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Abstract Chua’s circuit is one of the well-known
nonlinear circuits which have been used to study a rich
variety of nonlinear dynamic behaviors such as bifurca-
tion, chaos, and routes to chaos. In this work, I consider
the dynamics of Chua’s circuit with a smooth cubic
nonlinearity. The dynamics of themodel is investigated
using standard nonlinear analysis techniques including
time series, bifurcation diagrams, phase space trajec-
tories plots, Lyapunov exponents, and basins of attrac-
tion. Both period-doubling and crisis routes to chaos
are reported. One of the major results of this work is
the numerical finding of a parameter region in which
Chua’s circuit experiencesmultiple attractors’ behavior
(i.e., coexistence of four different periodic and chaotic
attractors). This phenomenon was not reported previ-
ously in the Chua’s circuit (despite the huge amount of
related research works) and thus represents an enrich-
ing contribution to the understanding of the dynam-
ics of Chua’s oscillator. Basins of attraction of vari-
ous coexisting attractors are depicted showing complex
basin boundaries. The results obtained in this work let
us conjecture that there are still some unknown and
striking behaviors of Chua’s oscillator (e.g., the phe-
nomenon of extrememultistability, i.e., infinitelymany
attractors) that need to be uncovered.
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1 Introduction

It is well known that nonlinear dynamical systems can
experience various types of complexity such as bifurca-
tion, chaos, and intermittency, just to name a few. The
occurrence of two or more asymptotically stable equi-
librium points or attracting sets (e.g., period-n limit
cycle, torus, chaotic attractor) as the system parame-
ters are being varied represents another striking and
complex behavior observed in nonlinear systems. In
a system developing coexisting attractors, the trajec-
tories selectively converge on either of the attracting
sets depending on the initial state of the system. Cor-
respondingly, the basin of attraction of an attractive
set is defined as the set of initial points whose trajec-
tories converge on the given attractor. The boundary
separating each basin of attraction can be a smooth
boundary or riddled basin with no clear demarcation
(i.e., fractal). This striking and interesting phenom-
enon has been reported in various nonlinear systems
including laser [1], biological systems [2,3], chemical
reactions [4], Lorenz system [5], Newton–Leipnik sys-
tem [6], and electrical circuits [7–11]. Such a phenom-
enon is mostly connected to the system symmetry and
may be accompanied by some special effects including
for instance, symmetry-breaking bifurcation, symme-
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try restoring crisis, coexisting bifurcations, and hys-
teresis [12–15]. In practice, the coexistence of multiple
attractors implies that an attractor may suddenly jump
to a different attractor; the situation in which coexist-
ing attractors possess fractal or intermingled basin of
attraction being the most intriguing. In this case, due to
noise, the observed signal may be the result of random
switching of the system trajectory between two ormore
coexisting attractors.

In the present work, we consider the dynamics of
Chua’s oscillator [16–20] (with a smooth cubic non-
linearity) with emphasis on the occurrence of multi-
ple attractors. Briefly recall that Chua’s oscillator is a
well known and widely studied chaotic oscillator that
has been used to demonstrate various types of non-
linear phenomena encountered in nonlinear dynamical
systems in general. The occurrence of multiple (more
than two) attractors was previously reported in Chua’s
circuit by Lozi and Ushiki [21]. They reported the
numerical observation of the co-existence of three dis-
tinct chaotic attractors for a least one choice of parame-
ters in Chua’s circuit. Later on, in the review work of
Pivka et al. [9], the coexistence of two points attractors,
two chaotic attractors and a periodic attractor was also
reported. However, to the best of the author’s knowl-
edge, a situation involving the coexistence of four non-
static (i.e., oscillatory) attractors in Chua’s circuit is
not reported so far in the relevant literature. However,
recent results clearly underline the possibility of four
distinct/disconnected (oscillatory) attractors in some
simple chaotic oscillators such as the jerk circuit [11],
the autonomous Duffing Holmes type oscillator [22],
and the memristor-based Shinriki’s circuit [23], just to
name a few.Motivated by the above-mentioned results,
and provided the universality of Chua’s oscillator, this
paper focuses on the dynamics of Chua’s oscillator
(with a smooth cubic nonlinearity for Chua’s diode)
with particular emphasis on the occurrence of multiple
attractors. A window in the parameter space is found
in which four distinct non-static coexisting attractors is
reported.

