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Abstract Weexplore the behaviour of an ensemble of
chaotic oscillators diffusively coupled only to an exter-
nal chaotic system, whose intrinsic dynamics may be
similar or dissimilar to the group. Counter-intuitively,
we find that a dissimilar external system manages to
suppress the intrinsic chaos of the oscillators to fixed
point dynamics, at sufficiently high coupling strengths.
So, while synchronization is induced readily by cou-
pling to an identical external system, control to fixed
states is achieved only if the external system is dissimi-
lar.Wequantify the efficacy of control by estimating the
fraction of random initial states that go to fixed points,
a measure analogous to basin stability. Lastly, we indi-
cate the generality of this phenomenon by demonstrat-
ing suppression of chaotic oscillations by coupling to a
common hyper-chaotic system. These results then indi-
cate the easy controllability of chaotic oscillators by an
external chaotic system, thereby suggesting a potent
method that may help design control strategies.
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1 Introduction

The rapidly growing science of complex systems has
helped in understanding spatiotemporal pattern forma-
tion in wide-ranging systems, from natural systems,
such as climate and biological systems on the one hand,
to man-made systems, such as lasers and electronic cir-
cuits on the other hand. From the broad perspective
of dynamical systems, the emergent behaviour of net-
works with different dynamical constituents is impor-
tant. The basic ingredient of network models consists
of local dynamical units, which may range from sim-
ple linear systems to chaotic systems. For instance, the
electrical activities of neurons can be very complex,
and experiments show quiescent, spiking, or bursting
behaviour under varying excitability or external forc-
ing current [1,2]. The second important aspect of such
models is the nature of the coupling interaction, for
instance it may be diffusive or pulsatile, with orwithout
delay. The last crucial feature is the topology of the con-
nection matrix that determines the linkage between the
elemental dynamical units. For instance, different col-
lective behaviours are observed in networks of model
neurons [3,4] under varying connectivities, ranging
from synchronization and coherence resonance to de-
coherence [5]. Further, results from neuroscience sug-
gest that perception and memory arise from synchro-
nized networks [6].

A particular phenomenon of special significance in
complex systems is the stabilization of steady states,
and this has been observed in systems ranging from
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chemical reactions [7,8] to biological oscillators [9–
13]. Such fixed dynamics may be the desired target
in certain cases, for instance in laser systems [14–16],
where it leads to stabilization. In the biological con-
text, some neurological diseases such as epilepsy lead
to excessive neuronal excitation and so exploration of
mechanisms that can suppress excitation is important
for regulation of the disease [17]. On the other hand,
the suppression of oscillations can also signal pathol-
ogy, such as in neuronal disorders like Alzheimer’s
or Parkinson’s disease [18–20], where the focus is on
prevention of fixed dynamics. Further, the suppression
of oscillations is important in human-engineered sys-
tems, where much effort is focussed on control meth-
ods that can effectively and efficiently tame chaotic
dynamics [21–28]. For all these reasons, there has
been considerable sustained research on suppression
of chaotic oscillations in nonlinear systems over the
years.

In this work, we explore the behaviour of an ensem-
ble of chaotic oscillators coupled only to an external
chaotic system. So there is no direct coupling amongst
the oscillators, and the interaction is mediated by cou-
pling to the common external system [29]. So this exter-
nal system can be thought of as a pacemaker [13] of the
group of oscillators (cf. Fig. 1 for a schematic). Note
that the intrinsic dynamics of the external system can be
identical to the group, or it can be an entirely different
type of dynamical system.

Specifically, we first consider the example of N
Rössler oscillators in a group, labelled by node index
i = 1, . . . N , with dynamics given by:

Fig. 1 Schematic of a group of N oscillators coupled to an exter-
nal oscillator

ẋi = −(ω + δ(x2i + y2i )) yi − zi + ε (xext − xi )

ẏi = (ω + δ(x2i + y2i )) xi + a yi (1)

żi = b + zi (xi − c)

where xext is a dynamical variable of the common exter-
nal system to which the group is coupled diffusively.
The strength of coupling is given by ε.

