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Abstract In this paper, two efficient cryptosystem
schemes in the form of permutation–substitution based
on chaotic systems are proposed. Firstly, a simple and
efficient S-boxmethod is introduced in order to use this
S-box designed scheme in secure color image encryp-
tion technique. The major advantage of the proposed
strategy is the dynamic aspect of keys used by chaotic
map to generate strong S-boxes. Secondly, an efficient
color encryption scheme based on chaotic maps and S-
boxes in the form of permutation–substitution network
is developed. Experimental results show the effective-
ness of the proposed schemes. The suggested cryp-
tosystems have superior performance and great poten-
tial for prominent prevalence in cryptographic applica-
tions compared to previous schemes.
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1 Introduction

The chaotic system has various ultimate features, such
as ergodicity, sensitivity to preliminary condition. It
also exhibits random behavior, which can be applied to
the field of cryptography [1]. The behavior of chaotic
maps is predictable only if the control parameters and
the initial conditions are known to the observer [2,3].
The chaotic behaviors in the dynamical systems can be
used to infer the diffusion and confusion in the plain
images, thus safely transmitting the confidential data
over telecommunication channels. Therefore, it is a
standard indication to use chaos to enhance the strategy
of novel cryptosystems.

In block cryptosystem schemes, the original data are
distributed into blocks of the same size, and the encryp-
tion is carried out for the complete block. Two wide-
ranging ideas of block encryptionwhichwere proposed
by Shannon are confusion and diffusion. The diffu-
sion consists in scattering the effect of plaintext bits to
ciphertext bits to obscure the statistical configuration of
the plaintext. Confusion is the transformation in which
information of ciphertext alters according to the alter-
ation of the plaintext information. In most cryptosys-
tems structures, diffusion and confusion are attained by
means of round recurrence. Modern block encryptions
comprise four conversions: substitution, permutation,
mixing, and key adding [4–10,13–17].

Substitution boxes, or simply S-boxes, are used in
substitution permutation cipher structures as the essen-
tial nonlinear element that ensures confusion property
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of the block ciphers [18–22]. A robust block cipher
must be hardy to numerous attacks, such as linear and
differential cryptanalysis. In strong substitution per-
mutation systems, S-boxes should satisfy a number of
measures. The S-box functioning in encryption proce-
dure could be selected under the control of key, as a sub-
stitute of being static. Several random key-dependent
and bijective S-boxes are generated for encryption
applications, which satisfy the selected standards [23–
28,30–36].

Previous image encryption approaches have many
defects in their internal structures and most of them
present vulnerabilities and hence attacks become eas-
ier and practically feasible [11,19,45,47,48]. Li et al.,
analyzed the encryption scheme proposed in [12] and
found that the position permutation-only part and the
substitution part can be broken by chosen-plaintext
attack [11]. Zhang et al. [19] analyzed the security
of an image encryption algorithm based on percep-
tion model [21] and found that the equivalent secret
key can be reconstructed with only one pair of known
plaintext/ciphertext. Norouzi et al. proposed a hyper-
chaotic system-based image cipherwith only one round
diffusion process [44]. However, in [45], Zhang et
al. found that the scheme can be effectively broken
with known-plaintext and chosen-plaintext attacks. The
combination of chaos and DNA is employed for many
image ciphers. SaberiKamarposhti et al. [46] intro-
duced an image cipher based on three-cell chaotic
map and DNA. Recently, Zhang et al. [47] have ana-
lyzed the scheme and found that it can be deci-
phered by a chosen-plaintext attack. Lately, Liu et
al. [48] have analyzed the encryption scheme that uses
a single-round modified permutation–diffusion pattern
(ICMPD) in their internal structure. They report that
ICMPD suffers from the weakness against chosen-
plaintext attack. Therefore, the need of designing better
cipher schemes based on S-boxes and chaos is essen-
tial for encryption applications and stimulating further
development.

In this paper, an efficient S-box method based on
chaotic logistic-sine map is proposed. Then, using the
proposed S-box method, a new color image encryp-
tion scheme based on chaotic permutation–substitution
network and S-boxes is presented. First, a chaotic cat
map is used to shuffle the original image. Then, a sub-
stitution algorithm based on the suggested S-box is
introduced to substitute the shuffled image in order
to guarantee the nonlinearity in the generated image.

To enhance the security, a diffusion process is done
using keystream extracted from a combination of a
chaotic logistic-Chebyshev map and the substituted
image. Finally, a permutation method is carried out
by chaotic sine-Chebyshev map in increasing the per-
formance of the resulted image. Conducted tests show
that the proposed S-boxmethod has better performance
than other S-boxes. Moreover, the results of crypto-
graphic analyses demonstrate that the proposed chaos-
based image encryption algorithm outperforms the cur-
rent image cipher algorithms in terms of security and
performance.

The rest of this paper is organized as follows:
Sect. 2 outlines the preliminary work for the pro-
posed approaches. In Sect. 3, we introduce the pro-
posed method for the construction of strong S-box
based on chaotic map. In Sect. 4, the criteria for
evaluating S-box are briefly presented and the per-
formance of the proposed S-box is evaluated and
compared with other chaos-based S-boxes. The pro-
posed encryption scheme and its performance analy-
ses are presented in Sect. 5. Security and perfor-
mance analysis of S-box-only chaotic image ciphers
are investigated in Sect. 6. Finally, Sect. 7 concludes the
paper.

2 The preliminary work

2.1 The logistic-sine map

The logistic-sine map is 1-D chaotic map defined as:

xn+1 =
(
α(xn − x2n ) + (4 − α) sin(πxn)/4

)
mod 1,

(1)

where α is the system parameter α ∈ [0, 4], and x0 is
the initial condition. In [37], many experiments were
conducted to prove that the logistic-sinemap is chaotic.
Figure 1 shows the bifurcation diagram of a logistic-
sine map with α ∈ [0, 4]. It is well revealed from
the bifurcation diagram that the logistic-sine is purely
chaotic. The reason for choosing logistic-sine map is
its simplicity compared to some other chaotic systems
with assurance of higher level of security.

Note: Iterating the logistic-sine map with (α, x0)
pair means iterating it with control parameter α and
initial condition x0.
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Fig. 1 Bifurcation diagram of the logistic-sine map

Fig. 2 Bifurcation diagram of the logistic-Chebyshev map

2.2 The logistic-Chebyshev

The logistic-Chebyshev map (denoted as LCbv) is a
chaotic system that uses the logistic and Chebyshev as
seed maps. The definition of LCbv can be described by
Eq. (2). Figure 2 shows the Hopf bifurcation diagram
of the LCbv.

yn+1 = (λyn(1 − yn)

+ (4 − λ) cos(b. arccos(yn))/4) mod 1, (2)

where λ is the system parameter λ ∈ [0, 4], y0 is an
initial seed, and b ∈Ndenotes the degree of the Cheby-
shev map.

Fig. 3 Bifurcation diagram of the sine-Chebyshev map

2.3 The sine-Chebyshev

The sine-Chebyshev map (denoted as SCbv) is a
chaotic system that uses the sine and Chebyshev as
seed maps. The definition of SCbv can be described by
Eq. (3). Figure 3 shows the Hopf bifurcation diagram
of the SCbv.

yn+1 = (λ sin(πyn) + (4 − λ) cos(b. arccos(yn))/4)

mod1, (3)

where λ is the system parameter λ ∈ [0, 4], y0 is an
initial seed, and b ∈Ndenotes the degree of the Cheby-
shev map.