The rest of the paper is structured as follows. Sec-
tion 2 deals with the modeling process. The electronic
structure of the Chua’s circuit is presented as well as
the corresponding mathematical model with empha-
sis on the cubic nonlinearity. Some basic properties of
the model are underlined. The stability of the equilib-
rium points is analyzed yielding to the possibility of
self-excited oscillations in the oscillator. In Sect. 3,

the bifurcation structures of the system are investi-
gated numerically showing period-doubling and sym-
metry recovering crisis phenomena. A window (in the
parameter space) corresponding to the occurrence of
multiple coexisting attractors is revealed. Correspond-
ingly, basins of attraction of various coexisting solu-
tions are computed showing complex basin boundaries.
Finally, some concluding remarks and proposals for
future work are drawn in Sect. 4.

2 Description and analysis of the model

2.1 The model

The schematic diagram of Chua’s oscillator is shown in
Fig. 1. It consists of a pair of capacitors (C1,C2), a pair
of resistors (R0, R), a single inductor L and a nonlin-
ear resistor NR . This oscillator is obtained by adding a
linear resistor in series with the inductor in the original
Chua’s circuit [16–19]. The circuit is described by the
following third-order nonlinear system (also referred
to as Chua’s equation):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dυ1
dt = 1

C1
[G (υ2 − υ1) − g (υ1)]

dυ2
dt = 1

C2
[G (υ2 − υ1) + i3]

di3
dt = − 1

L (υ2 + R0i3)

(1)

where g (.) is the υ − i characteristic of the nonlinear
resistor (Chua’s diode) NR which typical υ − i charac-
teristic is given by a piecewise-linear function:

g (υ1)=Gbυ1 + 1

2
(Ga − Gb) {|υ1 + E | − |υ1 − E |}

(2)

3i

L 1C2C 2v 1v

1R
G

Rv

RN

Ri0R

Fig. 1 Schematic diagram of Chua’s oscillator

123



On the dynamics of Chua’s oscillator with a smooth cubic nonlinearity 365

With the following change of variables and parameters,

x = υ1

E
, y = υ2

E
, z = i3

R

E
, α = C2

C1
, β = R2C2

L
,

γ = RR0C2

L
, m0 = RGa, m1 = RGb

k = 1 if RC2 > 0; k = −1 if RC2 < 0 (3)

the following dimensionless version ofChua’s equation
is obtained:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dx
dt = kα (y − x − f (x))

dy
dt = k (x − y + z)

dz
dt = k (−βy − γ z)

(4)

where the nonlinear function f (.) is defined as:

f (x) = m1x + 1

2
(m0 − m1) (|x + 1| − |x − 1|) (5)

Briefly recall that Chua’s oscillator can produce an
immensely rich variety of chaotic attractors and bifur-
cation scenarios and is structurally the simplest, but
the most complex member of the Chua’s circuit family
fromadynamical viewpoint.As previouslymentioned,
the unique nonlinearity in Chua’s oscillator is the
Chua’s diode whose characteristic is mostly assumed
piecewise-linear. The piecewise-linear nonlinearity has
some advantages with respect to a rigorous mathemati-
cal analysis and many works have focussed on the real-
ization of Chua’s diode with the piecewise-linear non-
linearity by real circuits. It should also be mentioned
that the only known rigorous proof that Chua’s circuit
has a chaotic attractor depends crucially on the choice
of a piecewise-linear function. However, the character-
istics of nonlinear resistors in real circuits are always
smooth [18,19]. Thus, it is interesting to consider the
dynamics of Chua’s oscillator with a smooth nonlin-
earity [17–20]. One of the smooth function candi-
dates (amongmany others) similar to the original three-
segment piecewise-linear nonlinearity is a cubic poly-
nomial. In this work, we consider the Chua’s equation
(4) where the original piecewise-linear nonlinearity is
replaced with a cubic nonlinearity defined by:

f (x) = ax3 + bx (6)

In the mathematical model considered throughout this
paper [(Chua’s equations (4) and (6)], six parameters

can be identified. However, to better concentrate on the
phenomenon of multiple attractors experienced by the
Chua’s oscillator, five of them will be kept constant
(inspired by Ref. [19]) during all the numerical analy-
sis: k = −1, β = 53.612186, γ = −0.75087096, a =
−0.0375582129, b = −0.8415410391. Therefore,
unless otherwise mentioned, the bifurcation analysis
of the model will be carried out in terms of the single
control parameter α.