When the external oscillator is also a Rössler oscil-
lator, its governing equations are given by:

ẋext = −(ω + δ(x2ext + y2ext)) yext − zext

+ ε

N

N∑

j=1

(x j − xext)

ẏext = (ω + δ(x2ext + y2ext)) xext + a yext (2)

żext = b + zext(xext − c)

When the external oscillator is distinct from the group,
for instance a Lorenz system, its dynamical equations
are given by:

ẋext = σ (yext − xext) + ε

N

N∑

j=1

(x j − xext)

ẏext = xext (r − zext) − yext (3)

żext = xext yext − β zext

Parameters σ, β, r in the Lorenz system and para-
meters a, b, c, ω, δ in the Rössler oscillator regulate
the nature of the uncoupled dynamics, which can range
from fixed points to chaos. In the sections below, we
will present the spatiotemporal patterns arising in two
distinct situations of interest: (a) the group of oscilla-
tors and the external oscillator are of identical type,
and (b) the external chaotic system is distinct from the
group of oscillators and may even be hyper-chaotic.

2 Emergent controlled dynamics

Figure 2 shows the bifurcation diagrams of the illus-
trative cases of an ensemble of chaotic Rössler oscil-
lators coupled to (a) a chaotic external system that is
identical (namely another Rössler oscillator) and (b)
a chaotic external system that is dissimilar (namely, a
Lorenz system). We find that a group of chaotic oscil-
lators can be controlled to fixed points by the external
dissimilar chaotic oscillator, when coupling is stronger
than a critical value. However, when the chaotic oscil-
lators are coupled to an external chaotic system of an
identical type (namely all are Rössler oscillators), none
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Fig. 2 Bifurcation diagrams, with respect to the coupling
strength ε, of one representative oscillator in the group (left) and
an external oscillator (right). Here the group consists of chaotic
Rössler oscillators with parameters ω = 0.41, δ = 0.0026,
a = 0.15, b = 0.4 and c = 8.4 in Eq. 1, and the exter-
nal oscillator is: a a chaotic Rössler oscillator with parameters

ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eq. 2,
and b a chaotic Lorenz system with parameters σ = 10.0, β =
8.0/3.0 and r = 25.0 in Eq. 3. In all the diagrams (including
ones below), we display the x variable on the Poincare section
of the phase curves of the oscillators at y = ymid, where ymid is
the mid-point of the span of attractors along the y-axis

of the oscillators are controlled to fixed states, even for
strong coupling.

Figure 3 further illustrates this behaviour through
phase portraits for representative Rössler oscillators
from the group, for the case of coupling to (a) an iden-
tical external oscillator, and (b) a dissimilar external
system. It is clear that for strong coupling the dynam-
ics of the chaotic system is quenched to a fixed point
when the external oscillator is dissimilar (cf. Fig. 3b),
while coupling to a similar external oscillator does not
suppress the chaos (cf. Fig. 3a).

When a group of chaotic Rössler oscillators is cou-
pled on a common external chaotic Lorenz system, we
find that there exists two steady states, as illustrated

in Fig. 4. Depending on initial conditions, the system
can go to either of the steady states. Linear stability
analysis, via eigenvalues of the Jacobian, also corrob-
orates the stabilization of the fixed points seen in the
bifurcation diagrams (see “Appendix” for details).

3 Synchronization

We study the advent of synchronization in the group
of oscillators, as a function of the coupling strength,
for the case of identical and distinct external systems.
Our focus is to ascertain what kind of external system
facilitates synchrony and which ones lead to control to
steady states.

