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Abstract This paper revisits the exponential synchro-
nization problem of two identical reaction–diffusion
neural networks with Dirichlet boundary conditions
and mixed delays via periodically intermittent con-
trol. The focus is on developing a new Lyapunov–
Razumikhinmethod such that the overdesign that stems
from the existing Lyapunov functional method can
be reduced. The novelty of the proposed Lyapunov–
Razumikhin method is the ability to provide better esti-
mates on the state variables of the synchronization error
system and impose no restriction on delay derivatives.
By exploring the reaction–diffusion effect using the
extended Wirtinger’s inequality, an improved result on
intermittent synchronization is derived. The problem
of designing optimal intermittent synchronization con-
trollers is addressed, and an easily computable method
to determine the controller gain with minimal norm is
presented. Finally, two illustrative examples are pre-
sented to show the validity of the obtained results and
the superiority over the existing ones.
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1 Introduction

Nowadays, artificial neural networks are being widely
applied to a lot of fields, such as image analysis, sig-
nal processing, pattern recognition, associative mem-
ory, optimization, cryptography, and model identifica-
tion. These applications rely crucially on the dynami-
cal properties of the designed neural networks. For this
reason, the study of dynamical properties of neural net-
works has attracted much interest. Most previous stud-
ies have largely concentrated on the neural networks
modeled by ordinary differential equations (ODEs) [1–
5] in which the neurons are assumed to be evenly
distributed. These ODE models ignore both the spa-
tial detail and the diffusing behavior observed in nat-
ural and artificial neural networks. In fact, in imple-
mentation of neural networks, the electrons transporta-
tion through a nonuniform electromagnetic field gener-
ally produces the diffusion phenomena. Therefore, it is
necessary to introduce the reaction–diffusion terms in
neural network models for achieving good approxima-
tion of the spatiotemporal actions and interactions of
real-world neurons. The reaction–diffusion neural net-
works can be modeled by partial differential equations
(PDEs) of diffusion type. It is worth mentioning that
the PDEs describing the reaction–diffusion neural net-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-3059-8&domain=pdf


536 W.-H. Chen et al.

works cause some difficulties, since both existence and
qualitative properties of the solutions are more difficult
to be established. In recent years, the problems of sta-
bility, periodicity, and Hopf bifurcation for reaction–
diffusion neural networks have been addressed, and
several important results have been reported, see [6–
12] and the references therein.

On the other hand, a large attention has been taken to
the research on collective behaviors of coupled oscil-
lators. A review about collective behaviors of coupled
neurons and pattern transition can be found in [13].
In [14], the emergence of emitting wave induced by
autapse (in electrical type) with negative feedback was
investigated. In [15], collision between emitting waves
from different local areas driven by electric autapses
under different time delays was observed. As the major
collective behavior, synchronization of coupled oscil-
lators has been observed in physical, biological, and
social systems. In particular, synchronization of chaotic
dynamics has attracted significant research interest dur-
ing the last decades due to its important role in under-
standing the synchronization mechanism of coupled
nonlinear systems [16,17] and its potential applica-
tions in various engineering fields [18,19]. In [20], a
general method for synchronizing coupled PDEs with
spatiotemporal chaotic dynamicswas described.Mean-
while, several control strategies have been proposed
to synchronize coupled reaction–diffusion neural net-
works. In [21–23], complete synchronization of cou-
pled delayed reaction–diffusion neural networks was
studied, in which continuous linear state-feedback con-
trol was suggested. In [24,25], adaptive control was
used to synchronize the coupled reaction–diffusion
neural networks with delays. In [26], the synchroniza-
tion problem for reaction–diffusion neural networks
was investigated under the stochastic sampled-data
control.

Recently, the discontinuous feedback synchroniza-
tion schemes, including impulsive synchronization
[27–29] and intermittent synchronization [30–32],
have been applied to synchronization problem of cou-
pled reaction–diffusion neural networks. Compared
with continuous feedback synchronization, these dis-
continuous feedback synchronization schemes can effi-
ciently reduce bandwidth usage due to the decreased
amount of synchronization information transmitted
from the drive system to the response system, so
they are practical and effective in many areas, espe-
cially for secure communications systems. Note that in

the impulsive synchronization framework, the updates
given to the state of the response system are per-
formed in instantaneous fashion. But with intermit-
tent synchronization, the response system is kept in
update mode for nonzero time intervals. So, inter-
mittent synchronization fills the gap between the two
extremes of continuous and impulsive synchronization
and thus can give more flexibility to the designer. Inter-
mittent stabilization and synchronization for delayed
neural networks governed by ODEs have been stud-
ied in [33–42]. In [30], for the first time, periodically
intermittent synchronization for two identical reaction–
diffusion neural networkswithmixed delayswas devel-
oped. Using exponential-type Lyapunov functionals,
sufficient conditions for exponential synchronization
were derived. By considering stochastic disturbance,
similar work concerning intermittent synchronization
of delayed stochastic neural networks with reaction–
diffusion terms can be found in [31,32]. It should be
pointedout that the intermittently controlled time-delay
system is a switched time-delay system in which a sta-
ble mode and an unstable mode run alternately, and
thus, its stability depends on whether the decay degree
of the stablemode can suppress the growthdegree of the
unstable mode. Therefore, the accuracy of estimating
the decay/growth rate of solutions of the stable/unstable
mode affects the conservatism of the derived synchro-
nization criterion seriously. The exponential estimates
presented in [30–32] were performed by means of
quadratic Lyapunov functionals. Due to the finiteness
of the activation intervals, the quadratic integral terms
in these Lyapunov functionals may lead to overde-
sign in estimating the decay/growth rate of solutions of
the stable/unstable mode, which brings some conser-
vatism. Moreover, applying the quadratic integra terms
for handling the delayed terms of the state equation
imposes strict restriction on delay derivative, which,
in turn, limits the application scope of the derived
results. The above observations indicate that the devel-
oped intermittent synchronization conditions for cou-
pled delayed reaction–diffusion neural networks are,
however, too restrictive for some applications. Onewill
naturally raise a question: Whether the conservatism
of these intermittent synchronization conditions could
be further reduced if we adopt Lyapunov–Razumikhin
technique other than Lyapunov functional method as
described in [30–32]?

In this paper, motivated by the above observations,
we propose a Lyapunov–Razumikhin method for inter-
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mittent synchronization analysis of coupled reaction–
diffusion neural networkswithmixed delays. By devel-
oping a Razumikhin technique for exploring the effect
of the relation between the delay and the control width
on the dynamical behavior of the synchronization error
system, a less conservative criterion for intermittent
synchronization without any restriction on delay deriv-
atives is derived. In relation to intermittent synchro-
nization, the design of state-feedback intermittent syn-
chronization controllers is also studied. The intermit-
tent gain matrices can be obtained by solving a set
of linear matrix inequalities. The main contributions
of this paper are threefold. (1) We show how the
Razumikhin technique is utilized for getting a bet-
ter estimate on the decay/growth rate of the solu-
tions of stable/unstable mode. (2) We show how the
reaction–diffusion effect can be further explored with
the extended Wirtingers inequality. (3) We show how
the intermittent synchronization controller with mini-
mized feedback gain can be designed in the framework
of linear matrix inequalities.

