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Abstract In this paper, the dynamics of a discrete-
time genetic model is investigated. The existence and
stability conditions of the fixed points are obtained. It
is shown that the discrete-time genetic network under-
goes fold bifurcation, flip bifurcation and Neimark–
Sacker bifurcation. The biological parameter and dis-
cretization step size are taken as bifurcation parame-
ters, respectively, and the explicit bifurcation criteria
are derived based on the center manifold theorem and
bifurcation theory. Numerical simulations validate the
theoretical analysis and also show that the system can
exhibit diverse dynamic behaviors such as period-7, -
14, -5, -10 orbits and chaos. The overall results reveal
much richer dynamics of the discrete-time genetic
model than that of the original continuous-time model.
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1 Introduction

Genetic regulatory networks (GRNs) are biologically
dynamic systems which describe the interactions of
genes in living cells.Many researches have been carried
out, which aims at understanding the process of gene
regulation and explaining the biological phenomena.
Synthetic genetic networks have been designed and
implemented to explore the interactions among genes
[1].

Dynamic behaviors (such as stability, bifurcation,
period oscillations and chaos) have been a significant
research aspect which contributes to analyzing the bio-
logical functions. Many literatures have reported the
dynamic properties of GRNs. Mathematically, equilib-
ria exist when concentrations of the gene products are
constants while bifurcations often occur when the equi-
libria are destabilized [2–4]. The period or amplitude of
oscillations may change as biological parameters vary
[5,6]. Complexmechanisms of the gene expression can
even induce chaos [7,8]. Having a deep knowledge of
the system dynamics contributes to the analysis and
design of schemes in the fields of biology and control
[9–12].

To inquire into the capability of genetic regulatory
systems to take on complex dynamic activities, Smolen
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et al. [13] proposed a simple kinetic model which
included autoregulation, positive and negative feed-
back loops of transcription factors (TFs). Concretely
speaking, it can be described as one gene is an acti-
vator that activates the transcription of itself and that
of the other. In turn, the latter represses the transcrip-
tion of both of them [14]. The authors found that the
genetic system manifested multiple steady states, and
they studied the oscillatory regions by numerical simu-
lations. As an easy-implemented genetic oscillator that
is robust and period tunable, it receives much attention
in engineering [15]. On the other hand, differentmathe-
matical models were also developed based on its topol-
ogy architecture, and relevant works have been exten-
sively done. Hasty et al. [16] developed a model and
considered coupling the oscillator to a cellular process.
They showed the amplification effect of protein oscil-
lations by the oscillator. Liu and Jia [17] considered a
stochastic model. In the case of correlated and uncor-
related noises, they investigated how fluctuations in the
degradation rate and synthesis rate of TFs in a genetic
system yielded switching processes. Since the research
by Smolen et al. [18], some works have been done to
deal with the model that incorporates delay. Stability
andbifurcation analysiswere carried out, and the delay-
induced oscillations were studied [19–21]. Due to the
features and advantages in the field of synthetic biol-
ogy, the theoretical research based on the genetic circuit
in [13] still develops forward.

Although quite a few results have been reported
on the dynamics of GRNs, most of them are based
on continuous-time models, and the dynamic analysis
is mainly about stability, bifurcation or the resulting
period solution [22]. Nevertheless, when a continuous-
time model is implemented for computer simulation,
it inevitably needs to be discretized [23]. Recently,
there is an interest in the discrete-time dynamics analy-
sis of biological systems [24,25]. For example, the
bifurcation and chaos have been studied in a discrete
Ricardo–Malthus model [26]. The discrete-time ver-
sion can retain biological function similarities and
dynamic characteristics of the continuous-time model
when the step size is small enough. In addition, it may
also present new dynamics which is not observed in the
continuous-time model [27]. Therefore, it is meaning-
ful to consider the dynamics of discrete-time genetic
regulatory networks (DGRNs). The fold bifurcation
and flip bifurcation in a discrete genetic system were
studied in [28], and it was shown that the system pre-

sented chaotic behaviors. The bifurcation conditions
on the step size were derived. For a DGRN, when the
true concentrations of gene products are not available,
the observer needs to be designed to make an estima-
tion [29]. Based on determined DGRN models, differ-
ent stability conditions are derived [30–32]. When the
delay is introduced, bifurcations may occur. In [33],
the Neimark–Sacker bifurcation was investigated in a
delayed DGRN. Choosing the delay as a bifurcation
parameter, the authors derived the bifurcation condition
and the properties of the bifurcating periodic solution.
Most of these researches are about stability or onefold
bifurcation, but more interesting dynamic phenomena
such as diverse bifurcations and chaotic behaviors are
not fully studied.

Motivated by the above discussions, a discrete-time
genetic model that is established based on the topo-
logical structure first discussed in [13] is presented.
Three bifurcations are investigated by using theories
of bifurcation [34,35] and center manifold [36]. More-
over, numerical simulations exhibit richer dynamics of
the discrete-time model than that of the continuous-
time model. This paper is organized as follows. In
Sect. 2, the existence and stability of the fixed points
of the genetic model are discussed. In Sect. 3, the
parameter conditions under which fold bifurcation, flip
bifurcation and Neimark–Sacker bifurcation occur are
reported. In Sect. 4, numerical simulations are shown
to illustrate our theoretical results and to exhibit rich
dynamic behaviors such as period-7, -14, -5, -10 orbits
and chaos. Finally, conclusion and discussion are given
in Sect. 5.

2 Existence and stability of the positive fixed points

In this section, we shall first develop a mathemat-
ical model of a genetic regulatory network, whose
schematic can be found in [13]. Here, protein con-
centrations are considered as the only variables. The
dynamic relationships between two regulators are for-
mulated as

ṗ1(t) = −k1 p1(t) +
a11
(
p1(t)
b11

)h + a12

1 +
(
p1(t)
b11

)h +
(
p2(t)
b12

)h ,

ṗ2(t) = −k2 p2(t) +
a21
(
p1(t)
b21

)h + a22

1 +
(
p1(t)
b21

)h +
(
p2(t)
b22

)h , (2.1)
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where pi denotes the concentration of protein i and ki
stands for the degradation rate of it. ai j and bi j are tran-
scription rate and transcription coefficient of protein j
to gene i , respectively. h is the Hill coefficient. For spe-
cific analysis, we consider h = 2, aii = a ji = ai and
bii = b ji = bi throughout this paper,which are general
and rational premises [37]. It should be paid attention
that i, j = 1, 2. The Hill coefficient h = 2 indicates
that two monomers are needed to form a homodimer
[38], and TFs regulate the transcription of a gene in
the form of a homodimer. h = 1 and h > 2 mean that
TFs act in the form of a monomer and a multimer (the
degree is larger than2), respectively. Sincehomodimers
(or dimers) are initially generated when TFs are poly-
merized, the homodimer is an elementary and essential
form of TFs to regulate the gene expression.

For conciseness, we introduce the rescaled parame-
ters
p1(t)

b1
= x(t),

p2(t)

b2
= y(t),

a1
b1

= α1,
a2
b1

= α2,
b1
b2

= β.

Then, system (2.1) can be rewritten as

ẋ(t) = −k1x(t) + α1x2(t) + α2

1 + x2(t) + y2(t)
,

ẏ(t) = −k2y(t) + α1βx2(t) + α2β

1 + x2(t) + y2(t)
, (2.2)

where x and y are transformed concentrations of node
1 and node 2. α1 and α2 are transformed synthesis rate
affected by two nodes, respectively. β is a positive con-

stant. k1 and k2 have the same meanings as those in
(2.1). The above continuous-time model can be dis-
cretized to yield the corresponding discrete-time form.
Applying the Euler method to system (2.2), we get the
following formulations

x(n + 1) = x(n) − k1δx(n) + δ(α1x2(n) + α2)

1 + x2(n) + y2(n)
,

y(n + 1) = y(n) − k2δy(n) + βδ(α1x2(n) + α2)

1 + x2(n) + y2(n)
,

(2.3)

where δ is the discretization step size, x(n) and y(n)

are approximate values of x(nδ) and y(nδ). Note that
the above equation is not only an approximation of the
original model but also a new dynamic system. It could
reflect the dynamics of system (2.2) in some degree and
may present new dynamic characteristics as well. In the
following, we will consider the dynamics of system
(2.3).