123



162 S. S. Chaurasia, S. Sinha

-15
-10

-5
 0

 5
 10

 15-15
-10

-5
 0

 5
 10

 0

 5

 10

 15

 20

 25 ε=0.05
ε=0.60

x

y

z

-15
-10

-5
 0

 5
 10

 15-15
-10

-5
 0

 5
 10

 0

 5

 10

 15

 20

 25 ε=0.05
ε=0.60

xext

yext

zext

(a)

-15
-10

-5
 0

 5
 10

 15-15
-10

-5
 0

 5
 10

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10 ε=0.05
ε=0.60

x

y

z

-20 -15 -10 -5  0  5  10  15  20-25
-20

-15
-10

-5
 0

 5
 10

 15
 20

 25

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

ε=0.05
ε=0.60

xext

yext

zext

(b)

Fig. 3 Phase portraits of a representative Rössler oscillator from
the group (left) with parameters ω = 0.41, δ = 0.0026, a =
0.15, b = 0.4 and c = 8.4 in Eq. 1, coupled to a common exter-
nal system (right), at different coupling strengths ε. The panel

(a) shows the case of coupling to an identical external Rössler
oscillator, while panel (b) shows the case of coupling to a dis-
similar chaotic oscillator, namely an external Lorenz systemwith
parameters σ = 10.0, β = 8.0/3.0 and r = 25.0 in Eq. 3
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Fig. 4 Bifurcation diagrams, with respect to the coupling
strength ε, of one representative oscillator in the group (green)
and an external oscillator (red), for the cases where the group of
oscillators is comprised of chaotic Rössler oscillators with para-
meters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4
in Eq. 1 and the external oscillator is a chaotic Lorenz system
with parameters σ = 10.0, β = 8.0/3.0 and r = 25.0 in Eq. 3.
(Color figure online)

We calculate the synchronization error of the group
of oscillators, averaged over time T , given by

Z = 1

T

∑

t

√
(x̄2)t − (x̄2)t

where (x̄)t = 1
N

∑N
i=1 xi and (x̄2)t = 1

N

∑N
i=1 x

2
i

are the average values of x and x2 of oscillators
i = 1, . . . N , at an instant of time t . Further, we aver-
age Z over different initial states to obtain an ensemble
averaged synchronization error 〈Z〉.

Wedisplay the average synchronization error defined
above, in Fig. 5. It is clearly evident from the figure
that the group of oscillators, coupled only to a com-
mon external chaotic system, get synchronized at suf-
ficiently high coupling strengths. This trend holds for
both identical and distinct external oscillators, suggest-
ing that coupling to an external chaotic oscillator of
wide-ranging dynamical types can induce synchroniza-
tion. The critical coupling at which synchronization
occurs is higher when the common external oscillator
is distinct from the group.

Interestingly, as coupling strength increases further,
the oscillators are controlled to steady states, when
the external oscillator is dissimilar. So an identical
common external oscillator induces synchronization at
weaker coupling strengths than a dissimilar external
oscillator, but control to steady states occurs onlywhen
the external oscillator is distinct from the group.
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Fig. 5 Synchronization error 〈Z〉 of the chaotic Rössler oscil-
lators in the group with parameters ω = 0.41, δ = 0.0026, a =
0.15, b = 0.4 and c = 8.4 in Eq. 1, averaged over 100 different
initial conditions, with respect to coupling strength ε, for the case
where the common external system is an identical chaoticRössler
oscillator (blue) with parameters ω = 0.41, δ = 0.0026, a =
0.15, b = 0.4 and c = 8.4 in Eq. 2 and a chaotic Lorenz attrac-
tor (red) with parameters σ = 10.0, β = 8.0/3.0 and r = 25.0
in Eq. 3. (Color figure online)
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Fig. 6 Dependence of the fraction of initial states BSfixed
attracted to the fixed point state, on the coupling strength ε,
for a group of chaotic Rössler oscillators with parameters ω =
0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eq. 1, cou-
pled to a common external chaotic Lorenz system with parame-
ters σ = 10.0, β = 8.0/3.0 and 3 different values of parameter
r in Eq. 3: 24.7 (red), 25.0 (green) and 25.3 (blue). Note that
there is no dependence of BSfixed on the number of oscillators N
in the group. (Color figure online)