The rest of this paper is structured as follows:
Next section formulates the problem. A new period-
ically intermittent synchronization result is presented
in Sect. 3. Section 4 provides a sufficient condition
for designing periodically intermittent synchronization
controllers. In Sect. 5, two reaction–diffusion chaotic
neural networks are simulated to verify the effective-
ness of the theoretical results. Finally, the paper is con-
cluded in Sect. 6.

2 System description and preliminaries

In the sequel, if not explicitly, matrices are assumed
to have compatible dimensions. The notation P >

(≥,<,≤) 0 is used to denote a symmetric positive-
definite (positive-semidefinite, negative, negative-
semidefinite) matrix. I and In denote an identitymatrix
of suitable dimension and an identity matrix of size
n × n, respectively. N0 represents the set of nonnega-
tive integers, that is, N0 = {0, 1, 2, . . .}.

Consider the following reaction–diffusion neural
networks with discrete and finite distributed delays:

∂z(t, x)

∂t
=

m∑

q=1

∂

∂xq

(
Dq

∂z(t, x)

∂xq

)

− Az(t, x) + W0 f (z(t, x))

+ W1 f (z(t − τ(t), x))

+ W2

∫ t

t−σ(t)
f (z(s, x))ds + J,

(t, x) ∈ R+ × Ω, (1)

where Ω = {(x1, x2, . . . , xm)T: |xq | ≤ lq , q =
1, 2, . . . ,m} with ∂Ω being its boundary; z(t, x) =
(z1(t, x), z2(t, x), . . . , zn(t, x)) is the neuron state vec-
tor at time t and in space x ; Dq = diag

(
dq1, dq2, . . . ,

dqn
)
with dqi ≥ 0, q = 1, 2, . . . ,m, i = 1, 2, . . . , n,

are the transmission diffusion coefficients; A =
diag (a1, a2, . . . , an) with ai > 0 representing the
reset rate of the i th neuron is the self-feedback term;
W0,W1,W2 ∈ Rn×n denote the connection weight
matrix, the delayed connection weigh matrix, the dis-
tributively delayed connection weight matrix, respec-
tively; the time-varying functions τ(t) and σ(t) denote
the transmission discrete delay and distributed delay,
respectively, and satisfy τ ≤ τ(t) ≤ τ and 0 ≤
σ(t) ≤ σ ; J ∈ R

n is the external input vector;
f (z) = ( f1(z1), f2(z2), . . . , fn(zn)) with fi (·) being
the activation function of the i th neuron satisfies the
following assumption:

(H) For each i ∈ {1, 2, . . . , n}, there exist scalars Fi
and Gi such that

Gi ≤ fi (z1) − fi (z2)

z1 − z2
≤ Fi , ∀z1, z2 ∈ R, z1 �= z2.

The initial value and boundary value conditions
associated with neural network (1) are given by

z(s, x) = φ(s, x), (s, x) ∈ [−r, 0] × Ω,

z(t, x) = 0, (t, x) ∈ [−r,+∞) × ∂Ω,

where r = max{τ , σ }, and φ(s, x) ∈ C([−r, 0] ×
Ω,Rn).

We consider system (1) as the drive system. The
corresponding response system is

∂ ẑ(t, x)

∂t
=

m∑

q=1

∂

∂xq

(
Dq

∂ ẑ(t, x)

∂xq

)
− Aẑ(t, x)

+ W0 f (ẑ(t, x)) + W1 f (ẑ(t − τ(t), x))

+ W2

∫ t

t−σ(t)
f (ẑ(s, x))ds + J + Bu(t),

(t, x) ∈ R+ × Ω, (2)
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with the initial value and boundary value conditions

ẑ(s, x) = φ̂(s, x), (s, x) ∈ [−r, 0] × Ω,

ẑ(t, x) = 0, (t, x) ∈ [−r,+∞) × ∂Ω,

where ẑ(t, x) ∈ R
n is the state vector of the response

system, B ∈ R
n×nc is the input matrix, u(t) ∈ R

nc

is the control input vector, and φ̂(s, x) ∈ C([−r, 0] ×
Ω,Rn).

The objective of this paper is to design periodically
intermittent controllers such that the complete synchro-
nization between system (1) and system (2) is achieved.
The periodically intermittent state-feedback controller
has the form

u(t) = K (t)
(
z(t, x) − ẑ(t, x)

)
, (3)

in which

K (t) =
{
K , t ∈ [kT, kT + δk)

0, t ∈ [kT + δk, (k + 1)T )
, k ∈ N0.

In the above, K ∈ R
nc×n is the intermittent feedback

gain to be designed, T > 0 denotes the control period,
and δk ∈ [δ, δ] with 0 < δ ≤ δ < T denotes the width
of control window.

Define the synchronization error e(t, x) = ẑ(t, x)−
z(t, x). From (1)–(3), the synchronization error system
is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂e(t,x)
∂t =

m∑
q=1

∂
∂xq

(
Dq

∂e(t,x)
∂xq

)
− (A + BK)e(t, x)

+W0g(e(t, x)) + W1g(e(t − τ(t), x))
+W2

∫ t
t−σ(t) g(e(s, x))ds,

(t, x) ∈ [kT, kT + δ) × Ω

∂e(t,x)
∂t =

m∑
q=1

∂
∂xq

(
Dq

∂e(t,x)
∂xq

)
− Ae(t, x)

+W0g(e(t, x)) + W1g (e(t − τ(t), x))
+W2

∫ t
t−σ(t) g(e(s, x))ds,

(t, x) ∈ [kT + δ, (k + 1)T ) × Ω

e(s, x) = e0(s, x) � φ̂(s, x) − φ(s, x),
(s, x) ∈ [−r, 0] × Ω

e(t, x) = 0, (t, x) ∈ [−r,+∞) × ∂Ω

(4)

where g(e(t, x)) = f (ẑ(t, x))− f (z(t, x)). From (H),
we have

Gi ≤ gi (ei )

ei
≤ Fi , ∀ei ∈ R − 0, i = 1, 2, . . . , n.

(5)

For z(t, x) ∈ C([−r, b]×Ω,Rn)with b ≥ 0, define

‖z(t, ·)‖2 =
(∫

Ω

zT(t, x)z(t, x)dx

)1/2

,

and for φ(θ, x) ∈ C([−r, 0] × Ω,Rn), define

‖φ‖C = max
θ∈[−r,0] ‖φ(θ, ·)‖2.