2.2 Symmetry

System (4) is invariant under the transformation:
(x, y, z) ⇔ (−x,−y,−z). Thus, if (x, y, z) is a solu-
tion of system (4) for a fixed set of parameters val-
ues, then (−x,−y,−z) is also a solution for the same
parameters set. A solution of (4) that is invariant under
the above transformation is referred to as symmetric
solution; otherwise, it is called an asymmetric solu-
tion. The equilibrium point E0 (0, 0, 0) is a trivial sym-
metric static solution. Consequently, attractors in state
space have to be symmetric by inversion with respect
to the origin; otherwise, they must appear in pairs, to
restore the exact symmetry of the model equations.
This exact symmetry could be exploited to explain the
occurrence of multiple co-existing attractors in state
space. Furthermore, it may be helpful to check the
integration scheme (i.e., algorithm) used for numerical
calculations.

2.3 Fixed point analysis

It is well known that the equilibrium points play a cru-
cial role on the dynamics of a nonlinear system [24–26].
By setting the right hand side of system (4) to zero, it
can easily be shown that there are three fixed points:

E0 = (0, 0, 0) and E1,2 =
(
±η,

±ηγ
β+γ

,
∓ηβ
β+γ

)
with η

expressed as follows η =
√

1
a

(
γ

β+γ
− 1 − b

)
. Note

that E1 and E2 are symmetric with respect to the ori-
gin; consequently, they share the same stability prop-
erties. It should also be mentioned that the location in
state space of the three fixed points is independent of
the control parameter α. The Jacobian matrix of sys-
tem (4) evaluated at any equilibrium point (x̄, ȳ, z̄) is
expressed as follows:
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Fig. 2 Eigenvalues locus (a) related to the origin E0 (0, 0, 0)
[(resp. (b) to the nontrivial equilibria E1,2] obtained with 1 ≤
α ≤ 20. it can be seen that there is always at least a branch of

eigenvalues with positive real part, thus both three equilibria are
unstable suggesting the possibility of self-excited oscillations in
the system

MJ =
⎡

⎣
α

(
1 + b + 3ax̄2

) −α 0
−1 1 −1
0 β γ

⎤

⎦ (7)

The eigenvalues related to the above matrix can be
obtained by solving the following characteristic equa-
tion (det(MJ − λId) = 0):

λ3 + c2λ
2 + c1λ + c0 = 0 (8a)

c2 = −1 − γ − α
(
1 + b + 3ax̄2

)
(8b)

c1 = β − α + γ + α (1 + γ )
(
1 + b + 3ax̄2

)
(8c)

c0 = αγ − α (β + γ )
(
1 + b + 3ax̄2

)
(8d)

where Id is the 3 × 3 identity matrix. Following the
Routh–Hurwitz stability criterion [26], we have found
that any equilibrium point (x̄, ȳ, z̄) is stable if the fol-
lowing inequalities are satisfied:

ci > 0 (i = 0, 1, 2) , c1c2 − c0 > 0 (9)

With the parameters’ setting defined above, we have
plotted the eigenvalues locus (see Fig. 2a, b) related to
the trivial equilibrium point E0 (0, 0, 0) (resp. the non-
trivial equilibria E1,2) when the control parameter α is
varied in the range 1 ≤ α ≤ 20. In light of the graphs
in Fig. 2, it can be noted that there is always at least a
branch of eigenvalues with positive real part, thus both
three equilibria are unstable and the system generates
self-excited oscillations [27,28]. For instance, consid-

Fig. 3 Bifurcation diagram (a) showing local maxima of the
coordinatex versus α and the corresponding graph (b) of largest
Lyapunov exponent (λmax) plotted in the range 15 ≤ α ≤ 20
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On the dynamics of Chua’s oscillator with a smooth cubic nonlinearity 367