4 Basin stability of the spatiotemporal fixed point

We now quantify the efficacy of control to steady states
by finding the fraction BSfixed of initial states that are
attracted to fixed points, starting from generic random
initial conditions. Thismeasure is analogous to recently
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Fig. 7 Dependence of the fraction of initial states BSfixed
attracted to the fixed point state, on the coupling strength ε,
for a group of chaotic Rössler oscillators with parameters ω =
0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eq. 1,
coupled to a common external chaotic Lorenz system with para-
meters σ = 10.0, β = 8.0/3.0 and r = 25.0 in Eq. 3. In (a) the
5 curves are obtained from initial states randomly distributed in a
box of linear size l = 2, 4, 6, 8, 10 in the x, y and z coordinates,
and in (b) we show data collapse by appropriate scaling, with
v = l3, and εc = 0.524

used measures of basin stability [30] and indicates the
size of the basin of attraction for a spatiotemporal fixed
point state. BSfixed ∼ 1 suggests that the fixed point
state is globally attracting, while BSfixed ∼ 0 indicates
that almost no initial states evolve to stable fixed states.

We show the dependence of this fraction BSfixed in
Figs. 6, 7 for a group of chaotic Rössler oscillators cou-
pled to an external chaotic Lorenz system as coupling
strength is varied. It is evident that there is a sharp tran-
sition to complete control, where the spatiotemporal
fixed point state is globally attracting, at sufficiently
strong coupling. Namely, there is a critical coupling
strength εc beyond which the intrinsic chaos of the
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Fig. 8 Bifurcation diagram,with respect to the coupling strength
ε, of one representative oscillator of the group (left) and the exter-
nal system (right),when the external system is hyper-chaoticwith

parameters k′ = 3.85, β ′ = 18.0 and b′ = 88.0 in Eq. 4, and
the group consists of chaotic Rössler oscillators with parameters
ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and c = 8.4 in Eq. 1

oscillators is suppressed to fixed points, over a very
large basin of initial states.

Note that qualitatively similar results, namely emer-
gence of fixed point states at large enough coupling,
are obtained over a wide range of parameters in
Eqs. 1–3, indicating robustness of the phenomenon.
However quantitatively, the precise value of εc may
depend on the parameters of the system.

For instance, the onset of the fixed point state
for Rössler oscillators coupled to an external chaotic
Lorenz system, for different values of parameter c
in Eq. 1, is independent of the parameter, as this
parameter influences the Lyapunov exponent of the
intrinsic dynamics of the Rössler oscillators very lit-
tle. On the other hand, external Lorenz systems with
varying parameter r in Eq. 3 significantly affect εc
(cf. Fig. 6). This can be rationalized by noting that
the Lyapunov exponent of the intrinsic dynamics of
the external system increases linearly with r , and
it is clearly observed that as the Lyapunov expo-
nent of the external system increases, the transition
shifts to higher coupling strengths. Namely, it takes
stronger coupling to yield control to steady states as
the common (dissimilar) external system gets more
chaotic.

Lastly, note that we have not explicitly put in any
feedback loops designed to achieve the steady states,
as often used in control schemes relevant to engineered
systems. Rather we have explored the naturally emer-
gent behaviour of the system. Also interestingly, since

the stabilization of the steady states is independent of
system size, if this were to be used as a control strategy,
arbitrarily large groups could potentially be controlled
by just one external chaotic system.

5 Control to steady states via an external
hyper-chaotic oscillator

We have checked the generality of the results by con-
sidering a more stringent case of a group of chaotic
oscillators coupled to an external hyper-chaotic oscil-
lator, given by:

ẋext = (k′ − 2)xext − yext − G(xext − zext)

+ ε

N

N∑

j=1

(x j − xext)

ẏext = (k′ − 1)xext − yext (4)

żext = −wext + G(xext − zext)

ẇext = β ′zext
where G(u) = 1

2b
′{|u − 1| + (u − 1)}

where k′, β ′, b′ are the parameters determining the
dynamics of the oscillator.

We have coupled one variable (specifically, xext) of
the hyper-chaotic external oscillator with one variable
(specifically, x) of the group of chaotic Rössler oscil-
lators.

