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Abstract In this paper, an extended car-following
model is proposed to simulate traffic flow by consid-
ering the honk effect. The stability condition of this
model is obtained by using the linear stability analysis.
The phase diagram shows that the honk effect plays an
important role in improving the stabilization of traffic
system. The mKdV equation near the critical point is
derived to describe the evolution properties of traffic
density waves by applying the reductive perturbation
method. Furthermore, the numerical simulation is car-
ried out to validate the analytical results and indicates
that the traffic jam can be suppressed efficiently via
taking into account the honk effect.
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1 Introduction

In recent years, themodelingof trafficflowhas attracted
considerable attention in the field of physical science
and engineering [1–3]. This increasing interest is stim-
ulated not only by its practical application for optimiz-
ing traffic facilities and management, but also by the
observedmany interesting nonequilibriumphenomena,
such as phase transition, hysteresis effect and stop-and-
go waves in traffic flow [4–8].

In order to understand the mechanism and char-
acteristics of the complex phenomena in traffic flow,
many traffic models have been proposed, including
macroscopic models (e.g., hydrodynamic models [9–
13]) in which traffic flow is viewed as a compress-
ible fluid formed by vehicles, and microscopic mod-
els (e.g., cellular automaton models [14–18] and car-
followingmodels [19–24]) where an individual vehicle
is conceived to be a particle and the vehicle traffic is
regarded as a system of interacting particles driven far
from equilibrium. Since the car-following models can
be easily implemented for numerical investigation and
theoretical analysis, they have been widely applied to
describe the driver’s individual behavior. Among them,
the most well-known one is the optimal velocity (for
short, OV)model [19], which has successfully revealed
the dynamic evolution of traffic jam.However, compar-
ison with empirical data shows that too high accelera-
tion and unrealistic deceleration occur in theOVmodel.
After that, many researchers have attempted to improve
theOVmodel.Helbing andTilch [20] introduced a neg-
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ative velocity difference term into the OV model and
developed the generalized force (for short, GF) model.
But the GF model cannot explain the traffic phenom-
enon that if the leading vehicle is much faster, then the
following vehicle will not brake, even if its headway is
smaller than the safety distance. For this reason, Jiang
et al. [21] proposed a more realistic full velocity differ-
ence (for short, FVD) model by further considering the
effect of velocity difference and found that the stability
of traffic flow is apparently improved and the results are
in good agreement with the field data. Subsequently,
many new car-following models were developed to
describe the nature of traffic more realistically. Some
of them were extended by considering the information
of vehicle or road obtained by intelligent transportation
system (for short, ITS) (e.g., inter-vehicle communica-
tion, multiple headway and relative velocity informa-
tion [25–29]), and the others were improved by con-
sidering driver’s behaviors (e.g., anticipation, reaction-
time delay and sensory memory effects [30–34]) and
attributions (e.g., the driver’s bounded rationality,
aggressive and conservative characteristics [35–37]).

However, these models rarely consider the influence
of the honk effect on the driver’s behavior. In real traf-
fic, when a vehicle hinders its following vehicle from
moving at its current velocity, the following vehicle
may honk its horn. Once the preceding driver hears the
horn, the driver will probably change lane or accelerate
according to the traffic state at that time. Although this
phenomenon seldomoccurs in the developed countries,
it can often be observed in many developing countries
(e.g., China). Thus, it is necessary to consider the honk
effect to analyze the car-following behavior. Recently,
Tang et al. [38] developed an extended the OV model
with the honk effect, which shows that the honk effect
can enhance the equilibriumvelocity and flowwhen the
traffic density is moderate. Thereafter, Tang et al. [39]
further presented an improved car-following model to
explore the impacts of the honk effect on the stabil-
ity of traffic flow. The analytical and numerical results
show that the honk effect can improve the stability of
traffic flow. To further study the driver’s characteris-
tics under honk environment, Wen et al. [40] proposed
a modified OV model based on Tang’s model [39] by
considering the timid or aggressive features of drivers
behavior on traffic flow. However, some key factors of
the honk effect have not been considered in the above
models, e.g., the effect of velocity difference between
the current and preceding vehicles. In fact, it has been

widely proved that considering velocity difference in
the model can improve the stability of traffic flow.
Besides, the OV functions of the preceding and follow-
ing vehicles have not been distinguished completely.
As we know, the movement behavior of the preced-
ing vehicle and the honk of the following one, which
have different effects on the current vehicle, should
be considered separately. Therefore, the different OV
functions should be adopted in the course of modeling
[41]. In addition, to our knowledge, the honk effect on
the formationmechanism of density wave of traffic jam
has not been explored in the car-following models up
to now.