Fig. 4 Phase space trajectories (left) and corresponding fre-
quency spectra (right) showing routes to chaos in the system
for varyingα: a Period-1 for α = 15, b period-2 for α = 16.4, c
period-4 forα = 16.65,d single band spiraling chaos forα = 17,

e period-5 cycle for α = 18.50, f double-band chaotic attractor
for α = 20. Pairs of asymmetric attractors are obtained using
(non-critical) initial conditions (x (0) , y (0), z (0)) = (±2, 0, 0)

123



368 J. Kengne

Fig. 4 continued
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On the dynamics of Chua’s oscillator with a smooth cubic nonlinearity 369

Fig. 5 Two-dimensional projections of the double-band chaotic attractor (a–c) illustrating the complexity of the system and corre-
sponding double-sided Poincaré section (d) in the planez = 0. Parameters are those in Fig. 4f

ering the particular case of α = 16.615 for which the
system develops four distinct (chaotic and periodic)
attractors (see Sect. 4) the eigenvalues evaluated at E0

are λ1 = 3.7684, λ2,3 = −0.4432± j6.3282, whereas
those at E1,2 are λ1 = −6.9752, λ2,3 = 0.6254 ±
j6.5644. This clearly shows that the three fixed points
are all unstable (presence of eigenvalues with positive
real part) in the regime of multiple attractors, which is
typical of self-excited oscillations [27,28].

3 Numerical study

3.1 Computational methods

To explore the rich variety of bifurcationmodes that can
be observed in ourmodel, we solve numerically system

(4) using the classical fourth-order Runge–Kutta inte-
gration scheme. For each set of parameters used in this
work, the time grid is always fixed to �t = 2 × 10−3,
the system is integrated for a sufficiently long time and
the transient is discarded. Twomain indicators are sub-
stantially exploited to highlight the type of scenario
leading to chaos. The bifurcation diagram represents
the first indicator, the second indicator consisting of
the graph of largest one-dimensional Lyapunov expo-
nent (λmax). Following the latter indicator, the behav-
ior of the system is categorized based on its Lyapunov
exponent which is computed numerically by using the
reliable algorithm proposed by Wolf et al. [29]. In par-
ticular, the sign of the largest Lyapunov exponent deter-
mines the growth rate of almost all small perturbations
to the system’s state, and thus, the nature of the under-
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Fig. 6 Bifurcation diagrams (a, b) showing local maxima of
the coordinate x obtained respectively for varying β andγ : a
α = 20, γ = −0.75087096, b α = 20, β = 53.612186. Both
diagrams showperiod-doublingphenomenon, periodicwindows,
and symmetry restoring crisis scenarios

lined attractor. For λmax < 0 all perturbations vanish
and trajectories starting sufficiently close to each other
converge to the same stable fixed point in state space;
for λmax = 0, initially close orbits remain close but dis-
tinct, corresponding to oscillatory motions on a limit
cycle or torus; and finally for λmax > 0, small per-
turbations grow exponentially, and the system behaves
chaotically within the folded space of a strange attrac-
tor. To gain further insight about the complex behavior
of the Chua’s oscillator with cubic nonlinearity, we plot
the Poincaré sections of attractors as well as basins of
attraction in case of coexisting solutions. In the para-
meters’ space, both forward and backward bifurca-
tions diagrams are produced to localize windows of

Fig. 7 Enlargement of the bifurcation diagram of Fig. 3 show-
ing the region in which the model develops multiple coexisting
attractors. This region corresponds to values of α in the ranges
16.375 ≤ α ≤ 17 and 16.91 ≤ α ≤ 16.92. Two sets of data cor-
responding respectively to increasing (magenta) and decreasing
(blue) values of the bifurcation control parameter α are superim-
posed. (Color figure online)

co-existing multiple attractors (i.e., coexisting bifurca-
tions).