Interestingly, we again find that the intrinsically
chaoticRössler oscillators go to fixed points,when cou-
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Fig. 10 Phase portrait of the external hyper-chaotic oscillator
with parameters k′ = 3.85, β ′ = 18.0 and b′ = 88.0 in Eq. 4,
for the case of an uncoupled external oscillator (red) and an oscil-
lator with coupling to a group of chaotic Rössler oscillator with
parameters ω = 0.41, δ = 0.0026, a = 0.15, b = 0.4 and
c = 8.4 in Eq. 1, with coupling strength ε = 1.0 (blue). (Color
figure online)

pled to a common external hyper-chaotic oscillator, for
sufficiently strong coupling (cf. Fig. 8). Further, it is
apparent fromFig. 9, which displays the phase portraits
of the Rössler oscillators at different ε, that the group
of oscillators become regular when coupling strength
is high.

Figure 10 shows the phase portrait for the external
hyper-chaotic oscillator. Again it is clear that at high
coupling strengths, the dynamics of the hyper-chaotic
system becomes regular. Further, the size of the emer-
gent external attractor is very small, though not a fixed
point.
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Fig. 11 a Maximum real part λmax of the eigenvalues of
the Jacobian at the fixed points, as a function of coupling
strength ε, for the external Lorenz system having parameters
σ = 10.0, β = 8.0/3.0 and r = 25.0 and (bottom to top)
r = 24.7, 25.0, 25.3, 25.7, 26.0 in Eq. 3 and group of chaotic
Rössler oscillator with parameters ω = 0.41, δ = 0.0026, a =
0.15, b = 0.4 and c = 8.4 in Eq. 1. b Dependence of λmax
on parameter r of the external Lorenz system, at fixed coupling
strength (ε = 0.5 here)

Note that when coupling strength ε > εc, the (xext−
zext−1) term in Eq. 4 becomes less than zero, implying
that G(xext − zext) is always zero. So the dynamical
equations for ẋext and żext become uncoupled, yielding
two independent subsets of equations,with one coupled
subset comprising of ẋext and ẏext and another coupled
subset comprising of żext and ẇext.

6 Conclusions

We investigated the behaviour of an ensemble of uncou-
pled chaotic oscillators coupled diffusively to an exter-
nal chaotic system. The common external system may
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be similar or dissimilar to the group. We explored all
possible scenarios, with the intrinsic dynamics of the
external system ranging from chaotic to hyper-chaotic.
Counter-intuitively, we found that an external system
manages to successfully steer a group of chaotic oscil-
lators on to steady states at sufficiently high coupling
strengths when it is dissimilar to the group, rather than
identical. So while the group of oscillators coupled to
an identical external system synchronizes readily, sur-
prisingly enough, control tofixed states is achievedonly
if the external oscillator is dissimilar. We indicate the

generality of this phenomenon by demonstrating the
suppression of chaotic oscillations by coupling to an
external hyper-chaotic system.

Further, for the case of coupling to a non-identical
external system,we quantified the efficacy of control by
estimating the fraction of generic random initial states
where the intrinsic chaos of the oscillators is suppressed
to fixed points, a measure analogous to basin stability.
We showed that therewas a sharp transition to complete
control, where the spatiotemporal fixed point is a global
attractor, after a critical coupling strength.

In summary, our results demonstrate robust control
of a group of chaotic oscillators to fixed points, by dif-
fusive coupling to a dissimilar external chaotic system.
This suppression of chaos occurs for arbitrarily large
groups of chaotic oscillators at the same critical cou-
pling strength, indicating that coupling to justone exter-
nal chaotic system can suppress the intrinsic chaos of a
large set of chaotic oscillators. We thus suggest a way
in which chaos in natural systems may potentially be
tamed, and our observations may also be used in design
of potent control strategies in engineering contexts.

Appendix: stability analysis

We investigate the linear stability of the steady state
obtained when a group of intrinsically chaotic Rössler
oscillators is coupled to a common external intrinsi-
cally chaotic Lorenz system, via the eigenvalues of the
Jacobian matrix evaluated at those fixed points. Specif-
ically, the Jacobian for N number of oscillators and an
external oscillator is given by 3(N + 1) × 3(N + 1)
matrix. Calculating each term using Eqn. (1) and (3),
we obtain the Jacobian matrix to be:

J =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σ − ε σ 0 ε
N 0 0 . . . .

r − z0 −1 −x0 0 0 0 . . . .

y0 x0 −β 0 0 0 . . . .