Throughout the paper, we use the following stability
concept for the synchronization error system (4).

Definition 1 The synchronization error system (4) is
said to be globally exponentially stable, if there exist
two positive constants γ and M , such that ‖e(t, x)‖2 ≤
M‖e0‖Ce−γ t , for all t ≥ 0.

Now, the synchronization problem is reduced to the
problem of designing a gainmatrix K such that the syn-
chronization error system (4) is globally exponentially
stable.

The following lemmaswill be needed in proving our
results.

Lemma 1 For any compatible vectors x and y, matrix
M > 0, the following inequality holds

2xT y ≤ xT Mx + yT M−1y.

Lemma 2 Let S: Ω → Rn be a vector function
belonging to C1(Ω), which vanishes on boundary ∂Ω

ofΩ , i.e., S(x)|∂Ω = 0. Then, for any q ∈ 1, 2, . . . ,m,
for any n × n matrix R ≥ 0, the following inequality
holds

∫

Ω

ST(x)RS(x)dx ≤ 4l2q
π2

∫

Ω

(
∂S

∂xq

)T

R
∂S

∂xq
dx . (6)

Proof Fix q ∈ 1, 2, . . . ,m, from Wirtinger’s inequal-
ity [43], for any R > 0, we have
∫ lq

−lq
ST(x)RS(x)dxq ≤ 4L2

q

π2

∫ lq

−lq

(
∂S

∂xq

)T

R
∂S

∂xq
dxq .

123



Intermittent synchronization of reaction–diffusion neural networks 539

Then, integrating both sides of the above inequality
from −li to li for i ∈ {1, 2, . . . ,m} and i �= q, we get
(6).

Lemma 3 [44] Let z: [−r, a) → R
n be continuously

differentiable on (0, a) and continuous on [−r, a),
wherer, a > 0.Define‖zt‖r = maxθ∈[−r,0] ‖z(t+θ)‖.
For any t ≥ 0, if ‖z(t)‖ < ‖zt‖r , then D+‖zt‖r ≤ 0;
if ‖z(t)‖ = ‖zt‖r , then D+‖zt‖r = max{0, D+|z(t)|}.

3 Intermittent synchronization analysis

In this section, we first develop a Razumikhin-type
technique for achieving an exponential estimate of the
solutions of error system (4) in the closed-loop mode.

For k ∈ N0, define tik =
{
kT, i = 1
kT + δk, i = 2

. Set

Δik = [tik, t3−i,k+i−1), and Δik = [tik, t3−i,k+i−1],
i = 1, 2.

Lemma 4 Given nc × n matrix K , the control period
T , and the control width δk ∈ [δ, δ] with 0 < δ ≤
δ < T , consider the synchronization error system (4)
satisfying (H). If for some prescribed scalars ε ≥ 0,
β1 ≥ 0, and α1i > 0, i = 1, 2, there exist a n × n
matrix P1 > 0, and n × n positive diagonal matrices
Λ1h, h = 0, 1, 2, such that the following linear matrix
inequalities (LMIs) hold:

P1Dq + Dq P1 ≥ 0, q = 1, 2, . . . ,m, (7)

Ξ1 �

⎡

⎢⎢⎢⎢⎢⎢⎣

Γ1 0 P1W0 + L2Λ10 P1W1 σ P1W2

∗ −α11P1 + L1Λ11 0 L2Λ11 0

∗ ∗ −Λ10 0 0

∗ ∗ ∗ −Λ11 0

∗ ∗ ∗ ∗ −σΛ12

⎤

⎥⎥⎥⎥⎥⎥⎦
<0

(8)

L̃Λ12 ≤ α12P1 (9)

where

Γ1 =
(

ε + β1 + α11e
(β1+ε)τ + α12

β1 + ε

(
eσ(β1+ε) − 1

))
P1

−
m∑

q=1

π2

4l2q

(
P1Dq + Dq P1

)

− P1(A + BK) − (A + BK)TP1 + L1Λ10,

L1 = −diag (G1F1,G2F2, . . . ,GnFn) ,

L2 = 1

2
diag (G1 + F1,G2 + F2, . . . ,Gn + Fn) ,

L̃ = diag
(
max{|G1|2, |F1|2},max{|G2|2, |F2|2},

. . . ,max{|Gn |2, |Fn |2}
)

,

then,

V1(t) ≤ V 1(t1k)e
−β1(t−kT ), t ∈ Δ1k, k ∈ N0, (10)

and

V 1(t2k) ≤ H1(β1)V 1(t1k), k ∈ N0, (11)

where V1(t) = eεt
∫
Ω
eT(t, x)P1e(t, x)dx, V 1(t) =

max−r≤θ≤0 V1(t+θ), andH1(β1)=min{1, e−β1(δ −r)}.
Proof For anygiven k ∈ N0, setU1(t)=eβ1(t−t1k)V1(t),
t ∈ [t1k − r, t2k]. We prove that for any given ε > 0,
U1(t) satisfies

U1(t) < (1 + ε)V 1(t1k), t ∈ Δ1k . (12)

By the contrary, there exists at least one t ∈ Δ1k

such that U1(t) ≥ (1 + ε)V 1(kT ). Let t∗ = inf{t ∈
Δ1k;U1(t) ≥ (1 + ε)V 1(t1k)}. Note that

U1(t1k + θ) = eβ1θV1(t1k + θ) < (1 + ε)V 1(t1k),

θ ∈ [−r, 0].

It follows that t∗ ∈ (t1k, t2k). Moreover,

U1(t
∗) = (1 + ε)V 1(kT ),U1(t) < (1 + ε)V 1(kT ),

∀t ∈ [t1k − r, t∗), (13)

and

U̇1(t
∗) ≥ 0. (14)

The relation (13) implies that

U1(t
∗) ≥ U1

(
t∗ − τ(t∗)

)
,

which further implies

0 ≤ α11

(
e(β1+ε)τ

∫

Ω

eT(t∗, x)P1e(t∗, x)dx

−
∫

Ω

eT(t∗ − τ(t∗), x)P1e(t∗ − τ(t∗), x)dx
)

.

(15)
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The relation (13) also implies that

U1(t
∗) ≥ U1(s), s ∈ [t∗ − r, t∗].

It follows that

e(β1+ε)(t∗−s)
∫

Ω

eT(t∗, x)P1e(t∗, x)dx

≥
∫

Ω

eT(s, x)P1e(s, x)dx, s ∈ [t∗ − r, t∗].