2.4 2D toral automorphism

The 2D toral automorphism is a function defined as
[29]:(
ui+1

vi+1

)
=

(
b11 b12
b21 b22

) (
ui
vi

)
mod (1),

i = 0, 1, 2, . . . (4)

If the continuous coordinates ui , vi in the unit square
is replaced by the indices xi , yi in the discrete lattice
of width M , the generalized discretized toral automor-
phism can be defined as

(
xi+1

yi+1

)
=

(
b11 b12
b21 b22

)(
xi
yi

)
mod (M) (5)

If b11 = 1, b22 = 1 + b12b21 then the generalized
discretized toral automorphism is reduced to the gen-
eralized discretized cat map as follows:
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Table 1 The example of
four-bit gray code and
bit-reversed order
transformations

Rank Binary
representation

Gray
number

Bit-reversed
order

Decimal
representation

0 0000 0000 0000 0

1 0001 0001 1000 8

2 0010 0011 1100 12

3 0011 0010 0100 4

4 0100 0110 0110 6

5 0101 0111 1110 14

6 0110 0101 1010 10

7 0111 0100 0010 2

(
xi+1

yi+1

)
=

(
1 b12
b21 b12b21 + 1

) (
xi
yi

)
mod (M) (6)

The above chaotic map has a period Γ for the parame-
ters b12, b21 and M , which mean:

(
1 b12
b21 b12b21 + 1

)T

≡
(
1 0
0 1

)
mod (M) (7)

To avoid the weak keys of the above map Eq. (6), the
following equation is desirable [30]

(
xi+1

yi+1

)
=

(
1 1
1 2

) (
xi
yi

)
mod (M) (8)

Where M is the modulo of the map and it is preferable
to be square like 64, 128, 256 or 512 in order to have a
good performance.

2.5 Gray code

The gray code is an alternative binary representation so
that each two successive values differ only in a single
bit. This property has been found gainful in security
field. The gray code representation of a number c is
given by the transformation G defined by Eq. (9):

G(c) = c ⊕ (c >> 1), (9)

where ⊕ is the binary XOR operation, and >> rep-
resents the binary right shift. Let � be the bit reversal
order function that reverses the order of bits, so the
least significant bit becomes the most significant one
as shown in Eq. (10):

{
� : �n →�n

c0c1 . . . cn−1→�(c0c1 . . . cn−1)=cn−1cn−2 . . . c0,

(10)

The gray codes corresponding to the first eight nonneg-
ative integers and their bit-reversed order transforma-
tions are given in Table 1.

3 The proposed substitution box

In this section, we propose a novel method for the
construction of S-boxes based on chaotic map. The
new method makes full use of the traits of the chaotic
logistic-sine map to construct strong S-boxes. Experi-
mental results and performance analyses demonstrate
that the proposed method is efficient and has good
cipher properties compared to previous methods.

3.1 Review of the recently proposed S-boxes related
to the proposed scheme

A short overview of the main chaos-based S-boxes
proposed recently is given hereafter. In [1], Jakimoski
and Kocarev presented a four-step method to gener-
ate S-boxes based on chaotic maps. In another con-
struction method based on a chaotic map [23], Tang
et al. proposed an approach for generating S-boxes
based on a 2D discretized chaotic map. In [24], Chen
et al. improved the scheme proposed in [23] using a
three-dimensional Backer map. In [25], Ozkaynak et
al. proposed a method for designing an S-box based
on chaotic Lorenz system. Another method for design-
ing substitution boxes based on chaotic Lorenz sys-
tem was introduced in [26]. Hussain et al. presented
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Efficient cryptosystem approaches 341

a projective general linear group-based algorithm for
the generation of S-boxes for block ciphers [27]. In
[28], Khan et al. proposed another method for the con-
struction of S-boxes to be used in block cipher with
multi-chaotic systems. Furthermore, several methods
of S-boxes have been proposed very recently as a devel-
opment of image cryptography field based on chaotic
systems [31–36].

3.2 The proposed method for generating n × n S-box

The proposed approach of S-box construction is desc-
ribed by the following steps:

Step 1 Iterate the logistic-sine map 256 times with
(λ0, f0) pair to produce the chaotic sequence
A (1 × 256).

Step 2 Calculate the sequence P (1 × 256) according
to Eq. (11).

P(i) = A(1) − A(i) 1 ≤ i ≤ 256, (11)

Step3Put in ascendingorder the elements of P(1×256)
to obtain the sequence M(1 × 256). Then, determine
the sequence Q(1×256), which contains the order of
each element of M (1×256) in P(1×256).

Step 4 Calculate the code sequence B(1×256) and
the sequence N (1×256) according to Eqs. (12), (13),
respectively.

B(i) = Q(i) − 1 1 ≤ i ≤ 256, (12)

N (i) = A(256) − A(i) 1 ≤ i ≤ 256, (13)

Step 5 Put in ascending order the elements of N
(1×256) and produce the sequence K (1 × 256). Then,
determine the order of each element of K (1×256) in N
(1×256) in order to obtain the sequence R(1×256).
After that, calculate the code sequence S(1×256)
according to Eq. (14).

S(i) = R(i) − 1 1 ≤ i ≤ 256 (14)

Step 6 Permute the elements of B(1×256) according
to the elements of sequence S(1 × 256) and generate
the sequence Z (1×256). In fact, the first element of B
is assigned to element number S (1) in sequence Z , the
second element of B is assigned to element number S

(2) in sequence Z…the i th element of B is assigned to
element number S(i) in sequence Z .

Step 7 Apply the gray code defined in Eq. (9), and
the bit reversal order function given by Eq. (10) to
each element of sequence Z to obtain a new sequence
W (1×256).

Step 8 TranslateW (1×256) into n×n S-box SB(16×
16).

In our experiments, λ0 = 3.6034099541280193;
f0 = 0.22784293570604186.
The block diagram of the proposed S-box is shown

in Fig. 4.
The generated S-box is presented in Table 2.

4 Performance analysis of the proposed S-box

Efficient substitution boxes should satisfy some spe-
cific cryptographic criteria, such as bijective, nonlinear-
ity, outputs bit independence, strict avalanche and lin-
ear approximation probability [23–27]. Here, we give a
detailed analysis of the proposed S-box in terms of the
aforementioned cryptographic properties. Some chaos-
based S-boxes presented in [1,23–26,28], were chosen
to be compared with our S-box.

4.1 Bijective property

An n × n S-box is bijective if all its different output
values are within the interval

[
0, 2n − 1

]
[24–28]. Our

generated S-box has different output values within the
interval [0, 255]. Therefore, it accept the bijective cri-
terion.

4.2 Nonlinearity criterion

The nonlinearity of a Boolean function h(x) can be
represented by the Walsh spectrum (WS)

Nh = 2n−1
(
1 − 2−n max

χ∈GF(2n)
|S≺h�(χ)|

)
(15)

The WS of h(x) is defined as:

S<h>(χ) =
∑

x∈GF(2n)

(−1)h(x)⊕x .χ (16)
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Fig. 4 Block diagram of the proposed S-box

where χ ∈ GF(2n) and x .χ means the dot product of
x and χ , which is given by:

x .χ = x1 ⊕ χ1 + · · · + xn ⊕ χn .

The nonlinearities of the generated S-box and S-boxes
studied in [1,23–26,28] are shown in Table 3. It is
observed that the mean value obtained from the sug-
gested method is better than those of the other S-boxes.

4.3 Strict avalanche criterion

The strict avalanche criterion (SAC), firstly published
byWebster andTavares [38], indicate thatwhen a single
input bit is complemented, all of the output bits change
with a probability of a half.

The S-box satisfies the SAC, if each value of the
dependence matrix [38] is approximately equal to 0.5.

Table 4 gives the values of the dependence matrix for
the generated S-box. FromTable 4, we can see the aver-
age value is 0.4956 ≈ 0.5. The comparison of SAC of
different S-boxes is displayed in Table 5. The results
given in Tables 4 and 5 demonstrate the efficiency of
the proposed S-box.

