t)

− MβL ẏ′
L − k1y(ẏL + βLy′

L) − (ẏL − βLy′
L)

×
(
k2y + M

y′
L ẏ

′
L

C2 − y′2
L

)
/B − τy(t)/B (16)

uz = −sgn(żL + βLz′L)d̄z + τz(t)

− MβLż′L − k1z(żL + βLz′L) − (żL − βLz′L)

×
(
k2z + M

z′L ż′L
C2 − z′2L

)
/C − τz(t)/C (17)

where k1x , k2x , k1y, k2y, k1z, k2z are the positive con-
trol gains, and sgn(·) denotes the signum function,
τx (t), τy(t), τz(t) are defined as

τx (t) = T x ′
L + 1

2
E A(x ′

L)3 + E Ax ′
L z

′
L

+ 1

2
E Ax ′

L(y′
L)2 − E I x ′′′

L (18)
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τy(t) = T y′
L + 1

2
E A(y′

L)3 + E Ay′
L z

′
L

+ 1

2
E Ay′

L(x ′
L)2 − E I y′′′

L (19)

τz(t) = E Az′L + 1

2
E A(x ′

L)2 + 1

2
E A(y′

L)2 (20)

and the barrier terms A, B and C are given as

A = ln
2C2

x

C2
x − x ′2

L

, B = ln
2C2

y

C2
y − y′2

L

,

C = ln
2C2

z

C2
z − z′2L

(21)

Consider the Lyapunov function candidate as

V (t) = V1(t) + V2(t) + V3(t) (22)

where

V1(t) = 1

2
ρ

∫ L

0
[(ẋ)2 + (ẏ)2 + (ż)2]ds

+ 1

2
E A

∫ L

0
[z′ + 1

2
(x ′)2 + 1

2
(y′)2]2ds

+ 1

2
E I

∫ L

0
[(x ′′)2 + (y′′)2]ds

+ 1

2
T

∫ L

0
[(x ′)2 + (y′)2]ds (23)

V2(t) = 1

2
M(ẋL + βLx ′

L)2A + 1

2
M(ẏL

+ βLy′
L)2B + 1

2
M(żL + βLz′L)2C (24)

V3(t) = βρ

∫ L

0
s(ẋ x ′ + ẏ y′ + żz′)ds (25)

where β is a positive constant, V1(t) is designed based
on the mechanical energy Ek(t) and Ep(t), called the
energy term, the auxiliary term V2(t) is related to the
payload, and the crossing term V3(t) is designed to
facilitate the stability analysis.

Lemma 1 The Lyapunov candidate function given by
(22) is positive definite as

λ1(ζ(t) + V2(t)) ≤ V (t) ≤ λ2(ζ(t) + V2(t)) (26)

where λ1 and λ2 are two positive constants and

ζ(t) =
∫ L

0
[(ẋ)2 + (x ′)2 + (ẏ)2 + (y′)2 + (ż)2 + (z′)2

+ (x ′)4 + (y′)4 + (x ′y′)2 + (x ′′)2 + (y′′)2]ds
(27)

Proof According to generalized Young’s inequality
[57], let δ satisfy T − E A

2δ ≥ 0 and 1
4 − δ ≥ 0, where δ

is a positive constant, we have

0 ≤ η1ζ(t) ≤ V1(t) ≤ η2ζ(t) (28)

where η1 and η2 are defined as

η1 = 1

2
min

[
ρ, T − E A

2δ
,
1

2
E A, E A

(
1

4
− δ

)
, E I

]

(29)

η2 = 1

2
max

[
ρ, T + E A

2δ
,
1

2
E A, E A

(
1

4
+ δ

)
, E I

]

(30)

Similarly, we can obtain

|V3(t)| ≤ βρL
∫ L

0
[(ẋ)2 + (x ′)2 + (ẏ)2 + (y′)2

+ (ż)2 + (z′)2]ds ≤ βρLζ(t) (31)

Let β satisfy βρL < η1, we have 0 < βρL < ζ1. Let
ξ1 = η1 − βρL , ξ2 = η2 + βρL , we further have