Integrating the above inequality from t∗ − σ(t∗) to t∗
yields

1

β1 + ε

(
e(β1+ε)σ − 1

) ∫

Ω

eT(t∗, x)P1e(t∗, x)dx

≥
∫

Ω

∫ t∗

t∗−σ(t∗)
eT(s, x)P1e(s, x)dsdx . (16)

For t ∈ (t1k, t2k), the derivative of U1(t) along the
solutions of error system (4) is

U̇1(t) = eβ1(t−t1k )+εt
∫

Ω

{
eT(t, x)

[
(β1 + ε)P1

− P1(A + BK) − (A + BK)TP1
]
e(t, x)

+ 2eT(t, x)P1

m∑

q=1

∂

∂xq

(
Dq

∂e(t, x)

∂xq

)

+ 2eT(t, x)P1W0g(e(t, x)) + 2eT(t, x)

× P1W1g(e(t − τ(t), x)) + 2eT(t, x)

× P1W2

∫ t

t−σ(t)
g(e(s, x))ds

}
dx . (17)

Denoting P1 = (pi j )n×n , integration by parts and
application of the Dirichlet boundary condition lead to

2
∫

Ω

eT(t, x)P1

m∑

q=1

∂

∂xq

(
Dq

∂e(t, x)

∂xq

)

=
m∑

q=1

n∑

i, j=1

2
∫

Ω

ei (t, x)pi j
∂

∂xq

(
dq j

∂e j (t, x)

∂xq

)
dx

= −
m∑

q=1

2
∫

Ω

n∑

i, j=1

∂

∂xq
ei (t, x)pi j dq j

∂e j (t, x)

∂xq
dx

= −
m∑

q=1

∫

Ω

∂eT(t, x)

∂xq
(P1Dq + Dq P1)

∂e(t, x)

∂xq
dx .

Recalling condition (7), application of the inequality
(6) in Lemma 2 yields

∫

Ω

eT(t, x)P1

m∑

q=1

∂

∂xq

(
Dq

∂e(t, x)

∂xq

)
dx

≤ −
m∑

q=1

π2

4l2q

∫

Ω

eT(t, x)P1Dqe(t, x)dx . (18)

Using the inequality in Lemma 1 and considering the
relation (5), we have

2
∫

Ω

eT(t, x)P1W2

∫ t

t−σ(t)
g(e(s, x))dsdx

≤
∫

Ω

∫ t

t−σ(t)

[
eT(t, x)P1W2Λ

−1
12 W

T
2 P1dsdx

+ g(e(s, x))Λ12g(e(s, x))
]
dsdx

≤
∫

Ω

σeT(t, x)P1W2Λ
−1
12 W

T
2 P1e(t, x)dx

+
∫

Ω

∫ t

t−σ(t)
eT(s, x)L̃Λ12e(s, x)dsdx .

It follows from condition (9) and relation (16) that

2
∫

Ω

eT(t∗, x)P1W2

∫ t∗

t∗−σ(t∗)
g(e(s, x))dsdx

≤
∫

Ω

σeT(t∗, x)P1W2Λ
−1
12 W

T
2 P1e(t

∗, x)dx

+ α12

∫

Ω

∫ t∗

t∗−σ(t∗)
eT(s, x)P1e(s, x)dsdx

≤
∫

Ω

eT(t∗, x)
(

σ P1W2Λ
−1
12 W

T
2 P1 + α12

β1 + ε

×
(
e(β1+ε)σ − 1

)
P1

)
e(t∗, x)dx . (19)

On the other hand, by the relation (5),

0 ≤ (Fiei − gi (ei ))(gi (ei ) − Giei ), for any

ei ∈ R, i = 1, 2, . . . , n.

Set Λ1h = diag{λ1h1, λ1h2, . . . , λ1hn}, h = 0, 1. It
follows from the above inequalities that
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0 ≤
n∑

i=1

λ10i (Fiei (t, x) − gi (ei (t, x)))

(
gi (ei (t, x)) − Giei (t, x)

)

+
n∑

i=1

λ11i (Fiei (t − τi (t), x)

−gi (ei (t − τi (t), x))
(
gi ei (t − τi (t), x)

− Giei (t − τi (t), x)
)

= ηT(t, x)

⎡

⎢⎢⎣

L1Λ10 0 L2Λ10 0
∗ L1Λ11 0 L2Λ11

∗ ∗ −Λ10 0
∗ ∗ ∗ −Λ11

⎤

⎥⎥⎦

× η(t, x), (20)

where η(t, x) = col(e(t, x), e(t − τ(t), x), g(e(t, x)),
g(e(t − τ(t), x))).

Substituting (18) and (19) into (17) with t = t∗ and
using (15) and (20) yields

U̇1(t
∗) ≤ eβ1(t−t1k )+εt

∫

Ω

ηT(t∗, x)�̃1η(t∗, x)dx,

(21)

where

�̃1 =

⎡

⎢⎢⎣

Γ̃1 0 P1W0 + L2Λ10 P1W1

0 −α11P1 + L1Λ11 0 L2Λ11

∗ ∗ −Λ10 0
∗ ∗ ∗ −Λ11

⎤

⎥⎥⎦ ,

in which Γ̃1 = Γ1 + σ P1W2Λ
−1
12 W

T
2 P1.

Application of Schur complement to (8) leads to
Ξ1 < 0. Then coming back to (21), we obtain U̇1(t∗) <

0, which contradicts (14). Thus, (12) holds. Let ε →
0+, we arrive at (10). Note that for given θ ∈ [−r, 0],
the claim (10) implies that

V1(t2k + θ) ≤ V 1(t1k), for t2k + θ ≤ t1k, (22)

and

V1(t2k + θ) ≤ V 1(t1k)e
−β1(δk+θ), for t2k + θ > t1k .

(23)

Putting (22)–(23) together yields (11). This completes
the proof.

Next, we use a slightly different technique to esti-
mate the solutions of error system (4) in the open-loop
mode.

Lemma 5 Givennc×n matrix K , the control period T ,
and the control width δk ∈ [δ, δ] with 0 < δ ≤ δ < T ,
consider the synchronization error system (4) satisfying
(H). If for some prescribed scalars ε ≥ 0, βi ≥ 0,
αi j > 0, i = 2, 3, j = 1, 2, satisfying β2 ≥ β3,
there exist a n × n matrix P2 > 0, and n × n positive
diagonal matrices Λih , i = 2, 3, h = 0, 1, 2, such that
the following LMIs hold:

P2Dq + Dq P2 ≥ 0, q = 1, 2, . . . ,m, (24)
⎡

⎢⎢⎢⎢⎣

Γi 0 P2W0 + L2Λi0 P2W1 σ P2W2

∗ −αi1P2 + L1Λi1 0 L2Λi1 0
∗ ∗ −Λi0 0 0
∗ ∗ ∗ −Λi1 0
∗ ∗ ∗ 0 −σΛi2

⎤

⎥⎥⎥⎥⎦

< 0, i = 2, 3 (25)
L̃Λi2 ≤ αi2P2, i = 2, 3, (26)

where

Γ2 =
(
ε − β2 + α21e

ετ + α22

ε

(
eεσ − 1

))