4.4 Statistical curve analysis of the proposed S-box

In this subsection, we mainly discuss the curve fit-
ting of our proposed S-box. We drew the Chi-square
and binomial distribution (Fig. 5a and b, respectively)
of our suggested nonlinear component for the block
cipher. Both these curves show symmetrical shapes,
with respect to average values which clearly reflect the
non-repeating and uniqueness of each values in the S-
box design. The analyses of this S-box have not been
devised in the literature so far.
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Table 2 The S-box generated by the proposed algorithm

147 36 102 192 179 152 209 244 131 182 173 222 5 168 113 176

43 96 155 198 74 8 167 181 117 76 163 106 151 6 77 75

128 93 38 238 218 150 138 165 81 15 72 134 172 46 195 180

78 223 245 242 109 153 166 170 61 204 146 52 0 32 130 142

247 178 29 57 216 157 53 66 230 47 156 197 116 177 229 111

107 54 169 90 17 228 62 64 162 200 60 79 88 9 44 63

12 50 207 154 124 24 233 18 14 135 59 248 227 71 235 254

31 16 241 1 203 196 87 249 132 10 95 158 159 123 83 231

103 110 125 253 11 19 183 37 205 21 119 129 51 187 215 25

85 97 174 7 220 82 136 39 56 55 221 30 145 234 224 161

58 199 243 73 94 99 250 118 186 27 232 100 143 4 20 70

141 114 188 194 33 13 240 149 91 171 84 189 212 175 3 226

65 126 139 237 160 246 236 252 121 120 137 112 49 251 45 41

28 202 80 34 22 164 185 213 69 148 23 92 219 211 48 104

225 140 101 184 86 89 35 255 239 98 26 40 42 68 133 206

144 193 190 217 208 2 105 122 67 127 210 115 191 108 214 201

Table 3 Nonlinearity of the proposed S-box in comparison with
other S-boxes

S-box Nonlinearity

Min Max Avg.

Proposed S-box 102 108 105.25

Ref. [1] 98 108 103.2

Ref. [23] 99 106 103.3

Ref. [24] 100 106 103

Ref. [25] 100 106 103.2

Ref. [26] 102 108 104.7

Ref. [28] 96 106 103

4.5 Output bits independence criterion (BIC)

BICmeans that all the avalanche variablesmust be pair-
wise independent for a given set of avalanche vectors by

Table 5 SAC of the proposed S-box in comparison with other
S-boxes

S-box SAC

Min Max Avg.

Proposed S-box 0.4297 0.5313 0.4956

Ref. [1] 0.3671 0.5975 0.5058

Ref. [23] 0.4140 0.6015 0.4987

Ref. [24] 0.4218 0.6093 0.5000

Ref. [25] 0.4218 0.5937 0.5048

Ref. [26] 0.3906 0.5937 0.5056

Ref. [28] 0.3906 0.6250 0.5039

complementing a single bit [38]. The correlation coef-
ficient between the couples is applied to measure the
degree of independence between the avalanche variable
couples.

Table 4 The SAC values of
the generated S-box 0.5000 0.4922 0.5000 0.5000 0.5313 0.5156 0.4844 0.5156

0.5000 0.5078 0.5000 0.4922 0.5000 0.5000 0.5000 0.5000

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4844 0.4844

0.4297 0.5000 0.5000 0.4922 0.5313 0.4844 0.4844 0.4844

0.4297 0.5000 0.4922 0.5000 0.5000 0.5156 0.4844 0.5156

0.5000 0.5000 0.5000 0.4922 0.5000 0.4844 0.4844 0.4844

0.4297 0.5000 0.5078 0.5000 0.4688 0.5000 0.5000 0.5000

0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5156
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Fig. 5 a, b Chi-square and Binomial distributions for the proposed S-box

Table 6 BIC-nonlinearity results for the proposed S-box

– 106 104 102 100 102 102 104

106 – 102 108 104 104 106 102

104 102 – 104 104 104 104 106

102 108 104 – 104 102 104 108

100 104 104 104 – 100 106 102

102 104 104 102 100 – 106 106

102 106 104 104 106 106 – 100

104 102 106 108 102 106 100 –

Suppose the Boolean functions in the proposed S-
box were h1, h2, . . . , hn , it is denoted in [38] that if the
S-box achieves BIC, h j ⊕ hk( j 
= k, 1 ≤ j, k ≤ n)

should be highly nonlinear and fulfill the avalanche
criterion. Thus, we can calculate the SAC and the non-
linearity of h j ⊕ hk ( j 
= k) to check the BIC of an
S-box.

Tables 6 and 7 give the results of BIC-nonlinearity
and BIC-SAC criteria for the proposed S-box, respec-
tively. As can be seen fromTable 6, themaximumvalue
is 108, the average is 103.8 and the minimum is 100.
Table 7 gives the results of BIC-SAC criterion for the
proposed scheme. The mean value of this criterion is
0.4996. In addition, Table 8 gives the results of compar-
ing BIC-SAC and BIC-nonlinearity. From this Table,
we observe that the values of BIC-SACof the presented
S-box are more advantageous than those of the other S-
boxes, while the proposed S-box and the S-boxes stud-
ied in [1,23–26] have better BIC-nonlinearity property
compared with that proposed in [28].

4.6 The equiprobable input/output XOR distribution

Biham and Shamir presented the idea behind the
equiprobable input/output XOR distribution using
imbalances in the input/output XOR distribution table

Table 7 BIC-SAC results
for the proposed S-box – 0.4911 0.4911 0.5134 0.5123 0.5033 0.5011 0.4944

0.5112 – 0.5089 0.5134 0.5045 0.5045 0.5000 0.5067

0.5067 0.4888 – 0.5045 0.5112 0.4978 0.5067 0.4933

0.4933 0.4799 0.4799 – 0.4955 0.4955 0.4933 0.4866

0.4989 0.4944 0.4967 0.5033 – 0.4955 0.4844 0.5112

0.4967 0.5145 0.4855 0.5078 0.5011 – 0.4944 0.4900

0.4810 0.5011 0.5145 0.4922 0.5045 0.5022 – 0.5156

0.4989 0.5056 0.4922 0.5011 0.5067 0.5000 0.4978 –
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Table 8 BIC of the proposed S-box compared to previous S-
boxes

S-box Mean value of
BIC-nonlinearity

Mean value of
BIC-SAC

Proposed S-box 103.8 0.4996

Ref. [1] 104.2 0.5031

Ref. [23] 103.3 0.4995

Ref. [24] 103.1 0.5024

Ref. [25] 103.7 0.5009

Ref. [26] 104.1 0.5021

Ref. [28] 100.3 0.5010

[39]. Mathematically, the equiprobable input/output
XOR distribution or differential approximation proba-
bility (DP) of a given S-box is estimated by calculating
the differential uniformity as follows:

DPh(	d → 	x)

=
(
# {d ∈ D|h(d) ⊕ h(d ⊕ 	d) = 	x}

2n

)
(17)

where D represents the set of all possible input values,
and 2n is the number of its elements.

Tables 9 and 10 give the differential approach table
and its DP for the proposed S-box. As can be seen from
these tables, the DP of the proposed S-box is 0.039062,
which proves its efficiency against differential attacks.

Table 10 DP for different S-boxes

S-box Maximum DP

Proposed S-box 0.039062

Ref. [1] 0.046875

Ref. [23] 0.039062

Ref. [24] 0.054687

Ref. [25] 0.039062

Ref. [26] 0.046875

Ref. [28] 0.046875

Table 10 shows the DPs of previous S-boxes. To con-
clude, the introduced S-box has a higher performance
than competitive S-boxes.