The aim of this paper is to provide a new insight
to analyze qualitatively and explore theoretically how
drivers adjust theirmicro-driving behavior based on the
real-time traffic situation when hearing the horn of fol-
lowing vehicle. The paper is organized as follows: A
new car-following model is introduced by considering
the honk effect in Sect. 2. Then, the linear stability the-
ory is employed to obtain the neutral stability condition
in Sect. 3. The mKdV equation is obtained by applying
the reductive perturbation method, and the evolution
feature of traffic jam is described by the kink–antikink
wave in Sect. 4. In Sect. 5, numerical simulations are
performed to verify analytical results, and the intrin-
sic mechanism of the corresponding phase transition is
explored. Finally, some conclusions are drawn.

2 Model

In 1995, Bando et al. [19] proposed the famous OV
model to describe car-following behavior on a single-
lane highway. The dynamical equation of theOVmodel
is as follows:

dvn(t)

dt
= a [V (�xn(t)) − vn(t)] (1)

where xn(t) and vn(t) are the position and the velocity
of the nth vehicle at time t , respectively. a denotes the
sensitivity of the driver and is given by the inverse of
the delay time τ , namely a = 1/τ ,�xn(t) = xn+1(t)−
xn(t) is the headway between the leading vehicle n+1
and the following one n, and V (·) refers to the optimal
velocity function.

Based on the OV model, Helbing and Tilch [20]
in 1998 proposed a generalized force (GF) model. Its
formulation is as follows:
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dvn(t)

dt
= a [V (�xn(t)) − vn(t)]

+λH(−�vn(t))�vn(t) (2)

where H(·) is the Heaviside function. It is a discontinu-
ous function whose value is zero for negative argument

and one for other arguments, i.e., H(x)=

{
0 x < 0
1 x ≥ 0

,

and �vn(t) = vn+1(t) − vn(t) is the velocity differ-
ence of two successive vehicles, andλ is the responding
factor to the velocity difference. The simulation results
indicate that the GF model is poor in anticipating the
kinematic wave speed and the delay time of car motion.

In 2001, by introducing positive relative velocity
into the GF model, Jiang et al. [21] developed the full
velocity difference (FVD) model as follows:

dvn(t)

dt
= a [V (�xn(t)) − vn(t)] + λ�vn(t) (3)

Comparedwith theOVandGFmodels, the results show
that the FVD model is more realistic.

The aforementionedmodels can describe somecom-
plex traffic phenomena. However, these models can-
not reflect the impacts of the honk effect on the car-
following behavior realistically.Howdoes this scenario
affect the traffic dynamics in a single-lane highway?
This is an interesting but still open problem.

Motivated by above reason, we propose a new car-
following model to simulate single-lane traffic flow by
taking into account the honk effect. The model is gov-
erned by the following partial equation:

dvn(t)

dt
= a[VF (�xn(t))(1 − p) + VB(�xn−1(t))

H(hc − �xn−1(t))p − vn(t)] + λ�vn(t)

(4)

where hc is the safety distance; VF (�xn(t)) is the
OV function describing the forward looking effect,
which is equivalent to the V (�xn(t)) in Eq. (3) and
VB(�xn−1(t)), as the OV function describing the honk
effect of the following vehicle, is similar to the back-
ward looking effect of the current vehicle proposed by
Nakayama [41] and can increase the velocity of the cur-
rent vehicle when the headway of the following vehi-
cle becomes small, here �xn−1(t) can be obtained by
ITS (e.g., inter-vehicle communication [25,26]). Note
that the parameter p represents the weight of the honk
effect, i.e., as �xn−1(t) < hc, the possible proba-

bility for following vehicle to honk the horn, which
also indirectly reflects the relative roles of the two OV
functions. In this paper, we take p ∈ [0, 0.3], which
reflects the fact that in realistic situation, on the one
hand, the probability to honk the horn is rare; on the
other hand, even if the honk effect appears, the forward
looking effect (i.e., the headway and relative veloc-
ity between the current and preceding vehicles) is still
more important than the honk effect of the following
vehicle in the single-lane traffic flow. The larger the
p is, the more obvious the honk effect is. When p=0
(i.e., without the honk effect of the following vehicle),
the new model is completely in accordance with the
FVD model [21]. Besides that, H(hc − �xn−1(t)) ={
0 �xn−1(t) > hc
1 �xn−1(t) ≤ hc

is regarded as a factor to add the

honk effect term of the dynamical Eq. (4), whichmeans
that when the following vehicle is very fast and near to
the current vehicle (i.e., �xn−1(t) < hc), it may honk
its horn with probabilityp to urge the current one to
accelerate motion. So the honk effect plays an impor-
tant role only if the headway is less than a certain dis-
tance between the successive vehicles, which is set as
the safety distance hc.