0 ≤ ξ1V1(t) ≤ V1(t) + V3(t) ≤ ξ2V1(t). (32)

Therefore, we have

0 ≤ λ1[(ζ(t) + V2(t)) ≤ V (t) ≤ λ2(ζ(t) + V2(t)),
(33)

where λ1 = min(ξ1, 1) and λ2 = max(ξ2, 1) are two
positive constants. ��
Lemma 2 The time derivative of the Lyapunov candi-
date function in (22) is given as

V̇ (t) ≤ −λV (t) + ε, (34)

where λ and ε are two positive constants.
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Proof Differentiating V1(t) by parts and applying gen-
eralized Young’s inequality [57], we have

V̇1(t) ≤ δ1

∫ L

0
f 2x ds + δ2

∫ L

0
f 2y ds + δ3

∫ L

0
f 2z ds

+ 1

δ1

∫ L

0
(ẋ)2ds + 1

δ2

∫ L

0
(ẏ)2ds

+ 1

δ3

∫ L

0
(ż)2ds + �1 (35)

where δ1–δ3 are positive constants, and �1 is the sum
of the boundary terms in V̇1(t). Substituting boundary
conditions (9)–(14) to �1, we obtain

�1 = τx (t)ẋL + τy(t)ẏL + τz(t)żL (36)

The differentiation of V2(t) and substitution of the con-
trol laws (15)–(17) yield

V̇2(t) ≤ −k1x (ẋL + βLx ′
L)2A − k2x (ẋL)2

+ k2xβ
2L2(x ′

L)2 − τx (t)(ẋL + βLx ′
L)

− k1y(ẏL + βLy′
L)2B − k2y(ẏL)2

+ k2yβ
2L2(y′

L)2 − τy(t)(ẏL + βLy′
L)

− k1z(żL + βLz′L)2C − k2z(żL)2

+ k2zβ
2L2(z′L)2 − τz(t)(żL + βLz′L) (37)

Time derivative of V3(t) is given as

V̇3(t) = − 1

2
βρ

∫ L

0
(ẋ)2ds − 1

2
βρ

∫ L

0
(ẏ)2ds

− 1

2
βρ

∫ L

0
(ż)2ds − 1

2
βE A

∫ L

0
(z′)2ds

− 3

8
βE A

∫ L

0
(x ′)4ds − 3

8
βE A

∫ L

0
(y′)4ds

− βE A
∫ L

0
(x ′)2z′ds − βE A

∫ L

0
(y′)2z′ds

− 3

4
βE A

∫ L

0
(x ′y′)2ds − 1

2
βE I

∫ L

0
(x ′′)2ds

− 1

2
βE I

∫ L

0
(y′′)2ds − 1

2
βT

∫ L

0
(x ′)2ds

− 1

2
βT

∫ L

0
(y′)2ds + β

∫ L

0
s( fx x

′

+ fy y
′ + fz z

′)ds + �2 (38)

where �2 is the sum of the boundary terms in V̇3(t).
Substituting the boundary conditions (9)–(14) to �2,
we have

�2 = 1

2
βρL(ẋL)2 + 1

2
βρL(ẏL)2 + 1

2
βρL(żL)2

+ τx (t)βLx
′
L + τy(t)βLy

′
L + τz(t)βLz

′
L

− 1

2
βTL(x ′

L)2 − 1

2
βTL(y′

L)2

− 1

2
βE AL

[
1

2
(x ′

L)2 + 1

2
(y′

L)2 + z′L
]2

(39)