4.7 Linear approximation probability

The linear approximation probability (LP) is the max-
imum value of the imbalance of an event. The parity
of the input bits selected by mask a is equal to the par-
ity of the output bits selected by mask b. According to
Matsui’s original definition [22], linear approximation
probability is defined by:

LP = max
u,v 
=0

∣∣∣∣
# {d ∈ D|d · u = h(d) · v}

2n
− 1

2

∣∣∣∣ (18)

Table 9 Results of DP for
the generated S-box 6 8 8 6 6 6 6 6 6 6 6 6 6 6 6 6

6 6 6 6 6 6 6 6 8 6 6 6 8 8 6 6

8 6 6 8 8 8 6 8 6 8 6 6 8 8 6 6

8 6 6 6 6 8 8 8 6 8 6 6 6 6 6 6

6 8 6 6 8 6 6 6 6 6 8 6 8 6 8 6

8 4 6 6 8 6 6 6 8 6 6 6 6 6 8 8

10 8 6 6 8 6 6 6 6 6 8 6 6 8 6 8

6 6 6 6 8 6 6 6 8 6 8 6 6 6 8 6

6 6 8 6 8 6 8 6 4 6 6 8 6 10 8 6

8 6 8 10 8 8 6 6 6 8 8 6 6 6 6 6

8 8 10 8 6 6 6 6 6 8 6 6 8 6 8 6

6 6 6 6 6 6 8 6 4 8 8 6 8 8 6 6

8 6 6 8 6 6 6 6 6 4 6 6 8 6 6 6

6 8 6 6 8 10 10 6 10 4 8 6 6 6 6 6

8 10 6 6 4 6 6 8 10 6 6 6 6 8 8 8

8 6 6 6 6 8 6 6 10 6 6 8 6 8 8 −
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Table 11 LP for the proposed S-box in comparison with other
S-boxes

S-box LP

Proposed S-box 0.156200

Ref. [1] 0.128906

Ref. [23] 0.132813

Ref. [24] 0.128906

Ref. [25] 0.128906

Ref. [26] 0.125000

Ref. [28] 0.125000

where u and v are the input and output masks. D is
defined as the set of all possible inputs and 2n is the
number of its elements. The linear approximation prob-
ability of the presented S-box and previous S-boxes
[1,23–26,28] are recorded in Table 11. From this table,
we can conclude that the S-box generated by the pro-
posedmethod has better LP performance than the other
S-boxes.

5 The proposed image encryption algorithm

5.1 Encryption scheme

In this section, we present the proposed encryption
scheme. This cryptosystem is intended to color images
and it contains three rounds; we firstly split the RGB
image into R, G and B components and we set cmpt =
1. Secondly, we permute the R, G andB components by
the catmap function andwe get three shuffledmatrixes.
In order to guarantee the nonlinearity of the proposed
scheme, we substituted each shuffledmatrix by the pro-
posed S-box. Then, we got three substituted matrixes.
Thirdly, to scramble the pixels of the different compo-
nents, we carried out bitwise XOR operation between
each substitutedmatrix and three randommatrixes gen-
erated by logistic-Chebyshev map, then we obtained
three scrambled matrixes. Fourthly, we permute each
scrambled component using three chaotic matrixes
obtained by iterating sine-Chebychev map. So, we got
the results of the first round. Moreover, we updated
the parameters of the logistic-Chebyshev and the sine-
Chebyshev maps, and we set cmpt = cmpt + 1. After
that, we repeated all these operations in a loop until
cmpt ≤ 3. Finally, if cmpt = 4, we combined the
R, G, B components and we get the encrypted image.

The block diagram of the cryptosystem is presented in
Fig. 6.

The whole encryption process consists of the fol-
lowing operation steps.

Step 1 Input 24-bit color image P(M, M, 3), where
M × M are the image dimensionalities of rows and
columns, respectively and set cmpt = 1.

Step 2 Split the RGB image into R, G and B compo-
nents.

Step 3 Block division and permutation
Decompose thematrixes of R, G andB to blocks of size
(m×m). The number of blocks is M×M

m×m . The results of
this decomposition were the matrixes Rd ,Gd and Bd

each created by these blocks with size
(M
m , M

m

)
. Next,

permute each matrix Rd ,Gd and Bd by the use of cat
map function (Eq. 6) and get three permuted matrixes
Rp,Gp and Bp. The permutation procedure is given
by

[
x ′
y′

]
=

(
1 b12
b21 b12b21 + 1

)k [
x
y

]
mod

M

m
(19)

where, x, y = 1, . . . , M
m . The (x, y), (x ′, y′) pairs rep-

resent the coordinates of the block in each decomposed
component and in each permuted component, respec-
tively.

Step 4 Substitution phase
To ensure that the proposed encryption scheme is
secure against known-/chosen-plaintext attacks, a sub-
stitution operation is necessary. Hence, we generated
three S-boxes, denoted by SBi

r , SB
i
g and SB

i
b, using the

method described in Sect. 3, with (λir , f ir ), (λig, f ig) and

(λib, f ib ) pairs, respectively. Then, we substituted the
matrixes Rp,Gp and Bp by SBi

r , SB
i
g and SB

i
b, respec-

tively, to obtain three substituted matrixes Rs,Gs and
Bs .

The parameters
{
λir , f ir , λig, f ig , λ

i
b, f ib

}
i=1,...,Nr

=
(
λij , f ij

) j=r,g,b

i=1,...,Nr
are given as follows:

λir = 0.5 × λi−1
r

+ mod

⎛
⎝

M∑
i=1

M∑
j=1

Rp(i, j), 256)

⎞
⎠/256 × 0.5

f ir = 0.5 × f i−1
r
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Fig. 6 Block diagram of the proposed encryption approach

+ mod

⎛
⎝

M∑
i=1

M∑
j=1

Rp(i, j), 256)

⎞
⎠/256 × 0.5

λig = 0.5 × λi−1
g

+ mod

⎛
⎝

M∑
i=1

M∑
j=1

Gp(i, j), 256)

⎞
⎠/256 × 0.5

f ig = 0.5 × f i−1
g

+ mod

⎛
⎝

M∑
i=1

M∑
j=1

Gp(i, j), 256)

⎞
⎠/256 × 0.5

λib = 0.5 × λi−1
b

+ mod

⎛
⎝

M∑
i=1

M∑
j=1

Bp(i, j), 256)

⎞
⎠/256 × 0.5

f ib = 0.5 × f i−1
b

+ mod

⎛
⎝

M∑
i=1

M∑
j=1

Bp(i, j), 256)

⎞
⎠/256 × 0.5

where, i = 1, . . . , Nr , Nr is the number of the encryp-
tion scheme iteration.

Here, λ0r = λ0g = λ0b = λ0 and f 0r = f 0g = f 0b =
f0.

Step 5 Scrambling phase
Generate three chaotic matrixes xn, yn and zn with size
(M × M) using the logistic-Chebyshev map (Eq. 2) in
the condition of initial values are x0, y0 and z0, and the
system parameters are μ0, μ1 and μ2. Then, map each
chaotic matrix from [0, 1] to {0, 1, 2, . . . , 255} using
the following equations:
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xbn = mod
(
xn10

16, 256
)

(20)

ybn = mod
(
yn10

16, 256
)

(21)

zbn = mod
(
zn10

16, 256
)

(22)

Then, calculate the scrambled components according
to the following formulas:

Rscr = bit xor(Rs, x
b
n ) (23)

Gscr = bit xor(Gs, y
b
n ) (24)

Bscr = bit xor(Bs, z
b
n) (25)

Step 6 Block division and permutation
Decompose the matrixes Rscr ,Gscr and Bscr to blocks
of size (n×n). The number of blocks is then r = M×M

n×n
and get three matrixes Rdd ,Gdd and Bdd each created
by these blocks with size

(M
n , M

n

)
. Then, permute each

matrix Rdd ,Gdd and Bdd by sequences J1, J2 and J3,
respectively to get three permuted matrixes Rpp,Gpp

and Bpp. The sequences J1, J2 and J3 are obtained as
follows:

Iterate the sine-Chebyshev map (Eq. 3) with the ini-
tial conditions g0, g1, g2 and the control parameters
α0, α1 and α2. Therefore, get three chaotic sequences
I1, I2 and I3 which will be mapped to {1, 2, . . . , r}
range to obtain three new sequences J1, J2 and J3.