Suppose that E(x∗, y∗) is a fixed point of system
(2.3), it should satisfy

k1x
∗ = α1x∗2 + α2

1 + x∗2 + y∗2 , y∗ = βk1
k2

x∗. (2.4)

Then, x∗ is a root of the following cubic function

f (z) = k1

(
1 +
(

βk1
k2

)2)
z3 − α1z

2

+ k1z − α2. (2.5)

To determine the number of fixed points, we define the
related function and variables as

ϕ(α1) =
4α2α

3
1 − k21α

2
1 − 18α2k21

(
1 +
(

βk1
k2

)2)
α1 + k21

(
1 +
(

βk1
k2

)2)[
27α2

2

(
1 +
(

βk1
k2

)2)+4k21

]

108k41

(
1 +
(

βk1
k2

)2)4 , (2.6)

p =
3k21

(
1 +
(

βk1
k2

)2)− α2
1

3k21

(
1 +
(

βk1
k2

)2)2 and

q =
−2α3

1 + 9k21

(
1 +
(

βk1
k2

)2)
α1 − 27α2k21

(
1 +
(

βk1
k2

)2)2

27k31

(
1 +
(

βk1
k2

)2)3 .
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In viewof the biochemicalmechanism,we only con-
sider the positive roots of Eq. (2.5).We denoteϕ(α1) by
ϕ for simplicity. Based on the Cardan formula [39] and
the above expressions, the results about the existence
and number of the positive fixed points are explicitly
given.

Lemma 2.1 (i) If ϕ > 0, or ϕ = 0 and p, q =
0, then system (2.3) has a unique positive fixed
point E11(x∗

11, y
∗
11), where x

∗
11 = α1

3k1

(
1+
(

βk1
k2

)2) +

3
√

− q
2 + √

ϕ + 3
√

− q
2 − √

ϕ;

(ii) if ϕ = 0, p < 0 and q �= 0, then system
(2.3) has two positive fixed points E21(x∗

21, y
∗
21)

and E22(x∗
22, y

∗
22), where x∗

21 = α1

3k1

(
1+
(

βk1
k2

)2)

− 2 3
√

q
2 , x∗

22 = α1

3k1

(
1+
(

βk1
k2

)2) + 3
√

q
2 ;

(iii) if ϕ < 0, then system (2.3) has three posi-
tive fixed points E31(x∗

31, y
∗
31), E32(x∗

32, y
∗
32) and

E33(x∗
33, y

∗
33), where x

∗
31 < x∗

32 < x∗
33.

Remark 2.1 FromEq. (2.4), we know that E(x∗, y∗) is
an equilibrium of continuous system (2.2) if and only if
it is a fixed point of discrete system (2.3). Thus, Lemma
2.1 also gives the existence conditions of the equilibria
of system (2.2).

It is noted that when ϕ > 0, x∗
11 is a simple root of

Eq. (2.5). When ϕ = 0 and p, q = 0, it is a triple root.
We only consider the first case in the context below. For
an arbitrary positive fixed point E(x∗, y∗), the Jacobian
matrix of system (2.3) is

J (x∗, y∗)

=

⎛
⎜⎜⎜⎜⎝

1 − k1δ + 2δx∗
(
α1+α1 y∗2−α2

)
(
1+x∗2+y∗2

)2 − 2δy∗
(
α1x∗2+α2

)
(
1+x∗2+y∗2

)2

2δβx∗
(
α1+α1 y∗2−α2

)
(
1+x∗2+y∗2

)2 1 − k2δ − 2δβ y∗
(
α1x∗2+α2

)
(
1+x∗2+y∗2

)2

⎞
⎟⎟⎟⎟⎠

.

Correspondingly, the characteristic equation can be
expressed as

λ2 + R1λ + R2 = 0, (2.7)

where

R1 = δ

⎡
⎣k1 + k2 −

2x∗
(
α1 + α1y∗2 − α2

)

(
1 + x∗2 + y∗2)2

+
2β y∗

(
α1x∗2 + α2

)

(
1 + x∗2 + y∗2)2

⎤
⎦− 2,

R2 = δ2

⎡
⎣k1k2 +

2βk1y∗
(
α1x∗2 + α2

)

(
1 + x∗2 + y∗2)2

−
2k2x∗

(
α1 + α1y∗2 − α2

)

(
1 + x∗2 + y∗2)2

⎤
⎦

−δ

⎡
⎣k1 + k2 −

2x∗
(
α1 + α1y∗2 − α2

)

(
1 + x∗2 + y∗2)2

+
2β y∗

(
α1x∗2 + α2

)

(
1 + x∗2 + y∗2)2

⎤
⎦+ 1.

Let

S1 = k1 + k2 −
2x∗
(
α1 + α1y∗2 − α2

)

(
1 + x∗2 + y∗2)2

+
2β y∗

(
α1x∗2 + α2

)

(
1 + x∗2 + y∗2)2 ,

S2 = k1k2 +
2βk1y∗

(
α1x∗2 + α2

)

(
1 + x∗2 + y∗2)2

−
2k2x∗

(
α1 + α1y∗2 − α2

)

(
1 + x∗2 + y∗2)2 .

Then, Eq. (2.7) can be rewritten as

λ2 + (S1δ − 2)λ + S2δ
2 − S1δ + 1 = 0.
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Based on Eq. (2.4), we have

S2 =
k1k2
(
1 + x∗2 + y∗2

)2 + 2 (βk1)2

k2
x∗
(
α1x∗2 + α2

)
− 2k2x∗

[
α1

(
1 + x∗2 + y∗2

)
−
(
α1x∗2 + α2

)]

(
1 + x∗2 + y∗2)2

=
k2

[
k1
(
1 + x∗2 + y∗2

)2 + 2k1
(

βk1
k2

)2
x∗2
(
1 + x∗2 + y∗2

)
− 2x∗ (α1 − k1x∗)

(
1 + x∗2 + y∗2

)]

(
1 + x∗2 + y∗2)2

=
k2

{
k1

[
1 +
(
1 +
(

βk1
k2

)2)
x∗2
]

+ 2k1
(

βk1
k2

)2
x∗2 − 2x∗ (α1 − k1x∗)

}

1 +
(
1 +
(

βk1
k2

)2)
x∗2

=
k2

[
3k1

(
1 +
(

βk1
k2

)2)
x∗2 − 2α1x∗ + k1

]

1 +
(
1 +
(

βk1
k2

)2)
x∗2

.

From Eq. (2.5), one has S2 = k2 f ′(x∗)

1+
(
1+
(

βk1
k2

)2)
x∗2

.

Denote that �(λ) = λ2 + (S1δ − 2)λ + S2δ2 −
S1δ + 1. It is obvious that �(1) = S2δ2,�(−1) =
S2δ2 − 2S1δ + 4. From the geometric properties
of f ′(z), we have S2 > 0 for the fixed points
E11
(
x∗
11, y

∗
11

)
, E21

(
x∗
21, y

∗
21

)
, E31

(
x∗
31, y

∗
31

)
and

E33
(
x∗
33, y

∗
33

)
. For E22

(
x∗
22, y

∗
22

)
and E32

(
x∗
32, y

∗
32

)
,

we have S2 = 0 and S2 < 0, respectively. Then,
�(1) = 0 and �(1) < 0 hold for the fixed points
E22
(
x∗
22, y

∗
22

)
and E32

(
x∗
32, y

∗
32

)
. One has �(1) >

0 for other fixed points. Thus, one of the eigen-
values at the fixed point E22

(
x∗
22, y

∗
22

)
is 1, which

indicates that E22
(
x∗
22, y

∗
22

)
may be a saddle-node

fixed point. As to the fixed point E32
(
x∗
32, y

∗
32

)
, when

�(−1) = 0, system (2.3) may present a flip bifurcation
there.

Based on Lemma 2.2 in [40], we discuss the stability
of the fixed points which satisfy S2 ≥ 0. When S2 > 0
and S1 ≤ 0, we have �(−1) > 0, which indicates that
|λ1| > 1 and |λ2| > 1. It is shown that none of these
fixed points is stable. Hence, it is stable only when
S1 > 0. In the following, we give the local dynamic
analysis.

Lemma 2.2 Let E(x∗, y∗) be a fixed point of system
(2.3),

(i) It is locally asymptotically stable if one of the
following conditions holds:

(i1) S2 > 0, 2
√
S2 < S1 and 0 < δ <

S1−
√

S12−4S2
S2

;
(i2) S2 > 0, 0 < S1 ≤ 2

√
S2 and 0 < δ < S1

S2
;

(ii) It is unstable if one of the following conditions
holds:

(ii1) S2 > 0, S1 ≤ 0;
(ii2) S2 > 0, 2

√
S2 < S1 and S1−

√
S12−4S2
S2

< δ <

S1+
√

S12−4S2
S2

or δ >
S1+

√
S12−4S2
S2

;
(ii3) S2 > 0, 0 < S1 ≤ 2

√
S2 and δ > S1

S2
;

(iii) It may undergo a bifurcation if one of the follow-
ing conditions holds:

(iii1) S2 = 0, S1 �= 0 and S1 �= 2
δ
;

(iii2) S2 > 0, 2
√
S2 < S1, δ = S1±

√
S12−4S2
S2

and δ �=
2
S1

, 4
S1
;

(iii3) S2 > 0, 0 < S1 < 2
√
S2 and δ = S1

S2
.