Then, we can further have

V̇ (t) ≤ −
(
1

2
βρ − 1

δ1

) ∫ L

0
(ẋ)2ds

−
(
1

2
βρ − 1

δ2

) ∫ L

0
(ẏ)2ds

−
(
1

2
βρ − 1

δ3

) ∫ L

0
(ż)2ds

−
(
1

2
βE A − βLδ6

) ∫ L

0
(z′)2ds

− 3

8
βE A

∫ L

0
(x ′)4ds − 3

8
βE A

∫ L

0
(y′)4ds

− βE A
∫ L

0
(x ′)2z′ds − βE A

∫ L

0
(y′)2z′ds

− 3

4
βE A

∫ L

0
(x ′y′)2ds − 1

2
βE I

∫ L

0
(x ′′)2ds

− 1

2
βE I

∫ L

0
(y′′)2ds

−
(
1

2
βT − βLδ4

)∫ L

0
(x ′)2ds

−
(
1

2
βT − βLδ5

) ∫ L

0
(y′)2ds

+
(

δ1 + βL

δ4

) ∫ L

0
f 2x ds

+
(

δ2 + βL

δ5

)∫ L

0
f 2y ds

+
(
δ3 + βL

δ6

) ∫ L

0
f 2z ds

− k1x M(ẋL + βLx ′
L)2A

− k1yM(ẏL + βLy′
L)2B

− k1zM(żL + βLz′L)2C
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−
(
k2x − 1

2
βρL

)
ẋ2L −

(
k2y − 1

2
βρL

)
ẏ2L

−
(
k2z − 1

2
βρL

)
ż2L

− [2βT L − β2L2(2k2x + 2k2y + k2z)]z′2L
− 1

2
βE AL

[
1

2
(x ′

L)2 + 1

2
(y′

L)2 + z′L
]2

≤ −λ3[ζ(t) + V2(t)] + ε (40)

where δ4–δ6 are positive constants, and

λ3 = min
{1
2
βρ − 1

δ1
,
1

2
βρ − 1

δ2
,
1

2
βρ

− 1

δ3
,
1

2
βE A − βLδ6,

3β

8
,
1

2
βT

− βLδ4,
1

2
βT − βLδ5,

2k1x
M

,
2k1y
M

,
2k1z
M

}

(41)

ε =
(

αδ1 + βL

δ4

) ∫ L

0
f 2x ds +

(
αδ2 + βL

δ5

)

×
∫ L

0
f 2y ds +

(
αδ3 + βL

δ6

) ∫ L

0
f 2z ds

≤
(

αδ1 + βL

δ4

)
f̄x +

(
αδ2 + βL

δ5

)
f̄x

+
(

αδ3 + βL

δ6

)
f̄x ∈ L∞ (42)

Choosing 2k2x ≥ βρL , 2k2y ≥ βρL , 2k2z ≥ βρL ,
and the designed parameters β, δ1–δ6 are selected to
satisfy the following conditions:

1

2
βρ − 1

δ1
≥ 0 (43)

1

2
βρ − 1

δ2
≥ 0 (44)

1

2
βρ − 1

δ3
≥ 0 (45)

E A − 2Lδ6 ≥ 0 (46)

T − 2Lδ4 ≥ 0 (47)

T − 2Lδ5 ≥ 0 (48)

2T L − βL2(2k2x + 2k2y + k2z) ≥ 0 (49)

Combining (26) and (40), we have

V̇ (t) ≤ −λV (t) + ε, (50)

where λ = λ3/λ2 and ε > 0. ��
Theorem 1 For the system described by (6)–(8) and
boundary conditions (9)–(14), under Assumption 1,
and the control laws (15)–(17), given that the initial
conditions are bounded, we can conclude that:

(i) the states of the system x(s, t), y(s, t) and z(s, t)
will remain in the compact set �1 defined by

�1 := {x(s, t), y(s, t), z(s, t)
∈ R| |x(s, t)|, |y(s, t)|, |z(s, t)|

≤ D1,∀(s, t) ∈ [0, L] × [0,∞)} (51)

where the constant D1 =
√

L
λ1

(
V (0) + ε

λ

)
.

(ii) the states of the system x(s, t), y(s, t) and z(s, t)
will eventually converge to the compact�2 defined
by

�2 := {x(s, t), y(s, t), z(s, t) ∈ R| lim
t→∞ |x(s, t)|,

lim
t→∞ |y(s, t)|, lim

t→∞ |z(s, t)|
≤ D2,∀t ∈ [0,∞)} (52)

where the constant D2 =
√

Lε
λ1λ

.