3.2 Route to chaos

As earlier mentioned, parameter α serves as the main
bifurcation control parameter for the Chua’s equation,
the rest of parameters being fixed as in Sect. 2. The
range 0 ≤ α ≤ 20.0 is considered. It is found that
the Chua’s oscillator under investigation can experi-
ence very rich and striking bifurcation structures when
slowly monitoring the bifurcation parameter. Sample
results showing the bifurcation diagram for varying α
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Fig. 8 Coexistence of four different attractors (a pair of period-2 limit cycles and a pair of period-3 attractors) for α = 16.38. Initial
conditions (x(0), y(0), z(0)) are (±0.01,±0.01,±0.01) and (±0.1,±0.1,±0.1) respectively

and the corresponding graph of largest 1D Lyapunov
exponent are depicted in Fig. (3a, b), respectively. The
bifurcation diagram is constructed by plotting local
maxima of the coordinate x (τ ) in terms of the bifurca-
tion control parameter that is increased (or decreased)
in small steps in the range 1.0 ≤ α ≤ 20.0. The final
state at each iteration of the bifurcation control para-
meter serves as the initial state for the next iteration.
This strategy represents a simple way to identify the
domain/zone in which Chua’s oscillator develops mul-
tiple coexisting attractors (see Sect. 4). In light of the
graphs in Fig. (3a, b), the following bifurcation sce-
narios can be captured when the bifurcation control
parameter α is increased in tiny steps. First, for values
of α lower than the critical values αcr1 = 15.90, the
system displays a limit cycle motion. When increas-

ing the control parameter α past this critical value, the
stable period-1 limit cycle undergoes a series of period-
doubling bifurcations culminating to a single-scroll
spiraling chaotic attractor. Further increasing α up to
αcr2 ≈ 17.95, the spiraling chaotic attractor suddenly
collapses, giving rise to a period-5 limit cycle. The
period-5 window lies in the range 17.95 ≤ α ≤ 18.91.
Past the critical value αcr3 ≈ 18.91, the period-5
limit cycle suddenly converts to a double-scroll chaotic
attractor. A very good coincidence can be captured
between the bifurcation diagram and the graph of the
largest Lyapunov exponent (λmax). Using the same
set of parameters in Fig. 3, some sample numerical
phase portraits as well as corresponding time wave-
forms were computed to confirm different bifurcation
sequences observed previously (see Fig. 4). Asymmet-
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372 J. Kengne

Fig. 9 Coexistence of four different attractors (a pair of period-4 limit cycles and a pair of chaotic attractors) for α = 16.615. Initial
conditions (x(0), y(0), z(0)) are (±0.01,±0.01,±0.01) and (±0.1,±0.1,±0.1) respectively

ric attractors pairs are observed in Fig. 4a(i)–e(i), while
a double-scroll strange attractor is depicted in Fig. 4f(i).
To gainmore insight about the complexity of the attrac-
tor depicted in Fig. 4f(i), some two-dimensional projec-
tions are shown in Fig. 5. Correspondingly, the (double-
sided) Poincaré section of the attractor is depicted in
Fig. 5d. The shape of this Poincaré section is typical of
chaotic attractors.

The period-doubling scenario to chaos and the sym-
metry restoring crisis are observed when using β or γ

as bifurcation control parameter (see Fig. 6a, b).

3.3 Occurrence of multiple attractors

Despite the procedure (i.e., upward and backward
continuation techniques) used to produce the bifur-

cation diagram of Fig. 3, no coexisting bifurcations
can be captured. However, with reference to the
enlargement of the same diagram shown in Fig. 7a,
a window of hysteretic dynamics (and thus multiple
stability) can be identified in the range 16.375 ≤
α ≤ 16.620 (see Fig. 7a). In the graph in Fig. 7a,
two sets of data (magenta and blue) are superim-
posed. The diagram in blue is obtained for increas-
ing values of parameter α starting from the initial
point(α = 16.375, x (0) = y (0) = z (0) = 0.1),while
the one in magenta is obtained for decreasing values of
α starting from the initial point(α = 17.0, x (0) =
y (0) = z (0) = 0.1). In both cases, the final state
at each iteration of the bifurcation control parame-
ter α serves as the initial state for the next iteration.
The graphs of largest Lyapunov exponent depicted
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Fig. 10 Coexistence of four different attractors (a pair of period-5 limit cycles and a pair of chaotic attractors) for α = 16.92. Initial
conditions (x(0), y(0), z(0)) are (±1,±1,∓0.25) and (±0.1,±0.1,±0.1) respectively