Remark 2.2 It is known that in continuous system
(2.2), if both eigenvalues have negative real parts, the
equilibrium is locally asymptotically stable. Lemma
2.2 indicates the difference of local stability between
the equilibria in system (2.2) and the fixed points
in system (2.3). Moreover, a saddle-node bifurcation
occurs in system (2.2) when the system has a sim-
ple eigenvalue 0, and a Hopf bifurcation may appear
when the system has a pair of simple pure imagi-
nary eigenvalues. Thus, Lemma 2.2 also implies the
differentia of bifurcations between system (2.2) and
system (2.3).
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3 Bifurcation analysis

In this section,we shall analyze the fold bifurcation, flip
bifurcation and Neimark–Sacker bifurcation of system
(2.3). Parameter conditions under which bifurcations
occur are derived by using theories of bifurcation and
center manifold.

Based on the analysis in the above section, we
first consider the fold bifurcation at the fixed point
E22
(
x∗
22, y

∗
22

)
and take α1 as a bifurcation parameter.

Since x∗
22 is a root of Eq. (2.5), we should guarantee that

α1 satisfies (ii) of Lemma 2.1, from which the critical
bifurcation value of α1 can be computed. The explicit
conditions of α1 will be derived.

Let

φ =
k41

(
1 +
(

βk1
k2

)2)[
27α22

(
1 +
(

βk1
k2

)2)− k21

]3

1728α42
,

g =
k21

[
5832α42

(
1 +
(

βk1
k2

)2)2+540α22k
2
1

(
1 +
(

βk1
k2

)2)− k41

]

864α32
.

From ϕ′(α1) =
6α2α2

1−k21α1−9α2k21

(
1+
(

βk1
k2

)2)

54k41

(
1+
(

βk1
k2

)2)4 , we have

ϕ′(0) = − α2

6k21

(
1+
(

βk1
k2

)2)3 < 0. ϕ first increases and

then decreases in the left half plane of the rectangular
coordinate system, and it has opposite monotonicities
in the right half plane. Based on the variation of ϕ, we
can analyze the critical value of α1. In view of the bio-
logical meaning, we only focus on the positive values.
When φ > 0, Eq. (2.6) has a unique negative root.
When φ = 0 and g �= 0, Eq. (2.6) has two real roots,
one of which is positive and the other is negative. The
positive one is a double root, and it is denoted by

α111 = k21
12α2

+ 3

√
g

2
. (3.1)

When φ < 0, Eq. (2.6) has three real roots, two of
which are positive and another is negative. For conve-

nience, we define e1 = Re
(

3
√

− g
2 + i

√−φ
)

, e2 =
Im
(

3
√

− g
2 + i

√−φ
)

�= 0. Then, three roots are

denoted by r1 = k21
12α2

+ 2e1, r2 = k21
12α2

− e1 − √
3e2

and r3 = k21
12α2

− e1 + √
3e2. We define two sets

D1 = {i1 : i1 = argmaxī∈{1,2,3}rī }, D2 = {i2 : i2 =
argminī∈{1,2,3}rī }. Since three roots are not equal to

each other, D1 and D2 both contain a unique element
which can be simply denoted as i1 and i2, respectively.
Let i3 = 6 − i1 − i2. Two values of α1 are given by

α121 = ri1, (3.2)

α122 = ri3 . (3.3)

In order to avoid confusion, we use ᾱ1 to replace
α111 , α121 and α122 . From (ii) of Lemma 2.1, we also
require

ᾱ1 > k1

√√√√3

(
1 +
(

βk1
k2

)2)
, (3.4)

2ᾱ3
1 − 9k21

(
1 +
(

βk1
k2

)2)
ᾱ1

+ 27α2k
2
1

(
1 +
(

βk1
k2

)2)2
�= 0. (3.5)

Let α1 = ᾱ1, system (2.3) can be described as

(
x
y

)
	→
⎛
⎜⎝

x − δk1x + δ
(
ᾱ1x2+α2

)
1+x2+y2

y − δk2y + δβ
(
ᾱ1x2+α2

)
1+x2+y2

⎞
⎟⎠ . (3.6)

Then, the eigenvalues of system (3.6) at the fixed point
E22
(
x∗
22, y

∗
22

)
are λ1 = 1, λ2 = 1 − S1δ. The condi-

tion (iii1) in Lemma 2.2 is equivalent to |λ2| �= 1, and
it leads to

ᾱ1 �=
(k1 + k2)

(
1 + x∗2

22 + y∗2
22

)

2x∗
22

+ k1
(
x∗
22 + βy∗

22

)
(3.7)

and

ᾱ1 �=
(
1 + x∗2

22 + y∗2
22

)
[(k1 + k2)δ − 2] + 2δk1x∗

22

(
x∗
22 + βy∗

22

)

2δx∗
22

.

(3.8)

Remark 3.1 Conditions (3.1)–(3.5) ensure the exis-
tence of the fixed point E22

(
x∗
22, y

∗
22

)
. In (3.7) and

(3.8), it seems that ᾱ1 is related to E22
(
x∗
22, y

∗
22

)
. Nev-

ertheless, since x∗
22 is a root of Eq. (2.5), it actually

means that (3.7) and (3.8) are conditions on biological
parameters.

Let X = x − x∗
22,Y = y − y∗

22 and α∗
1 = α1 − ᾱ1,

where α∗
1 is a new dependent variable. We shift the

fixed point E22
(
x∗
22, y

∗
22

)
to the origin and expand the
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right-hand side of system (2.3) in Taylor series; then,
system (2.3) becomes

⎛
⎝

X
α∗
1
Y

⎞
⎠ 	→

⎛
⎝
c11 c12 c13
0 1 0
c31 c32 c33

⎞
⎠
⎛
⎝

X
α∗
1

Y

⎞
⎠

+

⎛
⎜⎜⎜⎜⎝

F(X,α∗
1 ,Y)(

1+x∗2
22 +y∗2

22

)3

0
βF(X,α∗

1 ,Y)(
1+x∗2

22 +y∗2
22

)3

⎞
⎟⎟⎟⎟⎠

, (3.9)

where

c11 = 1 − k1δ +
2δx∗

22

(
ᾱ1 + ᾱ1y∗2

22 − α2

)

(
1 + x∗2

22 + y∗2
22

)2 ,

c12 = δx∗2
22

1 + x∗2
22 + y∗2

22

,

c13 = −
2δy∗

22

(
ᾱ1x∗2

22 + α2

)

(
1 + x∗2

22 + y∗2
22

)2 ,

c31 =
2δβx∗

22

(
ᾱ1 + ᾱ1y∗2

22 − α2

)

(
1 + x∗2

22 + y∗2
22

)2 ,

c32 = δβx∗2
22

1 + x∗2
22 + y∗2

22

,

c33 = 1 − k2δ −
2δβy∗

22

(
ᾱ1x∗2

22 + α2

)

(
1 + x∗2

22 + y∗2
22

)2 ,

F
(
X, α∗

1 ,Y
) = u200X

2 + u101XY + u110Xα∗
1

+ u002Y
2 + u011Yα∗

1 + u300X
3

+ u201X
2Y + u210X

2α∗
1 + u102XY

2

+ u111XYα∗
1 + u003Y

3 + u012Y
2α∗

1

+ O
((|X | + ∣∣α∗

1

∣∣+ |Y |)4
)

,

and u200, u101, u110, u002, u011, u300, u201, u210, u102,
u111, u003, u012 are given in “Appendix”.

From the expressions in system (3.9), we have

c32(1 − c11) + c31c12 = βk1δ2x∗2
22

1+x∗2
22 +y∗2

22

> 0 and S1δ =
2− c11 − c33, which leads to λ2 = c11 + c33 −1. From
λ1 = 1, one gets c13c31 − (1 − c11)(1 − c33) = 0. If
c11 �= 1, we can define an invertible matrix

T1 =
⎛
⎜⎝

c13
c12(1−λ2)

c32(1−c11)+c31c12
c13

0 (1−λ2)(1−c11)
c32(1−c11)+c31c12

0
1 − c11 1 λ2 − c11

⎞
⎟⎠ .

Under the transformation⎛
⎝

X
α∗
1

Y

⎞
⎠ = T1

⎛
⎝

X1

α̂∗
1

Y1

⎞
⎠ ,

system (3.9) becomes
⎛
⎝

X1

α̂∗
1

Y1

⎞
⎠ 	→

⎛
⎝
1 1 0
0 1 0
0 0 λ2

⎞
⎠
⎛
⎝

X1

α̂∗
1

Y1

⎞
⎠

+

⎛
⎜⎜⎜⎜⎜⎝

(λ2−c11−βc13)F̃(X1,α̂
∗
1 ,Y1)

c13(λ2−1)
(
1+x∗2

22 +y∗2
22

)3

0
(c11−1+βc13)F̃(X1,α̂

∗
1 ,Y1)

c13(λ2−1)
(
1+x∗2

22 +y∗2
22

)3

⎞
⎟⎟⎟⎟⎟⎠

, (3.10)

where

F̃
(
X1, α̂

∗
1 ,Y1
) = F

(
X, α∗

1 ,Y
)
,

X = c13(X1 + Y1) + c12(1 − λ2)α̂
∗
1

c32(1 − c11) + c31c12
,

α∗
1 = (1 − λ2)(1 − c11)α̂∗

1

c32(1 − c11) + c31c12
,

Y = (1 − c11)X1 + (λ2 − c11)Y1 + α̂∗
1 . (3.11)

Based on the center manifold theorem, the center man-
ifold of system (3.10) can be written as

Wc(0, 0, 0) =
{ (

X1, α̂
∗
1 ,Y1
) ∈ R3,

Y1 = M∗
1

(
X1, α̂

∗
1

)
, M∗

1 (0, 0) = 0,

DM∗
1 (0, 0) = 0

}
.