In this paper, the same optimal velocity function pro-
posed by Bando et al. [19] is used as follows.

VF (�xn(t))=
vmax

2
[tanh (�xn(t) − hc) + tanh(hc)] (5)

VB (�xn−1(t))=
vmax

2
[− tanh (�xn(t) − hc) + tanh(hc)] (6)

where vmax = 2 is the maximal velocity and hc = 4 is
the safety distance.

3 Linear stability analysis

In general, the stability analysis method has been
widely used in macroscopic models and microscopic
models to theoretically study traffic instabilities [42,
43]. It is also worth mentioning that the stability analy-
sis usingmicroscopicmodels usually refers to the string
stability of a platoon of vehicles following each other,
which is also equivalent to the flow stability analysis
using macroscopic models. In this paper, the same lin-
ear stability analysis [27] is applied to investigate the
influence of honk effect on traffic flow. To do so, the
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stability of the uniform flow is considered. The uni-
form traffic flow is defined by such a state that all the
vehicles moving with the constant headway b and the
optimal velocity VF (b)(1 − p)+VB(b)p on a circular
road. Obviously, the steady-state solution for Eq. (4) is
given by

x0n (t) = bn + [VF (b) (1 − p) + VB(b)p] t, b = L

N
(7)

where N is the total number of vehicles, and L is the
length of the road.

Suppose yn(t)is a small deviation from the steady-
state solution x0n (t), then the perturbed solution is

xn(t) = x0n (t) + yn(t) (8)

Substituting Eqs. (7) and (8) into Eq. (4), then the lin-
earized equation is obtained

d2yn(t)

dt2
= a

[
V ′
F (b)�yn(t)(1− p)+V ′

B(b)�yn−1(t)

H(hc − b − �yn−1(t))p − dyn(t)

dt

]

+λ
d (�yn(t))

dt
(9)

where �yn(t) = yn+1(t) − yn(t) and V ′(b) =
[dV (�xn)/d�xn]|�xn=b. Here, we mainly focus on
the condition b < hc − �yn−1.

By expanding yn(t)in the Fourier models:yn(t) =
exp(ikn + zt), one can obtain the following equation:

z2 − z
[
λ(eik − 1) − a

]
− a

[
V ′
F (b)(eik − 1) (1 − p)

+V ′
B(b)(1 − e−ik)p

]
= 0 (10)

Expanding z = z1(ik) + z2(ik)2 + · · · , and inserting
it into Eq. (10), the first-order and second-order terms
of ik are obtained, respectively:

z1 = V ′
F (b)(1 − p) + V ′

B (b) p (11)

z2 = 1

2

[
V ′
F (b) (1 − p) − V ′

B(b)p
] + 1

a

(
z1λ − z21

)
(12)

When z2 < 0, the uniform steady-state flow becomes
unstable for the long wavelength modes.When z2 > 0,
the uniform traffic flow is stable. Thus, the neutral sta-
bility condition for the newmodel is derived as follows:

a = 2

[
V ′
F (b)(1 − p) + V ′

B(b)p
]2

V ′
F (b)(1 − p) − V ′

B(b)p

−2λ
V ′
F (b) (1 − p) + V ′

B(b)p

V ′
F (b)(1 − p) − V ′

B(b)p
(13)

Thus, the homogeneous traffic flow is stable under a
small disturbance if the following condition is satisfied:

a > 2

[
V ′
F (b)(1 − p) + V ′

B(b)p
]2

V ′
F (b)(1 − p) − V ′

B(b)p

−2λ
V ′
F (b)(1 − p) + V ′

B(b)p

V ′
F (b)(1 − p) − V ′

B(b)p
(14)

Here, note that the stable traffic meeting above stable
condition might actually still show short-wave lengths
instability [42]. As p = 0, a > 2V ′

F (b)−2λ, the result
of stable condition is the same as that of the FVDmodel
[21].