in Fig. 7b are computed using the same procedure
described above. For values of α within the range
16.375 ≤ α ≤ 16.620, the steady state dynamics
of the oscillator depends on initial states, thus giving
rise to the striking phenomenon of multiple attractors.
Up to four different attractors (see Figs. 8, 9 and 10)
can be found depending uniquely on the selection of
initial conditions. For instance, the regular phase por-
traits (i.e., period-4 limit cycles) of Fig. (9a, b) can be
obtained under the initial conditionsx (0) = 0, y (0) =
0, z (0) = ±0.1; using the initial state x (0) = 0,
y (0) = 0, z (0) = ±1, a completely different attrac-
tors (i.e., chaotic attractors) are obtained in Fig. (9c,
d). Therefore, using the same parameters setting in
Fig. 9 and performing a scan of initial conditions (see
Fig. 11), we have defined the set of initial conditions

in which each attractor can be found. The complex-
ity of the basin boundaries is clearly highlighted in
Fig. 11 where cross sections of the basins of attraction
are presented, respectively, for x (0) = 0, y (0) = 0,
and z (0) = 0 related to the symmetric pair of limit
cycles (blue and yellow) and the pair of chaotic attrac-
tors (green and magenta). Zones of unbounded motion
are marked with red color. It ought to be stressed that,
to the best of the author’s knowledge, the striking phe-
nomenon of multiple stability involving four discon-
nected coexisting attractors, previously reported in the
Leipnik–Newton system [6] and very recently in some
simple models such as the linear transformation of jerk
system Model MO5 [11], the memristor-based Shin-
riki’s oscillator [23], and the autonomous 3D Duffing
Holmes type oscillator has not yet been reported in the
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374 J. Kengne

Fig. 11 Cross sections of the basin of attraction for x(0) =
0, y(0) = 0 and z(0) = 0 respectively corresponding to the
asymmetric pair of period-4 cycle (blue and yellow) and the
pair of chaotic attractors (green and magenta) obtained for
α = 16.615. Red regions correspond to unbounded dynamics.
(Color figure online)

Chua’s oscillator [22], and thus represents an enrich-
ing contribution related to the dynamics of Chua’s cir-
cuit family in general. Another situation involving the
coexistence of infinitely many attractors (also called
extreme multistability), arising in coupled dynamical
systems was recently investigated by Hens et al. [30].
The occurrence of multiple co-existing attractors is an
additional source of randomness; also some potential
exploitation includes, for instance, chaos-based com-
munication as well as random bit generation. However,
this singular type of behavior is not desirable in general,
and may justify the need for control. Detailed analysis
on this line is out of the scope of this work; also, we
refer the reader to the interesting review work on con-
trol of multistability by Pisarshik and Feudel [31].

4 Concluding remarks

This paper has considered the dynamics of Chua’s cir-
cuit with a smooth cubic nonlinearity (instead of the
traditional piecewise-linear one). Using standard non-
linear analysis techniques such as bifurcation diagrams,
Lyapunov exponent plots, time series, and Poincaré
sections, the complex behavior of the model has been
characterized in terms of its parameters. The bifur-
cation analysis yields the classical period-doubling,
symmetry recovering crises events, and periodic win-
dows when adjusting the bifurcation control parameter
in tiny ranges. As a major result, it is found numeri-
cally that Chua’s circuit with a smooth cubic nonlin-
earity experiences the unusual and striking feature of
multiple coexisting attractors (i.e., coexistence of four
disconnected non-static periodic and chaotic attractors
depending only on initial states) for a wide range of
circuit parameters values. To the best of the author’s
knowledge, the coexistence of four different non-static
attractors has not yet been reported in Chua’s circuit
despite the huge amount of related research literature.
However, it should be pointed out that the occurrence
ofmultiple attractors depends crucially on the choice of
nonlinearity as well as parameters [32]. Correspond-
ingly, interesting phenomena such as the occurrence of
multi-scroll attractors are reported in the Chua’s oscil-
lator [32] and Jerk circuits [33] when using a sinusoidal
nonlinearity.
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On the dynamics of Chua’s oscillator with a smooth cubic nonlinearity 375

The results obtained in this work let us conjec-
ture that some striking behaviors of Chua’s circuit still
remain unknown. Detailed exploration of the para-
meter space (both theoretically and experimentally)
with the aim of revealing all regions in which the phe-
nomenon of coexistence of multiple attractors occurs
deserves further studies.
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