ε 0 0 −2δx1y1 − ε −ω − δ(x21 + 3y21 ) −1 . . . .

0 0 0 ω + δ(3x21 + y21 ) 2δx1y1 + a 0 . . . .

0 0 0 z1 0 x1 − c . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

At each coupling strength, there is a set of 3(N + 1)
eigenvalues of the Jacobian. We show the maximum
real part λmax of the eigenvalues as a function of cou-
pling strength ε in Fig. 11a. Naturally, since the group
of oscillators and the external oscillator are intrinsi-
cally chaotic, λmax > 0 for ε = 0. However, it is
clear that at a critical value of coupling εc all eigen
values are negative, indicating that all the oscillators
in the group and the external system go to stable fixed
points (cf. Fig. 11a). Note that the εc obtained through
linear stability analysis is smaller than that observed
from generic random initial states, as displayed in the
bifurcation plots. So we undertook additional numeri-
cal simulations from initial states sufficiently close to
the fixed point solutions and verified that for such close-
by initial conditions the fixed point state is indeed sta-
ble at lower coupling strengths, in accordance with that
seen in Fig. 11a.

Further, from Fig. 11b it is clear that λmax increases
linearly with increasing parameter r in the external
Lorenz system (cf. Eq. 3). This supports the numeri-
cal observations that the critical coupling strength εc
increases linearly with r, as displayed in Fig. 6.

123



Suppression of chaos through coupling to an external chaotic system 167

References

1. Storace, M., Linaro, D., de Lange, E.: The Hindmarsh–
Rose neuron model: bifurcation analysis and piecewise-
linear approximations. Chaos 18, 033128 (2008)

2. Shilnikov, S.: Complete dynamical analysis of a neuron
model. Nonlinear Dyn. 68, 305–328 (2012)

3. Ma, J., Wang, C.N., Jin,W.Y.,Wu, Y.: Transition from spiral
wave to target wave and other coherent structures in the net-
works of Hodgkin–Huxley neurons. Appl. Math. Comput.
217, 3844–3852 (2010)

4. Maruthi, P.K., Jampa, A., Sonawane, R., Gade, P.M., Sinha,
S.: Synchronization in a network of model neurons. Phys.
Rev. E 75, 026215 (2007)

5. Osipov, G.V., Kurths, J., Zhou, C.: Synchronization inOscil-
latory Networks. Springer, Berlin (2007)

6. Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical
networks. Science 304, 1926–1929 (2004)

7. Bar-Eli, K.: On the stability of coupled chemical oscillators.
Phys. D 14, 242–252 (1985)

8. Dolnik, M., Epstein, I.R.: Coupled chaotic chemical oscil-
lators. Phys. Rev. E 54, 3361 (1996)

9. Tsaneva-Atanasova, K., Zimliki, C.L., Bertram, R., Sher-
man, A.: Diffusion of calcium and metabolites in pancreatic
islets: killing oscillations with a pitchfork. Biophys. J. 90,
3434–3446 (2006)

10. Koseska, A., Volkov, E., Kurths, J.: Parameter mismatches
and oscillation death in coupled oscillators. Chaos 20,
023132 (2010)

11. Ozden, I., Venkataramani, S., Long, M.A., Connors, B.W.,
Nurmikko, A.V.: Strong coupling of nonlinear electronic
and biological oscillators: reaching the “amplitude death”
regime. Phys. Rev. Lett. 93, 158102 (2004)

12. Kamal, N.K., Sinha, S.: Emergent patterns in interacting
neuronal sub-populations. Commun.Nonlinear. Sci. Numer.
Simul. 22, 314–320 (2015)

13. Ma, J., Song, X., Jin, W., Wang, C.: Autapse-induced syn-
chronization in a coupled neuronal network. Chaos Solitons
Fractals 80, 31–38 (2015)