P2 −
m∑

q=1

π2

4l2q

(
P2Dq + Dq P2

)

− P2A − ATP2 + L1Λ20,

Γ3 =
(

ε − β3 + α31H(β3, ε) + α32

ε − β3(
e(ε−β3)σ − 1

))
P2

−
m∑

q=1

π2

4l2q

(
P2Dq + Dq P2

)

− P2A − ATP2 + L1Λ30,

in which

H(β3, ε) =
{
e(ε−β3)τ , β3 ≥ ε

e(ε−β3)τ , β3 < ε
, (27)

Then,

V 2(t) ≤ V 2(t2k)H2(β2, β3), t ∈ Δ2k, k ∈ N0, (28)

where V2(t) = eεt
∫
Ω
eT(t, x)P2e(t, x)dx, V 2(t) =

max−r≤θ≤0 V2(t + θ), and

H2(β2, β3) = e(β2−β3)min{T−δ,r}+β3(T−δ).

123



542 W.-H. Chen et al.

Proof Fix k ∈ N0. We start by showing that

D+V 2(t) ≤ β2V 2(t), ∀ t ∈ Δ2k . (29)

For any given t ∈ Δ2k , at least one of the following two
cases holds: (1) V2(t) < V 2(t); (2) V2(t) = V 2(t). If
case (1) holds, then by Lemma 3, we have D+V 2(t) ≤
0, i.e., (29) holds.

If case (2) holds, it follows that V2(t) ≥ V2(s), s ∈
[t − r, t]. Then, similar to the proofs of (15) and (19),
we can obtain from condition (26) with i = 2 that

α21

(
eετ

∫

Ω

eT(t, x)P2e(t, x)dx

−
∫

Ω

eT(t − τ(t), x)P2e(t − τ(t), x)dx

)
≥ 0,

(30)

and

2
∫

Ω

eT(t, x)P2W2

∫ t

t−σ(t)
g(e(s, x))dsdx

≤
∫

Ω

eT(t, x)

(
σ P2W2Λ

−1
22 W

T
2 P2

+ α22

ε

(
eεσ − 1

)
P2

)
e(t, x)dx . (31)

The relation (5) implies

0 ≤ ηT(t, x)
⎡

⎢⎢⎣

L1Λi0 0 L2Λi0 0
∗ L1Λi1 0 L2Λi1

∗ ∗ −Λi0 0
∗ ∗ ∗ −Λi1

⎤

⎥⎥⎦

η(t, x), i = 2, 3. (32)

The derivative of V2(t) along the solutions of error
system (4) on (t2k, t1,k+1) is

V̇2(t) = eεt
∫

Ω

{
eT(t, x)

[
εP2 − P2A − ATP2

]
e(t, x) + 2eT(t, x)P2

×
m∑

q=1

∂

∂xq

(
Dq

∂e(t, x)

∂xq

)
+ 2eT(t, x)

P2W0g(e(t, x)) + 2eT(t, x)P2W1

× g(e(t − τ(t), x)) + 2eT(t, x)

P2W2

∫ t

t−σ(t)
g(e(s, x))ds

}
dx . (33)

Applying the inequality (18) with P2 instead of P1
and the inequalities (30)–(32) to (33) leads to

V̇2(t) ≤ β2V2(t) + eεt
∫

Ω

ηT(t, x)Ξ2η(t, x)dx, (34)

where

Ξ2 =

⎡

⎢⎢⎣

Γ̃2 0 P2W0 + L2Λ20 P2W1

0 −α21P2 + L1Λ21 0 L2Λ21

∗ ∗ −Λ20 0
∗ ∗ ∗ −Λ21

⎤

⎥⎥⎦ ,

in which Γ̃2 = Γ2 + σ P2W2Λ
−1
22 W

T
2 P2. Note that

condition (25) with i = 2 is equivalent to Ξ2 < 0.
It follows from (34) that V̇2(t) ≤ β2V2(t). Then by
Lemma 3, we obtain D+V 2(t) ≤ β2V2(t) = β2V 2(t).
Therefore, (29) holds.

From (29), we obtain

V2(t) ≤ V 2(t) ≤ V 2(t2k)e
β2(t−t2k ), t ∈ Δ2k . (35)

Next, we proceed to show that for the case where
r < T − δk , the estimate (35) on [t2k + r, t1,k+1] can
be improved as follows

V2(t) ≤ V 2(t2k)e
(β2−β3)reβ3(t−t2k ),

t ∈ [t2k + r, t1,k+1]. (36)

SetU2(t) = V2(t)e−β3(t−t2k ).We have to only prove
that for any given ε > 0, it holds that

U2(t) < (1+ε)V 2(t2k)e
(β2−β3)r , t ∈ [t2k+r, t1,k+1].

(37)

According to (35), (37) is true for t = t2k + r . Suppose
on the contrary that (37) does not hold, then it follows
from (35) that there exists a t∗ ∈ (t2k + r, t1,k+1) such
that

U2(t) ≤ V 2(t2k)e
(β2−β3)(t−t2k ), t ∈ [t2k, t2k + r ],

(38)

U2(t) ≤ (1 + ε)V 2(t2k)e
(β2−β3)r , t ∈ [t2k + r, t∗),

(39)

U2(t
∗) = (1 + ε)V 2(t2k)e

(β2−β3)r . (40)
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and

U̇2(t
∗) ≥ 0. (41)

The relations (38)–(40) imply that U2(t∗) ≥ U2(s),
s ∈ [t∗ − r, t∗]. It follows that

0 ≤ α31

(
H(β3, ε)

∫

Ω

eT(t∗, x)P2e(t∗, x)dx

−
∫

Ω

eT(t∗ − τ(t∗), x)P2e(t∗ − τ(t∗), x)dx
)

,

(42)

and

2
∫

Ω

eT(t∗, x)P2W2

∫ t∗

t∗−σ(t∗)
g(e(s, x))dsdx

≤
∫

Ω

eT(t∗, x)
(

σ P2W2Λ
−1
32 W

T
2 P2

+ α32

ε − β3

(
e(ε−β3)σ − 1

)
P2

)
e(t∗, x)dx . (43)

The derivative of U2(t) along the solutions of error
system (4) on (t2k, t1,k+1) is given by

U̇2(t) = e−β3(t−t2k )eεt
∫

Ω

{
eT(t, x)

[
(ε − β3)P2

− P2A − ATP2
]
e(t, x)

+ 2eT(t, x)P2

m∑

q=1

∂

∂xq

(
Dq

∂e(t, x)

∂xq

)

+ 2eT(t, x)P2W0g(e(t, x))

+ 2eT(t, x)P2W1g(e(t − τ(t), x))

+ 2eT(t, x)P2W2

∫ t

t−σ(t)
g(e(s, x))ds

}
dx .