Proof Multiplying (34) by eλt yields

∂

∂t
(Veλt ) ≤ εeλt (53)

Integration of the above inequality, we obtain

V (t) ≤
(
V (0) − ε

λ

)
e−λt + ε

λ
≤ V (0)e−λt

+ ε

λ
∈ L∞ (54)

which implies V (t) is bounded. Utilizing Wirtinger’s
inequality (or Poincaŕe) [57] and (26), we obtain

1

L
[x(s, t)]2 ≤

∫ L

0
[x ′(s, t)]2ds ≤ ζ(t)

≤ 1

λ1
V (t) ∈ L∞ (55)

1

L
[y(s, t)]2 ≤

∫ L

0
[y′(s, t)]2ds ≤ ζ(t)

≤ 1

λ1
V (t) ∈ L∞ (56)
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1

L
[z(s, t)]2 ≤

∫ L

0
[z′(s, t)]2ds ≤ ζ(t)

≤ 1

λ1
V (t) ∈ L∞ (57)

Rearranging the terms of the above three inequalities,
we can obtain

|x(s, t)|, |y(s, t)|, |z(s, t)| ≤
√

L

λ1

(
V (0)e−λt + ε

λ

)

≤
√

L

λ1

(
V (0) + ε

λ

)
,∀(s, t) ∈ [0, L] × [0,∞)

(58)

Furthermore, from (58), we can obtain

lim
t→∞ |x(s, t)| ≤

√
Lε

λ1λ
,∀s ∈ [0, L] (59)

lim
t→∞ |y(s, t)| ≤

√
Lε

λ1λ
,∀s ∈ [0, L] (60)

lim
t→∞ |z(s, t)| ≤

√
Lε

λ1λ
,∀s ∈ [0, L] (61)

��
Remark 2 By proposing the barrier Lyapunov func-
tion bounded in a symmetrical region shown in Fig.
2, it is thus guaranteed that the barriers are not trans-
gressed. From Ineqs. (54) and (55), we know that V (t)
is bounded and ζ(t) ≤ 1

λ1
V (t) is also bounded ∀t ∈

[0,∞). Furthermore, from Ineq. (26) in Lemma 1 and
the fact that V2(t) and ζ(t) are positive functions, we
have that V2(t) is also bounded ∀t ∈ [0,∞). From the
definition of barrier Lyapunov function, we know that
V2(t) → ∞, as |x ′

L | → Cx , |y′
L | → Cy, |z′L | → Cz .

Consequently, we know that x ′
L 
= Cx , y′

L 
= Cy and
z′L 
= Cz . Given that |x ′(L , 0)| < Cx , |y′(L , 0)| < Cy

and |z′(L , 0)| < Cz , from Fig. 2, we can further infer
that |x ′

L |, |y′
L |, |z′L | remain in the sets |x ′

L | < Cx ,
|y′

L | < Cy and |z′L | < Cz , ∀t ∈ [0,∞). Therefore, we
have | arctan x ′

L | < arctanCx , | arctan y′
L | < arctanCy

and | arctan z′L | < arctanCz , ∀t ∈ [0,∞), namely the
joint angles are constrained in the given angle regions.

Remark 3 According to (28) and (55), we can state that
ζ(t) and V1(t) are bounded ∀t ∈ [0,∞). Since V1(t)
is bounded, ẋ(s, t), x ′(s, t), x ′′(s, t), ẏ(s, t), y′(s, t),
y′′(s, t), ż(s, t) and z′(s, t) are bounded ∀(s, t) ∈