We assume that M∗
1 (X1, α̂

∗
1) has the following form:

M∗
1

(
X1, α̂

∗
1

) = 	1X
2
1 + 	2X1α̂

∗
1 + 	3α̂

∗2
1

+O
((|X1| + ∣∣α̂∗

1

∣∣)3) . (3.12)

It follows from (3.10) that

M∗
1

⎛
⎜⎝X1+α̂∗

1+ (λ2 − c11 − βc13)F̃
(
X1, α̂

∗
1 , M∗

1
(
X1, α̂

∗
1
))

c13(λ2 − 1)
(
1 + x∗2

22 + y∗2
22

)3 , α̂∗
1

⎞
⎟⎠

− λ2M
∗
1
(
X1, α̂

∗
1
)− (c11 − 1 + βc13)F̃

(
X1, α̂

∗
1 , M∗

1
(
X1, α̂

∗
1
))

c13(λ2 − 1)
(
1 + x∗2

22 + y∗2
22

)3

= 0. (3.13)
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Substituting (3.11) and (3.12) into (3.13), we get

	1 = 	01, 	2 = 2	01

λ2 − 1
+ 	02,

	3 = 	01 + 	02

λ2 − 1
+ 	03,

where

	01 = − (c11 − 1 + βc13)
[
c213u200 + c13(1 − c11)u101 + (1 − c11)2u002

]

c13(λ2 − 1)2
(
1 + x∗2

22 + y∗2
22

)3 ,

	02 = c11 − 1 + βc13

c13(λ2 − 1)
(
1 + x∗2

22 + y∗2
22

)3
{
−c13u101 + 2(1 − c11)u002

λ2 − 1

+2c12c13u200 + (1 − c11)[c12u101 + c13u110] + (1 − c11)2u011
c32(1 − c11) + c31c12

}
,

	03 = − c11 − 1 + βc13

c13
(
1 + x∗2

22 + y∗2
22

)3
{

u002
(λ2 − 1)2

− c12u101 + (1 − c11)u011
(λ2 − 1)[c32(1 − c11) + c31c12]

+c212u200 + c12(1 − c11)u110

[c32(1 − c11) + c31c12]2
}

.

Therefore, the system restricted to the center manifold
is expressed as

F∗ : X1 	→ X1 + α̂∗
1 + σ1X

2
1 + σ2X1α̂

∗
1 + σ3α̂

∗2
1

+ (σ40 + σ41	1)X
3
1 + (σ50 + σ51	1 + σ52	2)X

2
1α̂

∗
1

+ (σ60 + σ62	2 + σ63	3)X1α̂
∗2
1 + (σ70 + σ73	3)α̂

∗3
1

+ O
((|X1| + ∣∣α̂∗

1

∣∣)4) , (3.14)

where σ1, σ2, σ3, σ40 , σ41 , σ50 , σ51 , σ52 , σ60 , σ62 ,

σ63 , σ70 , σ73 are given in “Appendix”. It is obvious that

F∗(0, 0) = 0, ∂F∗
∂X1

∣∣∣
(0,0)

= 1, ∂2F∗
∂X1

2

∣∣∣
(0,0)

= 2σ1.

Hence, based on the above analysis, we give the
following theorem.

Theorem 3.1 System (2.3) undergoes a fold bifurca-
tion at the fixed point E22(x∗

22, y
∗
22), if one of conditions

(3.1), (3.2) and (3.3) holds, conditions (3.4), (3.5), (3.7)
and (3.8) are satisfied, and c11 �= 1, σ1 �= 0. Moreover,
if σ1 < 0 (resp., σ1 > 0), then two fixed points bifur-
cate from E22(x∗

22, y
∗
22) for α1 < ᾱ1 (resp., α1 > ᾱ1),

coalesce as E22(x∗
22, y

∗
22) at α1 = ᾱ1 and disappear

for α1 > ᾱ1 (resp., α1 < ᾱ1).

Theorem 3.1 shows the creation and destruction of
fixed points in the vicinity of a saddle-node fixed point.

The fixed points mean that the concentrations of TFs
are constants. We know that the existence of a saddle-
node fixed point is dependent on the synthesis rate α1.
In Theorem 3.1, the value of α1 not only guarantees
that E22(x∗

22, y
∗
22) exists, but also ensures that the con-

dition of the eigenvalues is satisfied. The center mani-
fold theorem enables us to only analyze the flow on the

center manifold. σ1 �= 0 is the nondegenerate condi-
tion,which indicates the type of the bifurcation, namely
the fold bifurcation.When the nondegenerate condition
is satisfied, whether two fixed points appear or disap-
pear is decided by the value of α1, which is related to
other biological parameters. It is shown that once α1

crosses the critical value, the number of fixed points
changes, and the sign of σ1 determines the direction
of the variation. System (2.3) has at most three fixed
points, and it may present bistability, that is, the con-
centration of TFs keeps at either of the two constant
values.

Note that a saddle-node bifurcation that occurs in
continuous system (2.2) corresponds to a fold bifurca-
tion that appears in discrete system (2.3). Thus, the fold
bifurcation in Theorem 3.1 also shows how the number
of the equilibria of system (2.2) varies.

Remark 3.2 In [13], the authors investigated the mul-
tiple equilibria using bifurcation diagrams, which are
obtained by changing the parameters in certain ranges.
For system (2.3), which is established based on the
genetic circuit in [13], we present the quantitative
relationship between the biochemical parameter α1
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and the variation of the number of fixed points.
Our result provides an analytic proof for the fold
bifurcation.

Remark 3.3 When a system undergoes a fold bifurca-
tion, it could have multiple fixed points and present
multistability. The stimulation of TFs may switch the
system fromonefixed point to another. Chronical expo-
sure to chemicals makes the gene expression change
[41], which corresponds to the variation of steady states
in genetic systems. The analysis of fold bifurcation
helps us to investigate the gene expression of differ-
ent phenotype traits.

At the fixed points E11
(
x∗
11, y

∗
11

)
, E21

(
x∗
21, y

∗
21

)
,

E31
(
x∗
31, y

∗
31

)
and E33(x∗

33, y
∗
33), we consider the flip

bifurcation and Neimark–Sacker bifurcation of system
(2.3). For simplicity, we only give the theoretical analy-
sis for the fixed point E11

(
x∗
11, y

∗
11

)
. Similar deriva-

tions can be obtained for other fixed points. Different
from the situation of fold bifurcation, the existence of
x∗
11 is not related to the bifurcation parameter δ. Thus,
we analyze the flip bifurcation and Neimark–Sacker
bifurcation based on (iii2) and (iii3) of Lemma 2.2,
respectively. The flip bifurcation is first considered.

Let δ1 = S1−
√

S12−4S2
S2

. We only focus on the case

δ = δ1, and the other case where δ = S1+
√

S12−4S2
S2

can be similarly certified. When parameters satisfy
(iii2) of Lemma 2.2, system (2.3) can be rewritten
as

(
x
y

)
	→
⎛
⎝ x − k1δ1x + δ1

(
α1x2+α2

)
1+x2+y2

y − k2δ1x + δ1β
(
α1x2+α2

)
1+x2+y2

⎞
⎠ . (3.15)

The eigenvalues at the fixed point E11
(
x∗
11, y

∗
11

)
are

λ1 = −1, λ2 = 3−S1δ1.Let X = x−x∗
11,Y = y−y∗

11
and δ∗ = δ − δ1. System (2.3) becomes

⎛
⎝

X
δ∗
Y

⎞
⎠ 	→

⎛
⎝
c̄11 0 c̄13
0 1 0
c̄31 0 c̄33

⎞
⎠
⎛
⎝

X
δ∗
Y

⎞
⎠

+

⎛
⎜⎜⎜⎝

G(X,δ∗,Y )

(1+x∗2
11 +y∗2

11 )
3 − k1Xδ∗

0
βG(X,δ∗,Y )

(1+x∗2
11 +y∗2

11 )
3 − k2Y δ∗

⎞
⎟⎟⎟⎠ , (3.16)

where

c̄11 = 1 − k1δ1 +
2δ1x∗

11

(
α1 + α1y∗2

11 − α2

)

(
1 + x∗2

11 + y∗2
11

)2 ,

c̄13 = −
2δ1y∗

11

(
α1x∗2

11 + α2

)

(
1 + x∗2 + y∗2)2 ,

c̄31 =
2δ1βx∗

11

(
α1 + α1y∗2

11 − α2

)