(44)

Putting the inequalities (42), (43), and (32) with i = 3
together into (44), and considering the inequality (18)
with P2 instead of P1, we get

U̇2(t
∗) ≤ e−β3(t∗−t2k )eεt∗

∫

Ω

ηT(t∗, x)Ξ3η(t∗, x)dx,

(45)

where

Ξ3 =

⎡

⎢⎢⎣

Γ̃3 0 P2W0 + L2Λ30 P2W1

0 −α31P2 + L1Λ31 0 L2Λ31

∗ ∗ −Λ30 0
∗ ∗ ∗ −Λ31

⎤

⎥⎥⎦,

in which Γ̃3 = Γ3 + σ P2W2Λ
−1
32 W

T
2 P2. It is easy to

verify that condition (25) with i = 3 is equivalent to
Ξ3 < 0. It follows from (45) that U̇2(t∗) < 0, which
contradicts (41). Hence, we have proven (37). Letting
ε → 0 in (37), we obtain (36). Then, combining (35)
and (36) together yields

V 2(t) ≤ V 2(t2k)e
(β2−β3)min{T−δk ,r}+β3(T−δk ),

t ∈ Δ2k, k ∈ N0.

Recalling δk ≥ δ and β2 ≥ β3, the inequality (28) is
immediately derived, which completes the proof.

Remark 1 The closed-loop and open-loop modes have
different dynamical behaviors. So we introduce dif-
ferent techniques to estimate V1(t) and V2(t). In the
closed-loop mode, a helpful trick is the introduction
of the parameter β1 for estimating the decay rate of
V1(t). It can be seen from (11) that the parameter β1

can lead to a tighter estimate on V 1(t2k) for the case of
r < δ . In the open-loop mode, in order to reduce the
conservatism of the estimation analysis for the case of
r < T − δk , we divide the estimation into two steps. It
can be seen from (28) that for the case of r < T − δk ,
the two-step estimation is less conservative than the
single-step estimation.We note that the special dynam-
ical characteristics of synchronization error system (4)
for the case of r < δk and for the case of r < T − δk
cannot be captured by the Lyapunov functional method
proposed in [30–32].

Basedon the aboveLemmas4–5,we are in a position
to state our stability criterion for synchronization error
system (4).

Theorem 1 Given nc ×n matrix K , the control period
T , and the control width δk ∈ [δ, δ] with 0 < δ ≤ δ <

T , consider the drive system (1) and the periodically
intermittently controlled response system (2), in which
the activation function f satisfies (H). If for some pre-
scribed scalars ε ≥ 0, μ1 > 0, βi ≥ 0, αi j > 0,
i = 1, 2, 3, j = 1, 2, satisfying β2 ≥ β3, there exist
n × n matrices Pi > 0, i = 1, 2, and n × n positive
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diagonal matrices Λhi , i = 1, 2, 3, h = 0, 1, 2, such
that (7), (8), (9), (24), (25), (26), and the following
LMIs hold:

P1 ≤ μ2P2, P2 ≤ μ1P1, (46)

where

μ2 = eεT

μ1H1(β1)H2(β2, β3)
, (47)

then the response system (2) and the drive system (1)
are completely synchronized.

Proof Assume that the LMIs (8), (9), (25), (26), and
(46) are feasible, then there exists a positive scalar ε̂ >

ε such that the LMIs (8) with ε̂ instead of ε, (9), (25)
with ε̂ instead of ε, (26), and (46) still hold. For t ≥ −r ,
defineωi (t) = eε̂t

∫
Ω
eT(t, x)Pie(t, x)dx . Setωi (t) =

max−r≤θ≤0 ωi (t + θ), i = 1, 2, for t ≥ 0. According
to Lemmas 4–5, we have

ω1(t) ≤ ω1(t1k), t ∈ Δ1k, k ∈ N0, (48)

ω1(t2k) ≤ H1(β1)ω1(t1k), k ∈ N0, k ∈ N0, (49)

and

ω2(t) ≤ ω2(t2k)H2(β2, β3), t ∈ Δ2k, k ∈ N0, (50)

Moreover, condition (46) implies that

ω1(t) ≤ μ2ω2(t), and ω2(t) ≤ μ1ω1(t), for t ≥ 0.

(51)

By virtue of (49)–(51), we deduce that

ω2(t1,k+1) ≤ ω2(t2k)H2(β2, β3)

≤ μ1H1(β1)H2(β2, β3)ω1(t1k)

It follows from (47) that

ω1(t1,k+1) ≤ μ1μ2H1(β1)H2(β2, β3)ω1(t1k)

= eεTω1(t1k),

which implies

ω1(t1k) ≤ ekεTω1(t10), k ∈ N0. (52)

For any given t ≥ 0, there exists k ∈ N0 such that
t ∈ Δ1k or t ∈ Δ2k . If t ∈ Δ1k , it follows from (48)
and (52) that

ω1(t) ≤ ekεTω1(t10) ≤ eεtω1(t10). (53)

If t ∈ Δ2k , it follows from (48) and (52) that

ω2(t) ≤ ω2(t2k)H2(β2, β3) ≤ 1

μ2
e(k+1)εTω1(t10)

≤ eε(T−δ)

μ2
eεtω1(t10). (54)

Set λ1 = mini=1,2{λmin(Pi )}, and λ2 = λmax(P2).
Combining with inequalities (53) and (54), we have

‖e(t, x)‖2 ≤ Me− ε̂−ε
2 t‖e0‖C ,

where M = √
λ2/λ1 max{1, (1/μ2)eε(T−δ)}. There-

fore, we can conclude that synchronization error sys-
tem (4) is globally exponentially stable.

Remark 2 Unlike [30], the stability analysis of syn-
chronization error system (4) is performed by using
a Razumikhin-type estimation technique. Compared
with the Lyapunov functional-based analysis method
proposed in [30], an attractive feature of our method
is that there is no restriction on the derivatives of τ(t)
and σ(t), and more information on the bounds of the
discrete delay τ(t) is taken into account. Therefore, our
synchronization criterion is suitable for a wider class
of delayed reaction–diffusion neural networks.

4 Intermittent controller design

In this section, under the assumption that

Gi ≤ 0 ≤ Fi , for i = 1, 2, . . . , n, (55)

we will present solutions to the exponential synchro-
nization problem of the drive system (1) and the inter-
mittently controlled response system (2). For this pur-

pose, we set L1 = L
1
2
1 . Based on Theorem 1, we are

ready to address the issue of periodically intermittent
controller design.