[0, L] × [0,∞). From (1), the kinetic energy of the
system is bounded and using Property 1, we can know
that ẋ ′(s, t) and ẏ′(s, t) are bounded ∀(s, t) ∈ [0, L]×
[0,∞). From the boundedness of the potential energy
(2), we can use Property 2 to conclude that z′′(s, t)
is bounded, ∀(s, t) ∈ [0, L] × [0,∞). Finally, using
Assumption 1, (6)–(8) through (9)–(14) and the above
statements, we can conclude that ẍ(s, t), ÿ(s, t) and
z̈(s, t) are also bounded, ∀(s, t) ∈ [0, L] × [0,∞).
From Lemma 3 and the above proof, it is shown
the deflection x(s, t), y(s, t) and z(s, t) is uniformly
bounded ∀(s, t) ∈ [0, L] × [0,∞). And we can con-
clude that the control inputs ux , uy and uz are bounded
∀(s, t) ∈ [0, L] × [0,∞).

Remark 4 The limitation for the proposed control is
that there is no term introduced to deal with the effect
of fx (s, t), fy(s, t), fz(s, t). Therefore, only bounded
stability can be ensured due to the term ε. When the
upper bounds of the distributed disturbance are large,
the control performance would be affected. However,
a better control performance can also be obtained by
tuning thedesignedparameters. FromIneqs. (41), (59)–
(61), by adjusting the designed parameters, such as
increasing k1x , k1y , k1z will bring a larger λ3. Then, the
value of λ will increase, which will produce a better
vibration suppression performance. However, increas-
ing in the control gains would bring a high gain con-
trol scheme. Therefore, in practical applications, the
designed parameters should be adjusted carefully for
achieving suitable transient performance and control
action.

4 Simulation

In this section, in order to demonstrate the effectiveness
and practicability of the proposed control laws (15)–
(17), we choose the infinite difference method to carry
out the numerical simulation. The initial conditions of
the system are given as: x(s, t) = ẋ(s, t) = y(s, t) =
ẏ(s, t) = z(s, t) = ż(s, t) = 0.

In this paper, for simulation purposes, the exter-
nal distributed disturbances are simulated with several
sinusoids signals with different frequencies, which can
be used to model the ocean disturbances in offshore
engineering. The reader can refer to [58] for the detailed
parameters of distributed disturbances on the riser. The
external boundary disturbances are generated by the
following equations
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dx (t) = dy(t) = (3 + 0.8 sin(0.7t) + 0.2 sin(0.5t)

+ 0.2 sin(0.9t)) × 105 (62)

dz(t) = (3 + 0.2 sin(0.5t)) × 104 (63)

From (62) and (63), the periods of boundary distur-
bances are Tx = Ty = 20πs, Tz = 4πs, the frequen-
cies of boundary disturbances are fx = fy = 0.016Hz,
fz = 0.08Hz and the amplitudes of boundary dis-
turbances are Ax = Ay = 4.2 × 105, Az = 3.2 ×
104, respectively. The simulations for boundary distur-
bances are shown in Fig. 3.

Parameters of the riser system are given in Table 1.
The length of simulation time is 500 s.

4.1 Comparison with the PD control

In this subsection, the simulation results have been dis-
cussed thoroughly by comparing with the traditional
PD control. The dynamic responses of the flexible riser
are simulated in the following cases:

(i) Without control: The flexible riser is simulated
without control, and the spatial time representations

Table 1 Parameters of the system

Parameter Description Value

L Length of riser 1000 m

ρ Uniform mass per unit
length of the riser

108 kg/m

M Mass of the vessel 9.6 × 106 kg

E I Bending stiffness of the
riser

1.22 × 105 Nm2

E A Axial stiffness of the
beam

3.92 × 108 Nm2

T Tension of the beam 1.11 × 108 N

Cx ,Cy,Cz Constraints on x ′
L , y

′
L

and z′L
0.03

are shown in Fig. 4. From the simulation results shown
in Fig. 4, it can be observed that when there is no con-
trol input, there are large vibrations along the riser sub-
jected to the external disturbances. For example, we
can obtain max |z(x, t)| = 4.4m.
(ii) With the proposed boundary control force: The
boundary control laws (15)–(17) developed by using
integral-barrier Lyapunov function is simulated with