(
1 + x∗2

11 + y∗2
11

)2 ,

c̄33 = 1 − k2δ1 −
2δ1βy∗

11

(
α1x∗2

11 + α2

)

(
1 + x∗2

11 + y∗2
11

)2 ,

G(X, δ∗,Y ) = v200X
2+v101XY+v110Xδ∗+v002Y

2

+v011Y δ∗ + v300X
3 + v201X

2Y

+v210X
2δ∗ + v102XY

2 + v111XY δ∗

+v003Y
3 + v012Y

2δ∗

+O
((|X | + ∣∣δ∗∣∣+ |Y |)4

)
,

and v200, v101, v110, v002, v011, v300, v201, v210, v102,

v111, v003, v012 are given in “Appendix”.
From the expressions in system (3.16), we have

S1δ1 = 2 − c̄11 − c̄33, which indicates that λ2 =
c̄11 + c̄33 + 1. From λ1 = −1, one has c̄13c̄31 −
(1 + c̄11)(1 + c̄33) = 0. The condition |λ2| �= 1 leads
to c̄11 + c̄33 �= −2, 0. Then, we introduce an invertible
matrix

T2 =
⎛
⎜⎝

c̄13 0 c̄13

0 1 0

−(c̄11 + 1) 0 λ2 − c̄11

⎞
⎟⎠ .

Under the transformation⎛
⎜⎝

X

δ∗

Y

⎞
⎟⎠ = T2

⎛
⎜⎝

X2

δ̂∗

Y2

⎞
⎟⎠ ,

system (3.16) becomes

⎛
⎝

X2

δ̂∗
Y2

⎞
⎠ 	→

⎛
⎜⎝

−1 0 0

0 1 0

0 0 λ2

⎞
⎟⎠

⎛
⎜⎝

X2

δ̂∗

Y2

⎞
⎟⎠

+

⎛
⎜⎜⎝
Ḡ1

(
X2, δ̂

∗,Y2
)

0

Ḡ2

(
X2, δ̂

∗,Y2
)

⎞
⎟⎟⎠ , (3.17)
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where

Ḡ1

(
X2, δ̂

∗,Y2
)

= k2
c̄11 + 2 + c̄33

Y δ∗

− k1(1 + c̄33)

c̄13(c̄11 + 2 + c̄33)
Xδ∗

+ (1 + c̄33 − β c̄13)G(X, δ∗,Y )

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

Ḡ2

(
X2, δ̂

∗,Y2
)

= − k2
c̄11 + 2 + c̄33

Y δ∗

− k1(1 + c̄11)

c̄13(c̄11 + 2 + c̄33)
Xδ∗

+ (1 + c̄11 + β c̄13)G(X, δ∗,Y )

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

X = c̄13(X2 + Y2), δ∗ = δ̂∗,
Y = −(c̄11 + 1)X2 + (λ2 − c̄11)Y2.

Using the center manifold theorem, we can describe
the center manifold of system (3.17) as

M∗
2 (X2, δ̂

∗) = μ1X
2
2 + μ2X2δ̂

∗ + μ3δ̂
∗2

+O

((
|X2| +

∣∣∣δ̂∗
∣∣∣
)3)

,

which satisfies M∗
2 (0, 0) = 0, DM∗

2 (0, 0) = 0. From
system (3.17), one has

M∗
2

(
−X2 + Ḡ1

(
X2, δ̂

∗, M∗
2

(
X2, δ̂

∗)) , δ̂∗)

−λ2M
∗
2

(
X2, δ̂

∗)− Ḡ2

(
X2, δ̂

∗, M∗
2

(
X2, δ̂

∗)) = 0.

Similar to the analysis of fold bifurcation, it is easy to
get

μ1 = (1 + c̄11 + β c̄13)
[
c̄213v200 − c̄13 (1 + c̄11) v101 + (1 + c̄11)2v002

]

c̄13 (1 − λ2) (c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

μ2 = (k1 − k2)(c̄11 + 1)

(1 + λ2)(c̄11 + 2 + c̄33)

− (1 + c̄11 + β c̄33)[c̄13v110 − (1 + c̄11)v011]
c̄13(1 + λ2)(c̄11 + 2 + c̄33)

(
1 + x∗2

11 + y∗2
11

)3 ,

μ3 = 0.

Therefore, the system restricted to the center mani-
fold can be expressed as

G∗ : X2 	→ −X2 + ϑ1X
2
2 + ϑ2X2δ̂

∗

+ (ϑ30 + ϑ31μ1)X
3
2 + (ϑ40 + ϑ41μ1 + ϑ42μ2)X

2
2 δ̂

∗

+ϑ52μ2X2δ̂
∗2 + O

((
|X2| +

∣∣∣δ̂∗
∣∣∣
)4)

,

where ϑ1, ϑ2, ϑ30 , ϑ31 , ϑ40 , ϑ41 , ϑ42 , ϑ52 are given in
“Appendix”.

To determine the existence of flip bifurcation, the
following two quantities are required to be nonzero:

ρ1 =
(

∂2G
∗

∂X2∂δ̂∗ + 1

2

∂G
∗

∂δ̂∗
∂2G

∗

∂X2
2

)∣∣∣∣∣
(0,0)

= ϑ2,

ρ2 =
⎛
⎝1

6

∂3G
∗

∂X3
2

+
(
1

2

∂2G
∗

∂X2
2

)2⎞
⎠
∣∣∣∣∣∣
(0,0)

= ϑ2
1 + ϑ30 + ϑ31μ1.

Based on the above analysis, the following result can
be obtained.

Theorem 3.2 System (2.3)undergoes a flip bifurcation
at the fixed point E11(x∗

11, y
∗
11), if δ = δ1 and other

conditions in (iii2) of Lemma 2.2 are satisfied, and
ρ1, ρ2 �= 0. Moreover, if ρ2 > 0 (resp., ρ2 < 0),
then the period-2 orbit bifurcating from E11(x∗

11, y
∗
11)

is stable (resp., unstable).

Theorem 3.2 shows the loss of stability of a fixed
point and the creation of a period-2 orbit. When the
discretization step size δ varies, the stability of the
fixed point may change, and TFs’ concentrations devi-
ate from the original constant values. When δ crosses
the critical value δ1, E11(x∗

11, y
∗
11) loses the stabil-

ity, and the bifurcation induces a stable or unstable
period-2 orbit, which means that the time that the tran-
scription factor needs to return to a certain concen-
tration is twice as much as it needs before the bifur-
cation occurs. Although the value of E11(x∗

11, y
∗
11)

is independent on δ, the variation of δ affects the
eigenvalues of system (2.3). Thus, the value of δ

determines the occurrence of flip bifurcation, and
the quantity ρ2 affects the stability of the periodic
orbit.

Note that the value of the fixed point in system (2.3)
is not related to δ. Thus, compared with the condi-
tions of α1 in Theorem 3.1, the condition of δ is rela-
tively simple. The flip bifurcation is generated without
destroying the properties of the original system.

Remark 3.4 Some dynamic behaviors have been stud-
ied for the model which is developed based on the
genetic circuit in [13]. However, to the best of our
knowledge, the flip bifurcation has not been reported
yet. The occurrence of a flip bifurcation is theoreti-
cally proved in Theorem 3.2 and will be illustrated
by the numerical simulation. Thus, our result enriches
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the dynamics that could be presented by the circuit in
[13].

Remark 3.5 The transcription often keeps at a steady
level, or it may present a periodic rhythm. Affected
by some factors, the period doubling of transcriptional
activities occurs, and the gene expression changes,
which leads to phenotypic changes [42], such as cell
differentiation. The flip bifurcation helps us to probe
into the underlying reason for the changes of pheno-
types from the perspective of dynamics.

In what follows, we will investigate the Neimark–
Sacker bifurcation, when δ2 = S1

S2
and other conditions

in (iii3) of Lemma 2.2 hold. System (2.3) can bewritten
as

(
x
y

)
	→
⎛
⎝ x − k1δ2x + δ2(α1x2+α2)

1+x2+y2

y − k2δ2y + βδ2(α1x2+α2)

1+x2+y2

⎞
⎠ . (3.18)

Let X = x− x∗
11,Y = y− y∗

11. System (3.18) becomes
(
X
Y

)
→
(
c̃11 c̃12
c̃21 c̃22

)(
X
Y

)

+

⎛
⎜⎜⎝

H(X,Y )(
1+x∗2

11 +y∗2
11

)3
βH(X,Y )(

1+x∗2
11 +y∗2

11

)3

⎞
⎟⎟⎠ , (3.19)

where

H(X,Y ) = w20X
2 + w11XY + w02Y

2 + w30X
3

+w21X
2Y + w12XY

2 + w03Y
3

+ O
(
(|X | + |Y |)4

)
,

and c̃11, c̃12, c̃21, c̃22, w20, w11, w02, w30, w21, w12,

w03 are given in “Appendix”.