Step 7 Set cmpt = cmpt + 1. If cmpt ≤ 3 update the
values of x0, y0, z0, g0, g1 and g2 according to Eqs.
(26)–(31):

x0 = 0.1 × x0

+mod(
∑M

i=1
∑M

j=1 Rpp(i, j)2, 256)

256
× 0.9

(26)

y0 = 0.1 × y0

+mod(
∑M

i=1
∑M

j=1 Gpp(i, j)2, 256)

256
× 0.9

(27)

z0 = 0.1 × z0

+mod(
∑M

i=1
∑M

j=1 Bpp(i, j)2, 256)

256
× 0.9

(28)

g0 = 0.1 × g0

+mod(
∑M

i=1
∑M

j=1 Rpp(i, j)2, 256)

256
× 0.9

(29)

g1 = 0.1 × g1

+mod(
∑M

i=1
∑M

j=1 Gpp(i, j)2, 256)

256
× 0.9

(30)

g2 = 0.1 × g2

+mod(
∑M

i=1
∑M

j=1 Bpp(i, j)2, 256)

256
× 0.9

(31)

Then, repeat steps (3)–(6).
Else if cmpt > 3 recover the RGB imageC and this

is the encrypted color image.
The original images and their encrypted imageswith

the proposed cryptosystem are shown in Fig. 7.

5.2 Decryption process

The decryption process, illustrated in Fig. 8, consists
of the following steps:

Note: Set cmpt = 1 and use the last values of x0, y0,
z0, g0, g1 and g2 obtained from the encryption process.

Step 1Split the encrypted color imageC into red, green,
and blue channels denoted by Rc, Gc and Bc, respec-
tively.

Step 2Decompose thematrixes Rc,Gc and Bc to blocks
of size (n×n). Then, obtain three newmatrixes R′

d ,G
′
d

and B ′
d each created by these blocks with size

(M
n , M

n

)
.

Therefore, permute each matrix R′
d , G

′
d and B ′

d by
sequences J−1

1 , J−1
2 and J−1

3 , respectively. Then, get
three permutedmatrixes R′

p,G
′
p and B ′

p. The sequence

J−1
1 , J−1

2 and J−1
3 are the inverse sequences of J1, J2

and J3 obtained in Step 6 of the encryption process.

Step 3 Make bitwise XOR operation between the
matrixes xbn, y

b
n , z

b
n and the permutedmatrixes R′

p,G
′
p,

B ′
p, respectively.

R′
scr = bit xor(R′

p, x
b
n ), (32)

G ′
scr = bit xor(G ′

p, y
b
n ), (33)

B ′
scr = bit xor(B ′

p, z
b
n). (34)

Here, the matrixes xbn , y
b
n , z

b
n are the three chaotic

matrixes generated as in Step 5 of encryption process.

Step 4 Substitute R′
scr ,G

′
scr and B ′

scr with the inverse
S-boxes of SBi

r , SB
i
g and SBi

b (Here, i = Nr , . . . , 1),
respectively. The outputs of this step are the matrixes
R′
s , G

′
s and B ′

s .
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Fig. 7 a–c Plain images and their encrypted images d–f, respectively

Step 5Decompose thematrixes R′
s ,G

′
s and B

′
s to blocks

of size (m ×m). Then, obtain three new matrixes R′
dd ,

G ′
dd and B ′

dd each formed by these blocks with size(M
m , M

m

)
. Therefore, permute the matrixes R′

dd , G
′
dd

and B ′
dd by the inverse cat map. Then, get three per-

muted matrixes R′
pp, G

′
pp and B ′

pp. The permutation
was carried out as follows:
[
i ′
j ′

]
=

(
1 b12
b21 b12b21 + 1

)T−k [
i
j

]
mod

M

m
(35)

where (i, j)pair is the block coordinates of thematrixes
R′
dd and G ′

dd , B
′
dd and (i ′, j ′) is the block coordinates

of the permuted matrixes R′
pp, G

′
pp and B ′

pp.

Step 6 Set cmpt = cmpt + 1 and update the values of
x0, y0, z0, g0, g1 and g2 as in Eqs. (36)–(41):

x0 = x0
0.1

− mod(
∑M

i=1
∑M

j=1 R
′
pp(i, j)

2, 256)

256
× 0.9

(36)

y0 = y0
0.1

−mod(
∑M

i=1
∑M

j=1 G
′
pp(i, j)

2, 256)

256
× 0.9

(37)

z0 = z0
0.1

− mod(
∑M

i=1
∑M

j=1 B
′
pp(i, j)

2, 256)

256
× 0.9

(38)

g0 = g0
0.1

− mod(
∑M

i=1
∑M

j=1 R
′
pp(i, j)

2, 256)

256
× 0.9

(39)

g1 = g1
0.1

−mod(
∑M

i=1
∑M

j=1 G
′
pp(i, j)

2, 256)

256
× 0.9

(40)

g2 = g2
0.1

− mod(
∑M

i=1
∑M

j=1 B
′
pp(i, j)

2, 256)

256
× 0.9

(41)

Step 7 Repeat Steps (2-6) twice and get the decrypted
channels Rdecrypt ,Gdecrypt and Bdecrypt . Then, recover
the RGB decrypted image D.
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Fig. 8 Block diagram of the proposed decryption process

5.3 Security and performance analysis

Simulation results of the proposed scheme were per-
formed using an Intel Core i3-3227U 1.9 CPU with
4 GB RAM running on Windows 7 and Matlab
7.9. The 256 × 256 true color JPEG images of
‘Lena’, ‘Baboon’ and ‘Peppers’ (Fig. 4a–c, respec-
tively) are used as plain images. The initial condi-
tions (x0, y0, z0, g0, g1, g2) were fixed at (0.99997,
0.99998, 0.99978, 0.12346, 0.11252, 0.17982) and the
control parameters (μ0, μ1, μ2, α0, α1, α2) were cho-
sen as (3.99978, 3.99978, 3.99978, 3.99799, 3.99999,
3.99999). The integersm and n were chosen as 4 and 8,
respectively. The parameters of cat map were b12 = 1,
b21 = 1 and k = 90.

5.3.1 Key space analysis

The key space is the total number of different keys that
can be used in the encryption procedure. An effective
encryption scheme should present a large key space to
make the brute-force attacks impossible. In the pro-
posed cryptosystem, the key space included:

1. The initial conditions f0, x0, y0, z0, g0, g1and g2.
2. The control parameters λ0, μ0, μ1,μ2α0, α1 and

α2.
3. The parameters of cat map b12,b21 and k.
4. The integers m and n.

where f0, x0, y0, z0, g0, g1, g2 ∈ [0, 1] λ0, μ0, μ1,μ2,
α0, α1, α2 ∈ [0, 4]. The integersm and n were selected
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Table 12 Avalanche effect for different algorithms

Image Avalanche effect (%)

New scheme Ref. [40] Ref. [41]

R G B R G B R G B

Lena 49.91 50.00 49.98 49.57 49.69 49.82 49.45 49.39 49.42

Baboon 50.03 49.94 49.90 49.80 49.78 49.64 49.26 49.41 49.29

Peppers 50.00 49.99 49.95 49.86 50.00 49.80 48.97 48.98 49.02

Average 49.98 49.98 49.94 49.74 49.82 49.75 49.23 49.26 49.24

as follows: (M × M) mod (m × m) ≡ 0 and (M ×
M) mod (n × n) ≡ 0.