Fig. 3 Boundary
disturbances: (a) dx (t) and
dy(t); (b) dz(s, t)
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Fig. 4 Displacements of the riser without control: a x(s, t); b y(s, t); c z(s, t)
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Fig. 5 Displacements of the riser with the proposed control: a x(s, t); b y(s, t); c z(s, t)
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Fig. 6 Displacements of the riser with the PD control: a x(s, t); b y(s, t); c z(s, t)

the control parameters k1x = 2 × 103, k2x = 8 ×
105,k1y = 3 × 103,k2y = 4 × 105,k1z = 5 × 103 and
k2z = 106. The spatial time representations are shown
in Fig. 5. When the proposed control laws applied,
we can see that the proposed boundary laws (15)–(17)
could suppress the vibrations in all three directions. In
addition, in the z direction, the displacement magni-
tude is regulated to around 0 at the top end of the riser,
illustrating that good control performance is ensured
with the proposed control.

(iii) With the PD control: The flexible riser system
is analyzed with the traditional PD control u1(t) =
−kp1w(L , t) − kd1ẇ(L , t), u2(t) = −kp2y(L , t) −
kd2 ẏ(L , t) and u3(t) = −kp3z(L , t) − kd3 ż(L , t) by
choosing kp1 = kp2 = kp3 = 5 × 105 and kd1 =
kd2 = 8 × 105, kd3 = 106. The displacements of the
riser under the PD control are shown in Fig. 6. We can
observe that the vibration can also be suppressed by the
PD control.

The end-point deflection has also been presented to
show the advantages of the proposed method. Figures
7, 8 and 9 show the displacements of the riser at x = L .
FromFigs. 7, 9, we can conclude that both the proposed

control and the PD control are effective in regulating
w(L , t), y(L , t) and z(L , t). However, obviously, the
response of the proposed control is faster than that of
the PD control.

Additional, boundary slopes of the riser are sim-
ulated in Figs. 10, 11 and 12. As shown in Fig. 12,
with the PD control, the constraints for boundary slopes
of the riser are violated. However, the proposed con-
trol laws ensure that the boundary slopes of the riser
|x ′

L | ≤ Cx , |y′
L | ≤ Cy and |z′L | ≤ Cz are due to the

existence of the barrier Lyapunov functions.
Although both the proposed control and the PD con-

trol are able to stabilize the riser at the small neigh-
borhood of its equilibrium position. However, com-
paredwith PD control, the performance of the proposed
boundary control exhibits smaller vibration and the
states converge faster. And only the proposed bound-
ary control can guarantee the joint angles that remain in
the given regions. In addition, the control gains for the
PD control are larger than that of the proposed control.
From the comparison, we can conclude that we obtain a
better control performance by using the proposed con-
trol. The control inputs are given in Fig. 13.
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Fig. 7 Boundary displacement of the riser without control: a x(L , t); b y(L , t); c z(L , t)
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Fig. 8 Boundary displacement of the riser with the proposed control: a x(L , t); b y(L , t); c z(L , t)
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Fig. 9 Boundary displacement of the riser with the PD control: a x(L , t); b y(L , t); c z(L , t)

4.2 Comparison with different boundary disturbances

In order to test the effects of the frequency and ampli-
tude of the periodic disturbances on the control perfor-
mance, we have used different boundary disturbances
in the simulations. The dynamic responses of the flex-
ible riser are simulated in the following cases:

(i) Changing the frequency of the external distur-
bances: For this case, with the amplitude of the exter-
nal disturbances unchanged, we change the frequency
of the external disturbances as

dx1(t) = dy1(t) = (3 + 0.8 sin(7t) + 0.2 sin(5t)

+ 0.2 sin(9t)) × 105 (64)
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Fig. 10 Boundary slopes of the riser without control: a x ′(L , t); b y′(L , t); c z′(L , t)
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Fig. 11 Boundary slopes of the riser with the proposed control: a x ′(L , t); b y′(L , t); c z′(L , t)
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Fig. 12 Boundary slopes of the riser with the PD control: (a) x ′(L , t); (b) y′(L , t); (c) z′(L , t)

dz1(t) = (3 + 0.2 sin(5t)) × 104 (65)

For boundary disturbances (64) and (65), the periods
are Tx1 = Ty1 = 2πs, Tz1 = 0.4πs, and the frequen-
cies are fx1 = fy1 = 0.16Hz, fz1 = 0.8Hz.