Note that the eigenvalues at the fixed point E11(x∗
11,

y∗
11) are complex conjugate, and they can be given by

λ1,2 = υ1 ± iυ2,

whereυ1 = 2−S1δ2
2 , υ2 = δ2

√
4S2−S21
2 .Besides, we have∣∣λ1,2

∣∣ = √
R2 and l = d|λ1,2|

dδ

∣∣∣
δ=δ2

= S1
2 > 0, where

R2 = S2δ22 − S1δ2 + 1. If R1 = −2+ S1δ2 �= 0, 1, we
get δ2 �= 2

S1
, 3
S1
, which indicates that S21 �= 2S2, 3S2.

Then one has λn1,2 �= 1, n = 1, 2, 3, 4.
Let

T3 =
(

c̃12 0
υ1 − c̃11 −υ2

)
.

Under the transformation(
X
Y

)
= T3

(
X3

Y3

)
,

system (3.19) becomes
(
X3

Y3

)
→
(

υ1 −υ2
υ2 υ1

)(
X3

Y3

)

+
(

H̃(X3,Y3)
c̃12

(υ1−c̃11−β c̃12)H̃(X3,Y3)
c̃12υ2

)
, (3.20)

where H̃ (X3,Y3) = H(X,Y )

(1+x∗2
11 +y∗2

11 )
3 , X = c̃12X3 and

Y = (υ1 − c̃11)X3 − υ2Y3.
To guarantee the occurrence of a Neimark–Sacker

bifurcation in system (3.20), we require that the fol-
lowing quantity cannot be zero:

ξ = −Re

(
(1 − 2λ1)λ22

1 − λ1
η20η11

)
− 1

2
|η11|2 − |η02|2

+Re(λ2η21),

where

η20 =
υ2

(
H̃X3X3 − H̃Y3Y3

)
+ 2 (υ1 − c̃11 − β c̃12) H̃X3Y3 + i

[
(υ1 − c̃11 − β c̃12)

(
H̃X3X3 − H̃Y3Y3

)
− 2υ2 H̃X3Y3

]

8c̃12υ2
,

η11 =
υ2

(
H̃X3X3 + H̃Y3Y3

)
+ i
[
(υ1 − c̃11 − β c̃12)

(
H̃X3X3 + H̃Y3Y3

)]

4c̃12υ2
,

η02 =
υ2

(
H̃X3X3 − H̃Y3Y3

)
− 2 (υ1 − c̃11 − β c̃12) H̃X3Y3 + i

[
(υ1 − c̃11 − β c̃12)

(
H̃X3X3 − H̃Y3Y3

)
+ 2υ2 H̃X3Y3

]

8c̃12υ2
,

η21 = 1

16c̃12υ2

{
υ2

(
H̃X3X3X3 + H̃X3Y3Y3

)
+ (υ1 − c̃11 − β c̃12)

(
H̃X3X3Y3 + H̃Y3Y3Y3

)

+ i
[
(υ1 − c̃11 − β c̃12)

(
H̃X3X3X3 − H̃X3Y3Y3

)
− υ2

(
H̃Y3Y3Y3 + H̃X3X3Y3

)]}
,
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and H̃X3X3 , H̃Y3Y3 , H̃X3Y3 , H̃X3X3X3 , H̃X3X3Y3 ,
H̃X3Y3Y3 , H̃Y3Y3Y3 are high-order partial derivatives of
H̃ (X3,Y3) and they are given in “Appendix”.

Theorem 3.3 System (2.3) undergoes a Neimark–
Sacker bifurcation at the fixed point E11(x∗

11, y
∗
11),

if δ = δ2 and other conditions in (iii3) of Lemma
2.2 are satisfied, and S21 �= 2S2, 3S2, ξ �= 0. More-
over, if ξ < 0 (resp., ξ > 0), then an attracting
(resp., repelling) closed invariant curve bifurcates from
E11(x∗

11, y
∗
11) for δ > δ2 (resp., δ < δ2).

Theorem 3.3 gives another way in which the fixed
point of system (2.3) loses the stability. The concen-
trations of TFs change. When the system undergoes
a Neimark–Sacker bifurcation, it generates a unique
closed invariant curve around the fixed point. TFs’ con-
centrations present oscillations near the original con-
centration values, and they present a cyclic behavior.
Similar to the situation of flip bifurcation, the step size
δ has no effect on the existence of the fixed point, but
it could change the local stability of the fixed point.
ξ �= 0 is the nondegenerate condition, and the sign of
ξ determines the stability of the closed curve and the
direction from which it arises. For a stable (attracting)
closed curve, an arbitrary neighboring trajectory tends
to it as time approaches infinity.

Remark 3.6 In [20,21], for the model established in
[13], the authors reported the Hopf bifurcation. In The-
orem 3.3, the occurrence of a Neimark–Sacker bifur-
cation is demonstrated in system (2.3), which is devel-
oped based on the genetic circuit in [13]. Although
a Neimark–Sacker bifurcation can be seen as an ana-
logue of a Hopf bifurcation in the continuous system,
it is actually a different bifurcation. Thus, our result
extends the capability of the circuit in [13] to generate
multiple bifurcations.

Remark 3.7 When the time interval between two tran-
scriptional activities is short, the gene expression level
is steady. When the gap grows to a certain extent, the
concentrations of TFs oscillate, but they can present
recurrent behaviors. For example, for the dormice,
the circadian rhythm of a locomotor activity persists
throughout the hibernation season [43]. The Neimark–
Sacker bifurcation gives an explanation for this cyclic
behavior and helps us to explore this biological phe-
nomenon.

4 Numerical simulations

In this section, we will show bifurcation diagrams,
phase portraits and maximum Lyapunov exponents to
illustrate the theoretical results. Moreover, it is shown
that system (2.3) can also exhibit richer dynamic phe-
nomena than those derived by the theoretical analysis.
The bifurcation parameters are given as follows: (i)
Varying α1 in range 9.75 ≤ α1 ≤ 10.098, and fix-
ing k1 = 5, k2 = 10, α2 = 5, β = 1, δ = 0.05.
(ii) Varying δ in range 0.3 ≤ δ ≤ 0.3895, and fix-
ing k1 = 2, k2 = 2.4, α1 = 2, α2 = 5, β = 6. (iii)
Varying δ in range 0.93 ≤ δ ≤ 1.139, and fixing
k1 = 50

11 , k2 = 93
55 , α1 = 225

22 , α2 = 6
11 , β = 93

500 .
For case (i), the bifurcation diagram of system (2.3)

in (α1, x) plane for 9.75 ≤ α1 ≤ 10.098 is given
in Fig. 1 with initial values (x0, y0) = (0.15, 0.12).
Equation (2.6) has two positive roots, which are α1 =
9.8582 and α1 = 10. According to Lemma 2.1, there
is a unique positive fixed point when 0 < α1 <

9.8582. When α1 increases to 9.8582, system (2.3)
has two positive fixed points (0.3281, 0.16405) and
(0.6246, 0.3123). We have λ1 = 1, λ2 ≈ 0.4672 and
σ1 ≈ 0.144 > 0 at the fixed point (0.6246, 0.3123).
From Fig. 1, we observe that a fold bifurcation occurs
at (0.6246, 0.3123), so Theorem 3.1 is verified. Two
fixed points bifurcate from (0.6246, 0.3123), and three
fixed points exist for 9.8582 < α1 < 10. They change
into two fixed points (0.4, 0.2) and (0.8, 0.4) when
α1 = 10. By calculation, we have λ1 = 1, λ2 ≈ 0.483
and σ1 = −0.177 < 0. From Theorem 3.1, the fold

9.75 9.82 9.89 9.96 10.03 10.1
0.25

0.35

0.45

0.55

0.65

0.75

0.85

0.95

α1

x

Fig. 1 Bifurcation diagram in (α1, x) plane for 9.75 ≤ α1 ≤
10.098 with initial values (x0, y0) = (0.15, 0.12)
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Fig. 2 a Bifurcation
diagram in (δ, x) plane for
0.3 ≤ δ ≤ 0.3895 with
initial values
(x0, y0) = (0.6, 0.55).
b Maximum Lyapunov
exponents corresponding to
(a). c Phase portrait of
period-1 orbit for
δ = 0.305. d Phase portrait
of period-2 orbit for
δ = 0.35
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Fig. 3 a Bifurcation
diagram in (δ, x) plane for
0.93 ≤ δ ≤ 1.139 with
initial values
(x0, y0) = (1, 0.5). b Local
amplification corresponding
to (a) for
1.049 ≤ δ ≤ 1.0979.
c Bifurcation diagram in
(δ, y) plane. d Local
amplification corresponding
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Fig. 4 Phase portraits for different values of δ corresponding Fig. 3. a δ = 0.933, b δ = 0.94, c δ = 0.95, d δ = 1.019, e δ = 1.05,
f δ = 1.079, g δ = 1.089, h δ = 1.099, i δ = 1.1099, j δ = 1.1199, k δ = 1.124, l δ = 1.139

bifurcation occurs at the fixed point (0.4, 0.2). System
(2.3) has a unique fixed point when α1 > 10. It should
be noted that, although more than one fixed points may
exist, which one the system converges to depends on
the initial values.