Assume that the initial conditions and the control
parameters are double-precision numbers. If the com-
putational precision of the double-precision numbers
is 10−16, the total number of different values f0 which
can be used as secret keys is more than 1016, so are
the numbers of x0, y0, z0, λ0, μ0, μ1, μ2, g0, g1, g2,
α0, α1 and α2. Also, assume that the number of possi-
ble triplets (b12, b21, k) is K and the number of possible
values of m and n is L .

Therefore, the key space of the proposed image
encryption scheme is:

K S( f0, x0, y0, z0, λ0, μ0, μ1, μ2, g0, g1, g2, α0,

α1, α2, b12, b21, k,m, n) > K × L × 10224

Accordingly, the key space of the encryption algorithm
is adequate to resist all kinds of brute-force attacks.

5.3.2 Key sensitivity analysis

Agood encipherment scheme should be sensitive to any
bit flipping in the secret key to ensure security against

brute-force attacks. Avalanche effect is used to test the
sensitivity with respect to a slight change in the key.
Experimental results are reported in Table 12. As can
be seen from this table, the avalanche effects for all
encrypted images with the proposed algorithm are very
close to 50% and are better than those of algorithms
studied in [40,41]. The results prove a high key sensi-
tivity performance of the proposed scheme with a tiny
change in the key (s).

5.3.3 Histogram analysis

To examine the resistance of the suggested scheme
against statistical attacks, we analyzed the histograms
of different color cipher images. Figure 9 shows the
histograms of the plain image of ‘Lena’ for red, green
and blue channels, whereas their corresponding his-
tograms of the encrypted image of ‘Lena’ are shown in
Fig. 10. The histograms of the cipher images have an
approximately uniform distribution and show a signifi-
cant difference from those of the original images. Thus,
the statistical attack is hard to apply on the proposed
cryptosystem.

Fig. 9 Histograms of original images of ‘Lena’ a Red, b Green and c Blue
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Fig. 10 Histograms of ciphered images of ‘Lena’ a Red, b Green and c Blue

Table 13 Correlation coefficients of two adjacent pixels in plain images and encrypted images

Images Horizontal Vertical Diagonal

R G B R G B R G B

Original Lena 0.9307 0.9300 0.8810 0.9665 0.9638 0.9399 0.8915 0.9086 0.8448

Original Baboon 0.8266 0.7407 0.8444 0.7407 0.6830 0.8031 0.7386 0.6758 0.7732

Original Peppers 0.9934 0.9921 0.9885 0.9878 0.9844 0.9826 0.9839 0.9776 0.9741

Encrypted Lena −0.0283 −0.0026 −0.0217 −0.0317 −0.0173 −0.0036 −0.0344 −0.0015 −0.0191

Encrypted Baboon −0.0072 −0.0260 −0.0099 −0.0201 −0.0220 −0.0034 −0.0016 −0.0175 −0.0066

Encrypted Peppers −0.0202 −0.0060 −0.0001 −0.0113 −0.0116 −0.0212 −0.0041 −0.0117 −0.0037

5.3.4 Correlation analysis

A robust encryption scheme should produce cipher
image with low correlation between adjacent pixels
[8,9]. The visual testing of the correlation of adjacent
pixels can be conducted by plotting the distribution
of the adjacent pixels in the plain image and its cor-
responding cipher image. The correlation coefficient
between two adjacent pixels in an image is determined
as:

rαβ = cov(α, β)√
ψ(α)

√
ψ(β)

, (42)

where,

ψ(α) = 1

N

N∑
i=1

[αi − E(α)]2 , (43)

cov(α, β) = 1

N

N∑
i=1

[αi − E(α)] [βi − E(β)] , (44)

where αi and βi denote two adjacent pixels (either
vertical, horizontal or diagonal), N is the total num-

ber of duplets (αi , βi ) obtained from the image; E(α)

and E(β) are the mean values of αi and βi , respec-
tively. Table 13 shows the correlations of two adjacent
pixels in the plain images mentioned above and their
encrypted images. Moreover, Figs. 11, 12, and 13 show
the correlation of adjacent pixels in the three directions
of the original and ciphered images, respectively.

The strong correlations between adjacent pixels in
plain images are greatly reduced in the encrypted
images generated by the proposed encryption scheme
(Table 13). Therefore, the proposed cryptosystem gen-
erates de-correlated adjacent pixels in the cipher image
and thus satisfies the confusion and diffusion proper-
ties.

5.3.5 Sensitivity analysis

To measure the influence of one pixel change on the
encrypted image quantitatively, two most common cri-
teria, namely number of pixel change rate (NPCR) and
unified average changing intensity (UACI) are used
[4,29]. Let I (i, j) and J (i, j) be the (i, j)th pixel of
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Fig. 11 Distributions of two horizontally adjacent pixels in plain and encrypted images of ‘Lena’: a R-plain image, b G-plain image,
c B-plain image, d R-encrypted image, e G-encrypted image and f B-encrypted image

two images I and J , respectively. NPCR is defined
as:

NPCRR,G,B =

∑
i; j

D(i, j)

L
× 100%, (45)

where L is the total pixels in an image and D(i, j) is
described as

D(i, j) =
{
0 if I (i, j) = J (i, j),
1 if I (i, j) 
= J (i, j).

(46)

While, UACI, is defined as:

UACIR,G,B = 1

L

∑
i, j

|I (i, j) − J (i, j)|
2N − 1

× 100%,

(47)

where N is the number of bits used to represent the
pixel value. The expected values of NPCR and UACI
for an efficient cryptosystem scheme are defined by:

NPCRR,G,B(Expected)

=
(
1 − 1

2nR,G,B

)
× 100%, (48)

UACIR,G,B(Expected)

= 1

22nR,G,B

⎛
⎝

∑2nR,G,B−1
p=1 p(p + 1)

2nR,G,B − 1

⎞
⎠ × 100%,

(49)

where, 2nR,G,B means the number of bits in one pixel
of color channels(R, G and B) in a color image.
The expected values of NPCR and UACI in a 24-
bit true color image are 99.6094 and 33.4635%,
respectively.

A large number of plain images are evaluated using
two measurements, i.e., NPCR and UACI, in order to
test the influence of pixels change in the plain image
on the cipher image. The results of NPCR and UACI
of each component (red, green and blue) of ‘Lena’,
‘Baboon’ and ‘Peppers’ images for different algo-
rithms are shown in Table 14. The proposed encryp-
tion scheme has little better NPCR and UACI perfor-
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Fig. 12 Distributions of two vertically adjacent pixels in plain and encrypted images of ‘Lena’: a R-plain image, b G-plain image, c
B-plain image, d R-encrypted image, e G-encrypted image and f B-encrypted image

mances compared to the other algorithms. Thus, the
proposed cipher demonstrates resistance against dif-
ferential attacks.

5.3.6 Information entropy analysis

Information entropy is a statistical measure of random-
ness. The formula to calculate information entropy can
be found in [13]. The entropies of the ciphered images
weremeasured to evaluate their uncertainties. For a ran-
dom source emitting 256 symbols, the entropy is 8 bits
and is obtained only if all symbols have the same prob-
ability. Consequently, the best entropy value (approx-
imately 8) indicates the efficiency of the proposed
encryption scheme. The entropies of the Red, Green
and Blue channels of each encrypted image, using the
proposed method, are very close to 8 (Table 15) and
are better than those of the schemes used in [40,41].
It is clear that the randomness is satisfactory and the
probability of accidental information leakage is very
little.

5.3.7 Encryption speed and computation complexity

5.3.7.1. Encryption speed The speed of an algorithm
can be characterized by measuring the time required
for the encryption process. We measured this para-
meter for the proposed algorithm and for the ones
already available in the literature (Table 16). The aver-
age time required to encrypt the data using the pro-
posed scheme was 166kb/s; however, using the algo-
rithms in [40,41] the encryption took 214 and 125kb/s,
respectively. The result of our proposed algorithm
is quite promising, compared to the already exist-
ing algorithms. Therefore, it is suitable for real time
applications.