14. Wei, M., Lun, J.: Amplitude death in coupled chaotic solid-
state lasers with cavity-configuration-dependent instabili-
ties. Appl. Phys. Lett. 91, 061121 (2007)

15. Kim, M.Y., Roy, R., Aron, J.L., Carr, T.W., Schwartz, I.B.:
Scaling behavior of laser population dynamics with time-
delayed coupling: theory and experiment. Phys. Rev. Lett.
94, 088101 (2005)

16. Kumar, P., Prasad, A., Ghosh, R.: Stable phase-locking of
an external-cavity diode laser subjected to external optical
injection. J. Phys. B At. Mol. Opt. Phys. 1, 35402 (2008)

17. Johns, D.C., Marx, R., Mains, R.E., O’Rourke, B., Marbàn,
E.: Inducible genetic suppression of neuronal excitability. J.
Neurosci. 19(5), 1691–1697 (1999)

18. Selkoe, D.J.: Toward a comprehensive theory for
Alzheimer’s disease. Hypothesis: Alzheimer’s disease is
caused by the cerebral accumulation and cytotoxicity of
amyloid β-protein. Ann. N. Y. Acad. Sci. 924, 17–25 (2000)

19. Tanzi, R.E.: The synaptic Aβ hypothesis of Alzheimer dis-
ease. Nat. Neurosci. 8, 977–979 (2005)

20. Caughey, B., Lansbury Jr., P.T.: Protofibrils, pores, fibrils,
and neurodegeneration: separating the responsible protein
aggregates from the innocent bystanders. Annu. Rev. Neu-
rosci. 26, 267–298 (2003)

21. Ditto, W.L., Sinha, S.: Exploiting the controlled responses
of chaotic elements to design configurable hardware. Philos.
Trans. R. Soc. A 364, 2483–2494 (2006)

22. Pun, J., Semercigil, S.E.: Joint stiffness control of a two-link
flexible arm. Nonlinear Dyn. 21, 173–192 (2000)

23. Meehan, P.A., Asokanthan, S.F.: Control of chaotic motion
in a spinning spacecraft with a circumferential nutational
damper. Nonlinear Dyn. 17, 269–284 (1998)

24. Bhoir, N., Singh, S.N.: Output feedback modular adaptive
control of a nonlinear prototypical wing section. Nonlinear
Dyn. 37, 357–373 (2004)

25. Pratt, J.R., Nayfeh, A.H.: Design and modeling for chatter
control. Nonlinear Dyn. 19, 49–69 (1999)

26. Wu, Y., Su, H., Shi, P., Shu, Z.,Wu, Z.G.: Consensus of mul-
tiagent systems using aperiodic sampled-data control. IEEE
Trans. Cybern. (2015). doi:10.1109/TCYB.2015.2466115

27. Wu,Y., Su,H., Shi, P., Lu,R.,Wu,Z.G.:Output synchroniza-
tion of nonidentical linear multiagent systems. IEEE Trans.
Cybern. (2015). doi:10.1109/TCYB.2015.2508604

28. Wu, Y.Q., Su, H., Lu, R., Wu, Z.G., Shu, Z.: Passivity-based
non-fragile control for Markovian jump systems with ape-
riodic sampling. Syst. Control Lett. 84, 35–43 (2015)

29. Resmi, V., Ambika, G., Amritkar, R.E.: General mechanism
for amplitude death in coupled systems. Phys. Rev. E 84,
046212 (2011)

30. Menck, P.J., Heitzig, J., Marwan, N., Kurths, J.: How basin
stability complements the linear-stability paradigm. Nat.
Phys. 9, 89–92 (2013)

123

http://dx.doi.org/10.1109/TCYB.2015.2466115
http://dx.doi.org/10.1109/TCYB.2015.2508604

	Suppression of chaos through coupling to an external chaotic system
	Abstract
	1 Introduction
	2 Emergent controlled dynamics
	3 Synchronization
	4 Basin stability of the spatiotemporal fixed point
	5 Control to steady states via an external hyper-chaotic oscillator
	6 Conclusions
	Appendix: stability analysis
	References