For case (ii), the bifurcation diagram of system (2.3)
in (δ, x) plane for 0.3 ≤ δ ≤ 0.3895 is presented

in Fig. 2a with initial values (x0, y0) = (0.6, 0.55).
From Lemma 2.1, there is a unique positive fixed point
(0.443, 2.213) which is stable when 0.3 ≤ δ < 0.327.
Flip bifurcation occurs at δ = 0.327, and we have λ1 =
−1, λ2 ≈ 0.351, ρ1 = −6.112 and ρ2 = 0.167 > 0,
so Theorem 3.2 is verified. When δ > 0.327, the sys-
tem becomes unstable and period-2 orbit appears. The
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Fig. 5 a Maximum
Lyapunov exponents
corresponding to Fig. 4. b
Local amplification of
Maximum Lyapunov
exponents for
1.05 ≤ δ ≤ 1.0918
corresponding to (a)
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Fig. 6 a Asymptotically
stable dynamics trajectories
of system (2.2) with initial
values (x0, y0) = (2.5, 1.7)
and k2 = 0.017. b Phase
portrait corresponding to
(a). c Periodic oscillation of
system (2.2) with
k2 = 0.01. d Phase portrait
corresponding to (c)
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maximum Lyapunov exponents corresponding to the
bifurcation diagram are depicted in Fig. 2b, while the
phase portraits are shown in Fig. 2c, d.

For case (iii), the bifurcation diagrams of system
(2.3) for 0.93 ≤ δ ≤ 1.139 are presented in Fig. 3 with
initial values (x0, y0) = (1, 0.5). There are three pos-
itive fixed points (0.2, 0.1), (0.4, 0.2) and (1.2, 0.6),
and we analyze the local dynamics of the fixed point
(1.2, 0.6). According to Lemma 2.2, it is stable when
0.93 ≤ δ < 0.94. From Fig. 4, we observe that
a Neimark–Sacker bifurcation occurs and an attract-
ing invariant cycle bifurcates from the fixed point at
δ = 0.94 with λ1 ≈ −0.213+0.977i, λ2 ≈ −0.213−

0.977i and ξ = −3.995 < 0. Along with the growth of
δ, the cycle first becomes bigger and then disappears.
Whereafter, system (2.3) exhibits period-7, -14, -5, -10
orbits and chaos until δ = 1.139. The maximum Lya-
punov exponents are computed and depicted in Fig. 5 to
show the existence of period orbits and strange attrac-
tors.

To compare the dynamics of discrete system (2.3)
with that of continuous version (2.2), we show the
dynamic characteristics of system (2.2) by the dynam-
ics trajectories and phase portraits. We take k1 =
0.5, α1 = 2.1, α2 = 1, β = 0.035 and k2 =
0.017, 0.01 in two cases, and the initial values are
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(x0, y0) = (2.5, 1.7). System (2.2) has an equi-
librium (1.5406, 2.0965) at k2 = 0.01286. When
k2 > 0.01286, the equilibrium is asymptotically sta-
ble. When k2 = 0.01286, the system undergoes a Hopf
bifurcation, and it is unstable when k2 < 0.01286.
From Fig. 6, we observe that system (2.2) is asymp-
totically stable when k2 = 0.017, and it presents peri-
odic oscillation when k2 = 0.01. We know that the
Hopf bifurcation in continuous systems can be seen
as an analogue of the Neimark–Sacker bifurcation in
discrete systems. Besides, system (2.2) can undergo a
saddle-node bifurcation, which corresponds to a fold
bifurcation that appears in discrete system (2.3). So
Fig. 1 also shows how the number of the equilibria
of system (2.2) changes. From all the above simula-
tion results, we see that discrete system (2.3) presents
diverse dynamic phenomena, which are not observed
in continuous system (2.2). So the dynamic behaviors
of system (2.3) are richer than those of system (2.2) to
some extent.

5 Conclusion and discussion

In this paper, we have investigated diverse dynamic
behaviors in a discrete-time genetic regulatory net-
work. Taking the biological parameter α1 and dis-
cretization step size δ as bifurcation parameters, we
demonstrate the occurrence of fold bifurcation, flip
bifurcation and Neimark–Sacker bifurcation. Apart
from the bifurcations presented in theoretical results,
the numerical simulations also demonstrate that the
system can display an invariant cycle, period orbits
and even strange attractors, which validates that the
discrete-time genetic regulatory network can exhibit
much richer dynamic phenomena than those observed
in the continuous-time version. As to the future work,
complex dynamics especially strange attractors in
a large-scale genetic network should be concerned.
Attention can also be paid to the dynamic behaviors
influenced by the topological structure of a genetic net-
work, which helps us to explore the dynamic mecha-
nisms in complex networks.

As to the results obtained in this paper, we shall
make a discussion about the meaning of them. Firstly,
the research reveals the important role of step size in
the genetic system. When the model is discretized for
computer simulation in genetic engineering, the step
size is included as an additional parameter. Knowing

the thresholdvalueof the step size for bifurcations helps
us to better retain the properties of the original system.
On the other hand, the occurrence of bifurcations and
chaos indicates that itmakes a difference to the dynamic
behaviors of DGRNs. Secondly, for the genetic circuit
proposed in [13], the overall results expand its capa-
bility to take on complex kinetics. Previous studies are
mainly about the multistability and Hopf bifurcation.
In this paper, diverse dynamics is analyzed in the dis-
crete model that is established based on the circuit. It
enriches the dynamic behaviors which could be exhib-
ited by the simple genetic circuit. Finally, the results
confirm a significant mechanism for the evolution of
dynamical complexities of genetic networks. In previ-
ous studies, it has been verified that the combination of
a Hopf bifurcation and a hysteresis dynamics can gen-
erate chaotic behaviors in a genetic system. We show
that the Neimark–Sacker bifurcation provides another
route to chaos for the genetic model. The relationships
among bifurcations and other dynamics contribute to
our understanding of the complexity and diversity of
dynamics in genetic networks, especially DGRNs.

Appendix

The expressions in Eq. (3.9).

u200 = δ
(
ᾱ1 + ᾱ1y

∗2
22 − α2

) (
1 − 3x∗2

22 + y∗2
22

)
,

u101 = −4δx∗
22y

∗
22

[
ᾱ1

(
1 − x∗2

22 + y∗2
22

)
− 2α2

]
,

u110 = 2δx∗
22

(
1 + y∗2

22

) (
1 + x∗2

22 + y∗2
22

)
,

u002 = −δ
(
ᾱ1x

∗2
22 + α2

) (
1 + x∗2

22 − 3y∗2
22

)
,

u011 = −2δy∗
22x

∗2
22

(
1 + x∗2

22 + y∗2
22

)
,

u300 = −
4δx∗

22

(
ᾱ1 + ᾱ1y∗2

22 − α2

) (
1 − x∗2

22 + y∗2
22

)

1 + x∗2
22 + y∗2

22

,

u201 = 2δy∗
22

⎡
⎣ᾱ1

(
−1 + 7x∗2

22 − y∗2
22

)

+
2
(
ᾱ1x∗2

22 + α2

) (
1 − 5x∗2

22 + y∗2
22

)

1 + x∗2
22 + y∗2

22

⎤
⎦ ,

u210 = δ
(
1 + y∗2

22

) (
1 − 3x∗2

22 + y∗2
22

)
,

u102 = 2δx∗
22

{
ᾱ1

(
−1 + x∗2

22 − y∗2
22

)
+ 2α2
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+
4y∗2

22

[
ᾱ1

(
1 − 2x∗2

22 + y∗2
22

)
− 3α2

]

1 + x∗2
22 + y∗2

22

⎫⎬
⎭ ,

u111 = −4δx∗
22y

∗
22

(
1 − x∗2

22 + y∗2
22

)
,

u003 =
4δy∗

22

(
ᾱ1x∗2

22 + α2

) (
1 + x∗2

22 − y∗2
22

)

1 + x∗2
22 + y∗2

22

,

u012 = −δx∗2
22

(
1 + x∗2

22 − 3y∗2
22

)
.

The expressions in Eq. (3.14).