The simulation results are exactly the same with
Figs. 5, 8 and 11 by using the same control gains,

i.e., k1x = 2 × 103, k2x = 8 × 105,k1y = 3 × 103,
k2y = 4 × 105,k1z = 5 × 103 and k2z = 106. From
the simulation results, we can observe that changing
the frequencies of the disturbances will not affect the
control performance.

(ii) Changing the amplitude of the external distur-
bances: For this case, with the frequency of the exter-
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Fig. 13 Boundary control inputs ux (t), uy(t) and uz(t)

nal disturbances unchanged, we change the amplitude
of the external disturbances as

dx2(t) = dy2(t) = (5 + 0.8 sin(0.7t) + 0.2 sin(0.5t)

+ 0.2 sin(0.9t)) × 106 (66)

dz2(t) = (5 + 0.2 sin(0.5t)) × 105 (67)

The amplitudes of boundary disturbances (66) and (67)
are Ax2 = Ay2 = 6.2 × 106, Az2 = 5.2 × 105.

The simulation results are shown in Figs. 14, 15 and
16. The control gains are chosen as k1x = 8 × 103,
k2x = 8×105, k1y = 8×103, k2y = 106, k1z = 3×105

and k2z = 2 × 106.
From the simulation results, it can be observed that

when we increase the amplitudes of the external dis-
turbances, the proposed control can still suppress the
vibration of the riser in three directions. In addition,
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Fig. 14 Displacements of the riser with the proposed control under new disturbances (68) and (69): a x(s, t); b y(s, t); c z(s, t)
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Fig. 15 Boundary displacement of the riser with the proposed control under new disturbances (68) and (69): a x(L , t); b y(L , t); c
z(L , t)
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Fig. 16 Boundary slopes of the riser with the proposed control under new disturbances (68) and (69): a x ′(L , t); b y′(L , t); c z′(L , t)

Table 2 Settling time for different disturbances

Boundary
disturbances

Settling time
for x(L , t)(s)

Settling time
for y(L , t)(s)

Settling time
for z(L , t) (s)

(62) and (63) 419.1919 419.1919 363.6364

(64) and (65) 419.1919 419.1919 363.6364

(66) and (67) 429.2929 429.2929 424.2424

the proposed control laws can also ensure the boundary
slopes of the riser |x ′

L | ≤ Cx , |y′
L | ≤ Cy and |z′L | ≤ Cz .

However, the control gains become larger.
In addition,we have investigated the settling time for

boundary displacements, i.e., the time required for the
response of boundary displacements x(L , t), y(L , t)
and z(L , t) to settle within 5 % of their final values.
The results are listed in Table 2.

From Table 2, we can see that the settling time for
disturbances (64) and (65) are exactly the samewith the
settling time for disturbances (62) and (63), illustrating
that changing the frequency of the disturbances will not
affect the converging speed. However, increasing the
amplitudes of the disturbances, all boundary displace-
ments x(L , t), y(L , t) and z(L , t) converge slower.

5 Conclusion

This paper has presented the boundary control design
for a flexible marine riser system subjected to the envi-
ronmental disturbances. With the proposed control, the
vibration of the riser has been suppressed and the con-
straints of the joint angles have been handled. The
bounded stability has been proved based on the Lya-
punov’s directmethod. The numerical simulations have
been carried out to illustrate the performance of the con-

trolled system. In this paper, effects of internal flow
have been neglected for simplicity. In the future, we
will discuss the model analysis and the control design
of a flexible riser system with internal flow in three-
dimensional space, which includes a more complicated
dynamic model. In addition, the input nonlinearities
will be under consideration for the riser system.
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