5.3.7.2.Computation complexity Themultifaceted cal-
culation of a cipher scheme is measuring the span of an
occasion (the quantity of operations and steps required
to fulfill the encryption/unscrambling process)—
ignoring a few subtle elements, for example, the work-
ing framework, the programming dialect, the equip-
ment the calculation keeps running on, and the pro-
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Fig. 13 Distributions of two diagonally adjacent pixels in plain and encrypted images of ‘Lena’: a R-plain image, b G-plain image, c
B-plain image, d R-encrypted image, e G-encrypted image and f B-encrypted image

Table 14 The NPCR and UACI of encrypted images by changing their plain images one bit

Image NPCR

New scheme Ref. [40] Ref. [41]

R G B R G B R G B

Lena 99.6317 99.6205 99.6211 99.6173 99.6233 99.6186 99.6085 99.6115 99.6184

Baboon 99.6199 99.6250 99.6273 99.6287 99.6290 99.6162 99.6091 99.6152 99.6058

Peppers 99.6202 99.6192 99.6224 99.6182 99.6177 99.6272 99.6204 99.6166 99.6182

Average 99.6239 99.6216 99.6236 99.6214 99.6233 99.6207 99.6127 99.6144 99.6141

Image UACI

New scheme Ref. [40] Ref. [41]

R G B R G B R G B

Lena 33.6783 33.7999 33.6200 33.7075 33.6728 33.5293 33.4752 33.5174 33.5398

Baboon 33.6484 33.5908 33.6749 33.7491 33.6830 33.5976 33.5381 33.6053 33.6372

Peppers 33.6602 33.6575 33.7314 33.6813 33.5364 33.6506 33.6231 33.5570 33.6035

Average 33.6623 33.6827 33.6754 33.7126 33.6307 33.5925 33.5455 33.5599 33.5935

gramming aptitude [42]. Formally, the computational
complexity of the proposed encryption plan can be
computed as in Table 17. In this way, the most pes-

simistic scenario execution of the proposed encryption
plan was O(n), which is adequate for constant appli-
cations.
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Table 15 Entropy results for encrypted images

Image Entropy

New scheme Ref. [40] Ref. [41]

R G B R G B R G B

Lena 7.9993 7.9990 7.9989 7.9968 7.9975 7.9983 7.9969 7.9973 7.9977

Baboon 7.9987 7.9989 7.9990 7.9973 7.9969 7.9985 7.9981 7.9974 7.9977

Peppers 7.9992 7.9991 7.9988 7.9972 7.9977 7.9987 7.9986 7.9972 7.9968

Average 7.9991 7.9990 7.9989 7.9971 7.9974 7.9985 7.9979 7.9973 7.9974

Table 16 Encryption
speeds (kb/s)

Scheme

New scheme Ref. [40] Ref. [41]

Speed (kb/s) 167 214 125

Table 17 Computation complexity of the proposed algorithm

Operations + − × mod and / XOR/bitxor Compare

complexity <19n 6n <30n <19n 3n 771n

where n is the number of pixels.

5.3.8 NIST SP 800-22 tests for the cipher

In order to test the cipher randomness, NIST SP 800-
22 [43] tests are used. The role of these tests is to
analyze the randomness of (arbitrary sequence) binary
sequences produced by encryption systems. The NIST
Tests consists of 16 tests which are used to detect any
non-randomness that exists in a sequence. In this sense,
the 16 tests were carried out for 150 sequences of
ciphers with a length equal to 106 bits. The ciphered
data were a colored image of size 256 × 256.

The proposed algorithm went through all NIST SP
800-22 tests successfully (Table 18). Consequently, the
ciphers generated by the proposed encryption scheme
are absolutely stochastic.

5.3.9 Resistance to known-plaintext and
chosen-plaintext attacks

The initial values of the logistic-sine, logistic-Cheby-
shev and sine-Chebyshev maps of the proposed algo-
rithm are exchanged according to the cipher values
after each round. Their state values depend on the plain

image. Since the parameters of diffusion and permuta-
tion, which are the important part of the keystream,

i.e.,
(
SBi

r ,SB
i
g,SB

i
b

)
i=1,...,Nr

, xbn , y
b
n , z

b
n, J1, J2 and J3

are correlated to the state values of these maps, differ-
ent imageswill have different (SBi

r , SB
i
g, SB

i
b)

i=1,...,Nr ,
xbn , y

b
n , z

b
n, J1, J2 and J3. Therefore, the attacker cannot

decrypt a particular cipher image using the parameters
obtained from other images. As a result, the proposed
algorithm can resist the known-plaintext and chosen-
plaintext attacks properly [50–52].

6 Security and performance analysis of S-box-only
chaotic image ciphers

6.1 Statistical analysis

The factual investigations give insight into the work-
ing of any cryptographic framework. So as to assess
the execution of the proposed S-box, we conducted
correlation analysis, entropy analysis, contrast analy-
sis, homogeneity test and energy analysis. The afteref-
fects of correlation examination demonstrate the degree
of likeness between the plain and encrypted infor-
mation. In the event that there are any hints of cor-
relation, there is a probability that cryptanalysis can
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Table 18 SP800-22 tests suite for cipher image

Test name P value Result

Frequency 0.4479 Success

Block-frequency 0.8256 Success

Runs (M=10,000) 0.3982 Success

Long runs of ones 0.7127 Success

Rank 0.2919 Success

Spectral DFT 0.2457 Success

No overlapping templates 0.9998 Success

Overlapping templates 0.8599 Success

Universal 0.9900 Success

Linear complexity 0.5183 Success

Serial P value1 0.2337 Success

Serial P value2 0.6419 Success

Approximate entropy 0.8991 Success

Cumulative sums forward 0.9995 Success

Cumulative sums reverse 0.2768 Success

Random excursions X = −4 0.8368 Success

X = −3 0.1535 Success

X = −2 0.2574 Success

X = −1 0.7510 Success

X = 1 0.8833 Success

X = 2 0.5999 Success

X = 3 0.8006 Success

X = 4 0.6037 Success

Random excursions
variant

X = −9 0.7279 Success

X = −8 0.8531 Success

X = −7 0.8683 Success

X = −6 0.6394 Success

X = −5 0.4982 Success

X = −4 0.4425 Success

X = −3 0.9573 Success

X = −2 0.5809 Success

X = −1 0.5501 Success

X = 1 0.6326 Success

X = 2 0.8902 Success

X = 3 0.2850 Success

X = 4 0.1902 Success

X = 5 0.9049 Success

X = 6 0.8008 Success

X = 7 0.8423 Success

X = 8 0.7111 Success

X = 9 0.5427 Success

decode the original information or might have the
capacity to incompletely translate data. In the entropy
examination, wemeasured irregularity presented in the
plaintext. This measure is likewise valuable in picture
encryption application where the visual type informa-
tion may give extra data about the original information.
The contrast analysis gives a review of the measure
of dissemination presented in the plain image. This
measure is particularly helpful in image encryption
applications. A closeness of circulation among vari-
ous arrangements of components is additionally seen to
decide the homogeneity in the scrambled information.
Thismeasure decides the resistance tomaintain a strate-
gic distance from the cryptanalysis of the fundamental
factual assaults. At long last, we carried out the energy
analysis to decide the dispersion of energy before and
after the encryption procedure. Despite these tests,
the correlation of the whole picture was additionally
assessed. We examined with interest the execution and
investigation of the tests used to benchmark the exe-
cution of the proposed S-box. Experimental results of
these analyses are reported in Tables 19, 20, 21.