Figure 1 shows the neutral stability curves in the
headway-sensitivity space under different values of p
whenλ = 0.2.The solid lines anddotted lines represent
the neutral stability cures and the coexisting curves,
respectively. The apex of each curve indicates the exis-
tence of a critical point (hc, ac) denoted by asterisks.
Figure 1 shows that the phase diagram is divided into

Fig. 1 Phase diagram in the headway-sensitivity space. The
solid lines, dotted lines and asterisks indicate the neutral stability
curves, the coexisting curves and the critical point, respectively
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Fig. 2 Plot of ac against p, where λ = 0.2

three regions by the solid lines and dotted lines: The
first is the stable region above the coexisting curve, the
second is themetastable region between the neutral sta-
bility line and the coexisting line, and the third is the
unstable region below the neutral stability line. In the
stable region, traffic jams do not occur when small dis-
turbances are added.While in themetastable and unsta-
ble regions, the traffic flow is unstable and will evolve
into congestion with time. In addition, the unstable
region shrinks gradually with increase in p, which indi-
cates the stability of the uniform traffic flow has been
strengthened, and traffic jam is effectively suppressed.
When p=0, the critical point and the neutral stability
lines are consistent with those in the FVD model [21].

In order to further explore the impacts of the honk
effect on the stability of traffic flow, the relationship
between the critical value ac and the
parameter p can be obtained from Eq. (13), i.e.,

ac = 2[
V ′
F (hc)(1−p)+V ′

B (hc)p]2
V ′
F (hc)(1−p)−V ′

B (hc)p
−2λ

V ′
F (hc)(1−p)+V ′

B (hc)p
V ′
F (hc)(1−p)−V ′

B (hc)p
,

and Fig. 2 gives the plot of critical sensitivity ac against
p, where λ = 0.2. From Fig. 2, it can be seen clearly
that the critical sensitivity ac decreases with increasing
p, which means the stability regions are enlarged and
the honk effect can improve the stability of traffic flow.

4 Nonlinear analysis

For further analysis and discussion, Eq. (4) can be
rewritten as

d2�xn(t)

dt2
=a

{
(1− p)

[
VF (�xn+1(t))−VF (�xn(t))

]

+p
[
VB(�xn(t)) − VB(�xn−1(t))

] − d�xn(t)

dt

}

+λ

(
d�xn+1(t)

dt
− d�xn(t)

dt

)
(15)

We apply the reductive perturbation method to Eq. (15)
and focus on the system behavior near the critical point
(hc, ac). The small positive scaling parameter ε is intro-
duced, which represents the deviation from the critical
point ac. We introduce slow scales for space variables
n and time variable t [7,8] and define slow variables X
and T as

X = ε(n + bt) and T = ε3t, 0 < ε � 1 (16)

where b is a constant to be determined. The headway
is set as

�xn(t) = hc + εR(X, T ). (17)

By expanding each term in Eq. (15) to the fifth order
of ε, one obtains

d�xn(t)

dt
= bε2∂X R + ε4∂T R (18)

d�xn+1(t)

dt
= bε2∂X R + bε3∂2X R

+ε4
(
1

2
b∂3X R + ∂T R

)

+ε5
(
1

6
b∂4X R + ∂X∂T R

)
(19)

d2�xn(t)

dt2
= b2ε3∂2X R + 2bε5∂X∂T R (20)

�xn+1(t) = hc + εR + ε2∂X R + 1

2
ε3∂2X R

+1

6
ε4∂3X R + 1

24
ε5∂4X R (21)

�xn−1(t) = hc + εR − ε2∂X R + 1

2
ε3∂2X R

−1

6
ε4∂3X R + 1

24
ε5∂4X R (22)

VF (�xn) = VF (hc) + εV ′
F R + V ′′′

F

6
ε3R3 (23)

VF (�xn+1) = VF (hc) + εV ′
F R + ε2V ′

F∂X R

+ε3
(
V ′
F

2
∂2X R + V ′′′

F

6
R3

)
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+ε4
(
V ′
F

6
∂3X R + V ′′′

F

6
∂X R

3
)

+ε5
(
V ′
F

24
∂4X R + V ′′′

F

12
∂2X R

3
)

(24)

VB(�xn) = VB(hc) + εV ′
B R + V ′′′

B

6
ε3R3 (25)

VB(�xn−1) = VB(hc) + εV ′
B R − ε2V ′

B∂X R

+ε3
(
V ′
B

2
∂2X R + V ′′′

B

6
R3

)

−ε4
(
V ′
B

6
∂3X R + V ′′′

B

6
∂X R

3
)

+ε5
(
V ′
B

24
∂4X R + V ′′′

B

12
∂2X R

3
)