Theorem 2 Given the control period T and the control
width δk ∈ [δ, δ] with 0 < δ ≤ δ < T , consider
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the drive system (1) and the periodically intermittently
controlled response system (2), in which the activation
function f satisfies (H). If for some prescribed positive
scalars ε, μ1, βi , αi j , i = 1, 2, 3, j = 1, 2 satisfying
β2 ≥ β3, there exist n × n matrices Xi > 0, i = 1, 2,
n × n positive diagonal matrices Λ̄ih , i = 1, 2, 3, h =
0, 1, 2, and a nc × n matrix K̄ , such that the following
LMIs hold:

Dq Xi + Xi Dq ≥ 0, i = 1, 2, q = 1, 2, . . . ,m, (56)
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϒi 0 W0Λ̄i0 + Xi L2 W1Λ̄i1 σW2Λ̄i2 0 Xi L1

∗ −αi1Xi 0 Xi L2 0 Xi L1 0
∗ ∗ −Λ̄i0 0 0 0 0
∗ ∗ ∗ −Λ̄i1 0 0 0
∗ ∗ ∗ ∗ −σΛ̄i2 0 0
∗ ∗ ∗ ∗ ∗ −Λ̄i1 0
∗ ∗ ∗ ∗ ∗ ∗ −Λ̄i0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, i = 1, 2, 3, (57)

Xi ≤ αi2 L̃
−1Λ̄i2, i = 1, 2, 3 (58)

X2 ≤ μ2X1, X1 ≤ μ1X2 (59)

where X3 = X2, μ2 is defined in (47), and

ϒ1 =
(

ε + β1 + α11e
(β1+ε)τ + α12

β1 + ε

(
eσ(β1+ε) − 1

))
X1

−
m∑

q=1

π2

4l2q

(
Dq X1 + X1Dq

) − AX1 − X1A
T − BK − (BK )T,

ϒ2 =
(
ε − β2 + α21e

ετ + α22

ε

(
eεσ − 1

))
X2

−
m∑

q=1

π2

2l2q

(
Dq X2 + X2Dq

) − AX2 − X2A
T,

ϒ3 =
(

ε − β3 + α31H(β3, ε) + α32

ε − β3

(
e(ε−β3)σ − 1

))
X2

−
m∑

q=1

π2

2l2q

(
Dq X2 + X2Dq

) − AX2 − X2A
T,

then K = K̄ X−1
1 ,the response system (2) and the drive

system (1) are completely synchronized.

Proof Define Pi = X−1
i , i = 1, 2, Λ̄ jh = Λ−1

jh , j =
1, 2, 3, h = 0, 1, 2, and K = K̄ X−1

1 . It is easy to
see that the matrix inequalities (56), (58), and (59)
are equivalent to (7) and (24), (9) and (26), and (46),
respectively. Set P3 = P2. Pre- and post-multiplying
(57) by diag{Pi , Pi ,Λi0,Λi1,Λi2,Λi1,Λi0}, i =
1, 2, 3, and using Schur complement, we obtain (8)
and (25). Thus, the condition of Theorem 1 is satis-
fied. This means that the control gain K renders the

synchronization error system (4) to be globally expo-
nentially stable.

Remark 3 The results in [30–32] are only concerned
with deriving some sufficient conditions for periodi-
cally intermittent synchronization. Since these suffi-
cient conditions are related to the solutions to some

transcendental equations, it is difficult to apply these
sufficient conditions for designing synchronization
controllers. The synchronization criterion presented in
Theorem 1, however, is expressed in the form of matrix
inequalities. By usingmatrix transformation technique,
the design problem of synchronization controllers is
reduced to a feasibility problem of the LMIs given in
Theorem 2.

Remark 4 From a practical point of view, it is desirable
to design a controller with small gain. This is because
the designed controllers with small gains will reduce
the energy consumption. Therefore,we propose the fol-
lowing optimization problem to limit the norm of gain
matrix K .

minimize ν

subject to

[
X1 K̄T

∗ −η0ν
2

]
< 0,

X1 ≥ η0 I, (56) − (59).

(60)

The optimization problem (60) can be solved by using
the following algorithm.
Algorithm 1. (Intermittent synchronization controller
design algorithm)

Step 1: Set initial ν and step length h.
Step 2: Solving the LMIs in the constraint condition

of the optimization problem (60) to obtain K̄ .
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Table 1 Values of the tuning parameters for various T

T ε μ1 β1 β2 β3 α11 α12 α21 α22 α31 α32

0.5, 1, 2, 3 1.32 0.96 0.03 19.9 15.31 0.85 0.55 1.24 0.74 1.11 1.19

4, 5 0.08 1.04 1.26 13.17 9.07 0.86 0.57 2.28 1.03 7.04 1.21

Table 2 The minimum rates of control time for various T

T 0.5 1 2 3 5 10

Theorem 1 0.9337 0.9337 0.9331 0.9328 0.9247 0.9159

Step 3: If Step 2 gives a feasible solution, set ν =
ν − h and return to Step 2. Otherwise, stop.

If νmin is the minimum value of the optimization
problem (60), then the spectral norm of gain matrix K
satisfies ‖F‖ ≤ νmin.

5 Numerical examples

In this section, the applicability of the derived synchro-
nization results is illustrated through two numerical
examples.

Example 1 In order to show the less conservatism of
our result, we consider the example given in [30]
for comparison. The drive system of the example is
a two-dimensional delayed reaction–diffusion neural
network with the form of (1), in which Ω = [−5, 5]
and m = 1, and the system parameters are as follows:

D1 = 0.1I2, A = I2, W0 =
[
1.8 −0.15
−5.2 3.5

]
,

W1=
[−1.7 −0.12

−0.26 −2.5

]
,W2=

[
0.6 0.15
−2 −0.1

]
,

J = 0, τi (t) = et

et + 1
, i = 1, 2, σ (t) = 1,

and the activation functions are given by fi (s) =
tanh(s), for s ∈ R, i = 1, 2, the corresponding inter-
mittently controlled response system is described by
(2) and (3) with BK = diag(6, 16).

It is easy to verify that τ = 0.5, τ = 1, σ = 1,
L1 = 0, L2 = 0.5I2, and L̃ = I2. To compare our
result with the result of [30], we assume that the control
width δk is constant, i.e., δk = δ for all k ∈ N0. Now,
for given control period T , we apply our Theorem 1
to find the minimum rate of control time defined by

κ = δ/T , which guarantee the complete synchroniza-
tion of the drive and response system. When the con-
trol period T is selected as T = 0.5, 1, 2, 3, 5 and 10
successively, by solving the LMIs of Theorem 1 with
the choice of the corresponding values of parameter
vector (ε, μ1, β1, β2, β3, α11, α12, α21, α22, α31, α32)

given in Table 1, the obtainedmaximum rates of control
times for different control period T are listed in Table 2.
The calculation results in Table 2 show that the rate of
control time actually decreases as we increase the value
of control period T .