σ1 = (1 − λ2) (λ2 − c11 − βc13)	01

c11 − 1 + βc13
,

σ2 = (1 − λ2) (λ2 − c11 − βc13)	02

c11 − 1 + βc13
,

σ3 = (1 − λ2) (λ2 − c11 − βc13)	03

c11 − 1 + βc13
,

σ40 = (λ2 − c11 − βc13)
[
c313u300 + (1 − c11)c213u201 + c13(1 − c11)2u102 + (1 − c11)3u003

]

c13 (λ2 − 1)
(
1 + x∗2

22 + y∗2
22

)3 ,

σ41 = (λ2 − c11 − βc13)
[
2c213u200 + c13(1 − 2c11 + λ2)u101 + 2u002(c11 − 1)(c11 − λ2)

]

c13 (λ2 − 1)
(
1 + x∗2

22 + y∗2
22

)3 ,

σ50 = λ2 − c11 − βc13

c13
(
1 + x∗2

22 + y∗2
22

)3
{
c213u201 + 2c13 (1 − c11) u102 + 3(1 − c11)2u003

λ2 − 1

−3c12c213u300 + c13 (1 − c11) (2c12u201 + c13u210) + (1 − c11)2(c12u102 + c13u111) + (1 − c11)3u012
c32 (1 − c11) + c31c12

}
,

σ51 = λ2 − c11 − βc13

c13
(
1 + x∗2

22 + y∗2
22

)3
{
c13u101 + 2 (λ2 − c11) u002

λ2 − 1

−2c12c13u200 + c12 (λ2 − c11) u101 + c13 (1 − c11) u110 + (1 − c11) (λ2 − c11) u011
c32 (1 − c11) + c31c12

}
,

σ60 = λ2 − c11 − βc13

c13
(
1 + x∗2

22 + y∗2
22

)3
{
c13u102 + 3 (1 − c11) u003

λ2 − 1

−2c12c13u201 + (1 − c11) (2c12u102 + c13u111) + 2 (1 − c11)2 u012
c32 (1 − c11) + c31c12

+ (λ2 − 1)
[
3c13c212u300 + c12 (1 − c11) (c12u201 + 2c13u210) + c12(1 − c11)2u111

]

[c32 (1 − c11) + c31c12]2

}
,

σ70 = λ2 − c11 − βc13

c13
(
1 + x∗2

22 + y∗2
22

)3
{

u003
λ2 − 1

− c12u102 + (1 − c11) u012
c32 (1 − c11) + c31c12

+ c12 (λ2 − 1) [c12u201 + (1 − c11) u111]

[c32 (1 − c11) + c31c12]2

− c212(λ2 − 1)2 [c12u300 + (1 − c11) u210]

[c32 (1 − c11) + c31c12]3

}
,

σ52 = σ41 , σ62 = σ51 , σ63 = σ41 , σ73 = σ51 .

The expressions in Eq. (3.16).

v200 = δ1

(
α1 + α1y

∗2
11 − α2

) (
1 − 3x∗2

11 + y∗2
11

)
,

v101 = −4δ1x
∗
11y

∗
11[α1

(
1 − x∗2

11 + y∗2
11

)
− 2α2],

v110 = 2x∗
11

(
α1 + α1y

∗2
11 − α2

) (
1 + x∗2

11 + y∗2
11

)
,

v002 = −δ1

(
α1x

∗2
11 + α2

) (
1 + x∗2

11 − 3y∗2
11

)
,

v011 = −2y∗
11

(
α1x

∗2
11 + α2

) (
1 + x∗2

11 + y∗2
11

)
,
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v300 = −
4δ1x

∗
11

(
α1 + α1y

∗2
11 − α2

) (
1 − x∗2

11 + y∗2
11

)

1 + x∗2
11 + y∗2

11

,

v201 = 2δ1y
∗
11

[
α1

(
−1 + 7x∗2

11 − y∗2
11

)

+
2
(
α1x

∗2
11 + α2

) (
1 − 5x∗2

11 + y∗2
11

)

1 + x∗2
11 + y∗2

11

⎤
⎦ ,

v210 = 1

δ1
v200, v102 = 2δ1x

∗
11

{
α1

(
−1 + x∗2

11 − y∗2
11

)

+2α2 +
4y∗2

11 [α1
(
1 − 2x∗2

11 + y∗2
11

)
− 3α2]

1 + x∗2
11 + y∗2

11

⎫⎬
⎭ ,

v111 = 1

δ1
v101, v003 =

4δ1y
∗
11

(
α1y

∗2
11 + α2

) (
1 + x∗2

11 − y∗2
11

)

1 + x∗2
11 + y∗2

11

,

v012 = 1

δ1
v002.

The expressions in the system G∗.

ϑ1 = (1 + c̄33 − β c̄13)
[
c̄213v200 − c̄13(1 + c̄11)v101 + (1 + c̄11)2v002

]

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

ϑ2 = −k2(1 + c̄11) + k1(1 + c̄33)

c̄11 + 2 + c̄33

+ (1 + c̄33 − β c̄13) [−(1 + c̄11) v011 +c̄13v110]

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

ϑ30 = (1 + c̄33 − β c̄13)
[
c̄313v300 − c̄213(1 + c̄11)v201 + c̄13(1 + c̄11)2v102 − (1 + c̄11)3v003

]

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

ϑ31 = (1 + c̄33 − β c̄13)
[
2c̄213v200 + c̄13(λ2 − 2c̄11 − 1)v101 + 2(c̄11 + 1)(c̄11 − λ2)v002

]

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

ϑ40 = (1 + c̄33 − β c̄13)
[−c̄13(1 + c̄11)v111 + c̄213v210 +(1 + c̄11)2v012

]

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

ϑ41 = k2(λ2 − c̄11) − k1(1 + c̄33)

c̄11 + 2 + c̄33

+ (1 + c̄33 − β c̄13) [ c̄13v110 +(λ2 − c̄11)v011]

c̄13(c̄11 + 2 + c̄33)
(
1 + x∗2

11 + y∗2
11

)3 ,

ϑ42 = ϑ31 , ϑ52 = ϑ41 .

The expressions in Eq. (3.19).

c̃11 = 1 − k1δ2 +
2δ2x∗

11

(
α1 + α1y∗2

11 − α2

)

(
1 + x∗2

11 + y∗2
11

)2 ,

c̃12 = −
2δ2y∗

11

(
α1x∗2

11 + α2

)

(
1 + x∗2

11 + y∗2
11

)2 ,

c̃21 =
2δ2βx∗

11

(
α1 + α1y∗2

11 − α2

)

(
1 + x∗2

11 + y∗2
11

)2 ,

c̃22 = 1 − k2δ2 −
2δ2βy∗

11

(
α1x∗2

11 + α2

)

(
1 + x∗2

11 + y∗2
11

)2 ,
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w20 = δ2

(
α1 + α1y

∗2
11 − α2

) (
1 − 3x∗2

11 + y∗2
11

)
,

w11 = −4δ2x
∗
11y

∗
11

[
α1

(
1 − x∗2

11 + y∗2
11

)
− 2α2

]
,

w02 = −δ2

(
α1x

∗2
11 + α2

) (
1 + x∗2

11 − 3y∗2
11

)
,

w30 = −
4δ2x∗

11

(
α1 + α1y∗2

11 − α2

) (
1 − x∗2

11 + y∗2
11

)

1 + x∗2
11 + y∗2

11

,

w21 = 2δ2y
∗
11

⎡
⎣α1

(
−1 + 7x∗2

11 − y∗2
11

)

+
2
(
α1x∗2

11 + α2

) (
1 − 5x∗2

11 + y∗2
11

)

1 + x∗2
11 + y∗2

11

⎤
⎦ ,

w12 = 2δ2x
∗
11

⎧⎨
⎩α1

(
−1 + x∗2

11 − y∗2
11

)
+ 2α2

+
4y∗2

11

[
α1

(
1 − 2x∗2

11 + y∗2
11

)
− 3α2

]

1 + x∗2
11 + y∗2

11

⎫⎬
⎭ ,

w03 =
4δ2y∗

11

(
α1y∗2

11 + α2

) (
1 + x∗2

11 − y∗2
11

)

1 + x∗2
11 + y∗2

11

.

High-order partial derivatives of H̃ (X3,Y3).
The second-order and third-order partial derivatives

of H̃ (X3,Y3) are easy to give as follows:

H̃X3X3 =
2
[
c̃212w20 + c̃12(υ1 − c̃11)w11 + (υ1 − c̃11)

2w02

]

(
1 + x∗2

11 + y∗2
11

)3 ,

H̃Y3Y3 = 2υ2
2w02(

1 + x∗2
11 + y∗2

11

)3 ,

H̃X3Y3 = − υ2
[
c̃12w11 + 2(υ1 − c̃11)w02

]
(
1 + x∗2

11 + y∗2
11

)3 ,

H̃X3X3X3

=
6
[
c̃312w30 + c̃212(υ1 − c̃11)w21 + c̃12(υ1 − c̃11)

2w12 + (υ1 − c̃11)
3w03

]

(
1 + x∗2

11 + y∗2
11

)3 ,

H̃X3X3Y3 = −
2υ2
[
c̃212w21 + 2c̃12(υ1 − c̃11)w12 + 3(υ1 − c̃11)

2w03

]

(
1 + x∗2

11 + y∗2
11

)3 ,

H̃X3Y3Y3 = 2υ2
2

[
c̃12w12 + 3(υ1 − c̃11)w03

]
(
1 + x∗2

11 + y∗2
11

)3 ,

H̃Y3Y3Y3 = − 6υ3
2w03(

1 + x∗2
11 + y∗2

11

)3 .
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