Because of haphazardness, the estimations of con-
trast and entropy expand. This makes the encrypted
picture hard to identify. The homogeneity, correlation
and energy qualities are likewise distinctive in unique
and encrypted pictures. The shaded parts of unique and
scrambled pictures clarify the quality of disarray in
relating layers as well. These qualities can be further
improved by including some dispersion attributes in
the proposed algorithm, however our principle is just
tomanage nonlinear component of block cipher, specif-
ically the impacts of composition elements taking into
account S-boxes. Expanding the estimations of con-
trast in encrypted pictures when contrasted with the
original image is the impression of quality in outlined
algorithm. It can be considered as a straight reliance of
gray levels of neighboring pixels. In the event that the
neighboring pixels are fundamentally the same as in
their dark level values then the difference in the picture
is low. If there should arise an occurrence of composi-
tion, the dark level variations demonstrate the variation
of the surface itself. High contrast qualities are normal
for heavy textures and low for smooth delicate surfaces.
In the event of encrypted pictures the estimations of
contrast increment however they decrease for the plain
pictures.
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Table 19 Second-order texture analyses for the proposed cryptosystem with one round of Lena image of size 256*256

Plain image Plain color components of image Cipher image Cipher color components of image

Red Green Blue Red Green Blue

Contrast 0.4381 0.4415 0.4584 0.4412 5.2238 5.2083 5.3120 5.1731

Homogeneity 0.8689 0.8627 0.8616 0.8620 0.4643 0.4643 0.4623 0.4665

Entropy 7.7833 7.3116 7.5988 7.11581 7.9376 7.9506 7.9505 7.9393

Correlation 0.9055 0.9111 0.9188 0.8319 −0.0182 0.0524 0.0583 0.0592

Energy 0.1174 0.1349 0.0959 0.1589 0.0284 0.0269 0.0258 0.0268

Table 20 Second-order texture analyses for the proposed cryptosystem with one round of Baboon image of size 256*256

Plain image Plain color components of image Cipher image Cipher color components of image

Red Green Blue Red Green Blue

Contrast 0.8167 0.8145 0.8309 0.8364 5.1644 5.1759 5.2536 5.1405

Homogeneity 0.7550 0.7541 0.7517 0.7497 0.4653 0.4655 0.4639 0.4661

Entropy 7.5311 7.4566 7.2492 7.4862 7.9252 7.9317 7.9381 7.9424

Correlation 0.6706 0.7914 0.7199 0.8135 −0.0108 0.0600 0.0637 0.0576

Energy 0.0977 0.0738 0.0835 0.0748 0.0285 0.0268 0.0259 0.0271

Table 21 Second-order texture analyses for the proposed cryptosystem with one round of Pepper image of size 256*256

Plain image Plain color components of image Cipher image Cipher color components of image

Red Green Blue Red Green Blue

Contrast 0.1102 0.1251 0.1293 0.1112 5.1603 5.1631 5.2233 5.1205

Homogeneity 0.9511 0.9439 0.9431 0.9501 0.4648 0.4642 0.4628 0.4654

Entropy 7.7235 7.5327 7.6089 6.9293 7.9233 7.9191 7.9279 7.9117

Correlation 0.9794 0.9856 0.9814 0.9755 −0.0112 0.0558 0.0693 0.0587

Energy 0.1640 0.1292 0.1435 0.2591 0.0286 0.0270 0.0259 0.0271

The values of the original images homogeneity are
high as their pixels concentrate along the corner to cor-
ner, implying that there are many pixels with the same
or fundamentally the same gray level quality. The big-
ger the adjustments in gray qualities are, the lower the
homogeneity is, which makes the contrast higher. The
experimental results of our algorithm which depends
on S-boxes show that there is a huge variation which
plainly makes the homogeneity not equivalent to 1 that
is just for pictures having no variations after encryption.
Accordingly, high homogeneity alludes to surfaces that
contain perfect redundant structures, while low homo-
geneity alludes to enormous variety in both, texture ele-
ments and their spatial arrangements as portrayed from
the classified qualities introduced in Tables 19, 20, 21

individually. A totally arbitrary dispersion would have
high entropy.

This component can be helpful in indicatingwhether
the entropy is greater for scrambled pictures. This gives
us an idea of which kind of algorithm can be factually
considered more secure. The estimation of randomness
would increment aswe applied our recommended algo-
rithm to plain pictures that produce encrypted pictures
with high entropy estimations. Energy is a measure of
local homogeneity and therefore it portrays the con-
flict of entropy. Mainly this component will inform us
of how undeviating the surface is. The more propelled
the energy estimation, the greater the homogeneity of
the composition. Correlation is a measure of gray level
straight reliance between the pixels at the predeter-
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Table 22 Differential analysis of S-box-only-based encryption

Image Component NPCR UACI

Lena R 99.4125 29.9279

G 99.6811 35.7653

B 99.3912 34.5062

Baboon R 99.6887 34.2894

G 99.6521 34.3853

B 99.5636 34.8038

Peppers R 99.5651 36.3651

G 99.5178 33.7755

B 99.7040 37.6409

Average R 99.5554 33.5275

G 99.6170 34.6420

B 99.5529 35.6503

mined positions in respect to each other. The estimation
of the relationship reduces if there should be an occur-
rence of scrambled pictures and is close to 1 if there
should be an occurrence of plain pictures. All these
factual estimations guarantee the confirmation of our
proposed criteria of building S-boxes and its appropri-
ateness in picture encryption applications.

6.2 Differential attack analysis

In this section, we performed several tests to prove the
effectiveness of the proposed S-box-only-based image
encryption against differential attacks. In this sense,
we tested the NPCR and UACI for some selected color
images. Experimental results are given in Table 22.

Table 22 shows that the proposed S-box-only-based
encryption has good performance on sensitivity of the
plaintext and can resist differential attacks.

6.3 Resistance of S-box-only chaotic image ciphers
against chosen-plaintext attacks (CPA)

In fact, substitution boxes play a good role in designing
secure substitution architecture in most ciphers. How-
ever, most of the previous S-boxes designs are weak,
especially if they are only used in image ciphers, against
attacks such as CPA. In addition, the S-box analyses
like nonlinearity and SAC cannot reveal the real effi-
ciency against CPA attacks if it is used in image cryp-
tosystem.

A good procedure to prove the resistance of S-box-
only chaotic image cipher against CPA attackswas pro-
posed by Zhang and Xiao in [53]. Therefore, to follow
the rules raised in [53], we applied them to the pro-
posed S-box-only chaotic image ciphers. After careful
analysis, one can conclude that the proposed algorithm
is secure enough according to the following rules:
Rule 1: The key generation of the S-box depends on
the plain image
Rule 2:Awell-designed cryptosystemmust satisfy the
confusion and diffusion [1]. In the proposed S-box,
confusion is satisfied by a secure permutation method
and diffusion is done by gray code combined with
chaotic maps.
Rule 3: In the proposed cryptosystem, we used chaotic
dynamical systems that are approximately uniform
distribution to generate the pseudorandom number
sequences.
Rule 4: The inner cipher rounds are not included as
part of the keys, since its assessment can be obtained
through an abstract analysis of the encipherment time.

In short, the proposed image cipher-based S-box in
this paper is secure according to the above raised rules.

7 Conclusion

This paper proposes a simple and efficient S-box
method based on logistic-sine map. To cope with the
disadvantages of small key space and weak obscurity
in the current chaotic encryption methods, an efficient
chaos-based image encryption scheme in the form of
permutation–substitution structure was proposed. The
objective of using the permutation–substitution struc-
ture was to create confusion between the cipher image
and the keystream and enhance the security by adding
diffusion in the plain image. Detailed differential and
statistical analyses were carried out to show the effec-
tiveness of the proposed schemes. Results demonstrate
that the proposed encryption scheme meets all the per-
formance requirements of image encryption design cri-
teria. It also has the advantages of large key space and
is therefore adequate for and the practical implementa-
tion of encryption schemes.
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