For this example, both the results of [31,32] fail to
verify the stability of the synchronization error system.
The synchronization condition given in [30] relies on
the discrete-delay derivative τ̇i (t), i = 1, 2. It is easy
to that si � inf t≥0{1 − τ̇ (t)} = 0.75. However, in
[30], the values of si , i = 1, 2, are taken as si = 1,
i = 1, 2. Moreover, according to Corollary 3 of [30],
the synchronization criterion given in Corollaries 4–5
of [30] is incorrect. By applying the synchronization
criterion of Corollary 3 in [30] with si = 0.75, = 1, 2,
the minimum value of κ for any control period T is
0.994. Clearly, the calculations show that our method
improves the corresponding one in [30–32].

For simulation studies, the initial value and bound-
ary value conditions of the drive system are chosen as

z(s, x) =
(
sin2(πx), 2 sin2

(πx

5

))T
,

(s, x) ∈ [−1, 0] × Ω, (61)

z(t, x) = 0, (t, x) ∈ [−1,+∞) × ∂Ω, (62)

The temporal evolution of the drive system with the
initial condition (61) and the boundary value condition
(62) is depicted in Fig. 1. In this situation, the drive sys-
tem exhibits spatiotemporal chaotic behavior. To illus-
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trate the effectiveness of our intermittent synchroniza-
tion criterion, we choose T = 0.5 and δ = 0.4669.
Then, κ = 0.9338. According to Table 2, the complete
synchronization of the intermittently coupled neural
networks can be achieved. Since 0.9338 < 0.994, the
synchronization criteriongiven in [30] fails towork.We
assume that the initial value and boundary value condi-
tions of the intermittently controlled response system
are given by

ẑ(s, x) =
(
−0.7 sin2(πx), 1.4 sin2

(πx

5

))T
,

(s, x) ∈ [−1, 0] × Ω,

ẑ(t, x) = 0, (t, x) ∈ [−1,+∞) × ∂Ω,

The spatiotemporal evolution of synchronization error
e(t, x) is depicted in Fig. 2. Referring to this figure, it
can seen that the synchronization error becomes suf-
ficiently small for t > 2 s, which indicates that the
synchronization is successfully achieved.

Example 2 Consider a delayed reaction–diffusion
neural network to be the drive system (1) with the fol-
lowing parameters:

D1 = 10−4 I, A = I,m = 1,

Ω = [−0.5, 0.5], τ (t) = 0.9, σ (t) = 0.1.

W0 =
⎡

⎣
1 + π

4 20 0.001
0.1 1 + π

4 0.001
3 −0.56 −0.12

⎤

⎦ ,

W1 =
⎡

⎣
−1.3

√
2π
4 0.1 −0.001

0.1 −1.3
√
2π
4 0.01

2 −0.85 −0.02

⎤

⎦ ,

W2 =
⎡

⎣
0.06 0.15 0
−0.2 −0.01 0.01
0 0.02 0.03

⎤

⎦ , J =
⎡

⎣
0
0
0

⎤

⎦ ,

and the activation functions are given by fi (x) =
|x+1|−|x−1|

2 , i = 1, 2, 3. The corresponding intermit-
tently controlled response system is described by (2)

with BT =
[
1 0 0
0 1 0

]T
.

One can verify that the assumption (H) is satisfied.
Moreover, τ = τ = 0.9,σ = 0.1, L1 = 0, L2 = 0.5I3,
and L̃ = I3. For given control period T = 2, and the
controlwidth δk ∈ [1.86, 1.9], solving the optimization

problem (60) with the choice of

(ε, μ1, β1, β2, β3, α11, α12, α21, α22, α31, α32)

= (0.18, 1.74, 0.98, 8.99, 7.88, 0.24, 0.03, 1.23,

0.93, 2.66, 1.01),

the obtainedminimumvalue of ν is ν = 31.79. The cor-
responding intermittent synchronization gain is given

by K =
[
6.0933 1.2837 −0.0658
−0.2258 31.6819 0.0126

]
. For simu-

lation studies, the initial conditions of the drive system
and the response system are set to

φ(s, x) =
(
cos2(πx), sin2(2πx),

1

2
cos2(πx)

)T

,

(s, x) ∈ [−0.9, 0] × Ω, (63)

and

φ̂(s, x) =
(
cos(πx) sin2(2πx),

3

2
cos(πx), 2 sin2(4πx)

)T

,

(s, x) ∈ [−0.9, 0] × Ω,

respectively. Moreover, the drive system and the
response system are supplemented with the following
Dirichlet boundary value conditions:

z(t, x) = ẑ(t, x) = 0, (t, x) ∈ [−0.9,+∞) × ∂Ω.

With the initial condition (63) and the Dirichlet bound-
ary value condition, the drive system exhibits a chaotic
behavior as shown in Fig. 3a–c. To illustrate the effect
of intermittent feedback on the synchronization perfor-
mance,we assume that the controlwidth δk is generated
randomlywith the constraint that 1.86 ≤ δk ≤ 1.9. The
spatiotemporal evolution of the synchronization error
e(t, x) is depicted in Fig. 4a–c. Referring to this fig-
ure, it can be seen that the synchronization is achieved
for t > 8 s, showing the effectiveness of the proposed
intermittent synchronization controller design method.

6 Conclusions

The periodically intermittent synchronization problem
for coupled reaction–diffusion neural networks with
mixed delays has been revisited. A novel piecewise
exponential-type Lyapunov function-basedmethod has
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Fig. 1 Spatiotemporal chaotic behavior of the neural network described in Example 1

(a) (b)

Fig. 2 Spatiotemporal evolution of synchronization error e(t, x) for Example 1

been introduced to analyze the stability of the synchro-
nization error system. The new method is based on the
subtle estimates on the decay/divergent rate of solu-
tions during closed-/open-loop mode. Consequently,
an improved synchronization result has been derived,
which can provide smaller rate of control time than
the previous results. Based on the established synchro-
nization criterion, a LMI-based sufficient condition for
designing desired synchronization controllers has been
presented. Two numerical examples have shown the
effectiveness of the proposed results. The idea behind
this paper may be further extended to the intermit-
tent synchronization problem of complex dynamical
networks governed by coupled parabolic partial dif-

ferential equations with time delays. It is worth men-
tioning that in comparison with continuous synchro-
nization method, the proposed intermittent synchro-
nization scheme can greatly reduce the amount of
information required to be transmitted to achieve syn-
chronization of transmitter and receiver. Furthermore,
the spatiotemporal chaos model has greater volume
keys and key space than the time chaos model and
thus can improve additionally security. Theses char-
acteristics are important for secure communication
and encryption schemes. The applications of the pro-
posed intermittent synchronization scheme to secure
communication would be discussed in the follow-up
work.
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Fig. 3 Spatiotemporal chaotic behavior of the neural network
described in Example 2 Fig. 4 Spatiotemporal evolution of synchronization error e(t, x)

for Example 2
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