(26)

where V ′
F = V ′

F (hc) = [dVF (�xn)/d�xn]
∣∣
�xn=hc ,

V ′′′
F = V ′′′

F (hc) = [
d3VF (�xn)/d3�xn

] ∣∣
�xn=hc ,

V ′
B = V ′

B(hc) = [dVB(�xn)/d�xn]
∣∣
�xn=hc , V

′′′
B =

V ′′′
B (hc) = [

d3VB(�xn)/d3�xn
] ∣∣

�xn=hc .
By substituting Eqs. (18) and (26) into Eq. (15) and

making the Taylor expansion to the fifth order of ε, one
can obtain the following nonlinear partial differential
equation:

ε2(b − m1)∂X R + ε3
(
b2

a
− m2

2
− b

a
λ

)
∂2X R

+ε4
(

∂T R −
(
m1

6
+ bλ

2a

)
∂3X R − m3

6
∂X R

3
)

+ε5
(
2b − λ

a
∂X∂T R −

(
m2

24
+ bλ

6a

)
∂4X R

−m4

12
∂2X R

3
)

= 0 (27)

where m1 = (1 − p)V ′
F + pV ′

B , m2 = (1 − p)V ′
F −

pV ′
B , m3 = (1 − p) V ′′′

F + pV ′′′
B , m4 = (1 − p) V ′′′

F −
pV ′′′

B .
Near the critical point (�xc, ac), let ac = a(1 + ε2).

By taking b = m1, the second-order and third-order
terms of ε can be eliminated from Eq. (27) and result
in the following equation:

ε4
(
∂T R − g1∂

3
X R + g2∂X R

3
)

+ε5
(
g3∂

2
X R + g4∂

4
X R + g5∂

2
X R

3
)

= 0 (28)

where g1 = m1
6 + λm1

2ac
, g2 = −m3

6 , g3 = m2
2 , g4 =

m2
1−m1λ

3ac
+ 2λm2

1−λ2m1

2a2c
− m2

24 , g5 = 2m1m3−λm3
6ac

− m4
12 ,

In order to obtain the standard mKdV equation with
higher correction, we make the following transforma-
tions to Eq. (28):

T = T ′

g1
, R(X, T ) =

√
g1
g2

R′(X, T ′) (29)

Thus, we obtain the following regularized equation:

∂T ′ R′ − ∂3X R
′ + ∂X R

′3 + εM
[
R′] = 0 (30)

whereM
[
R′]= 1

g1

[
g3∂2X R

′ + g4∂4X R
′ + g1g5

g2
∂2X R

′3
]
.

If we ignore the O(ε) terms in Eq. (30), it becomes the
standard mKdV equation with a kink solution as the
desired solution:

R′
0(X, T ′) = √

c tanh

[√
c

2
(X − cT ′)

]
(31)

In order to determine the selected value of the prop-
agation velocity c for the kink solution Eq. (31), it is
necessary to consider the solvability condition [7,8],

(R′
0, M

[
R′
0

]
) ≡

∫ +∞

−∞
dXR′

0M
[
R′
0

] = 0 (32)

where M
[
R′
0

] = M
[
R′]. By performing the integra-

tion, one can obtain the selected velocity c,

c = 5g2g3
2g2g4 − 3g1g5

(33)

Hence, the kink–antikink solution of mKdV equation
is obtained as follows:

R(X, T ) =
√
g1c

g2
tanh

√
c

2
(X − cg1T ) (34)

By rewriting each variable to the original Eq. (17), the
kink–antikink solution of headway is

�xn = hc +
√
g1c

g2
(
ac
a

− 1) tanh

√
c

2
(
ac
a

− 1)

[
n +

(
1 − cg1

(ac
a

− 1
)
t
)]

(35)

The amplitude A of the kink–antikink solution is
described by

A =
√
g1c

g2
(
ac
a

− 1) (36)
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Fig. 3 Space–time evolution of the headway for different values of p

The kink–antikink solution represents the coexisting
phase involving both the freely moving phase and con-
gested phase. The coexisting curve can be described by
�xn = hc ± A in the headway-sensitivity space and is
shown in Fig. 1 by the dotted lines.

5 Simulation and discussion

To verify the theoretical results and reveal the influ-
ence of honk effect on trafficflow, numerical simulation
is performed for the new model described by Eq. (4)
by using the fourth-order Runger–Kutta method where
the time interval is taken as�t = 1/20. The periodic
boundary is adopted, and the related parameters are
taken as a = 1, λ = 0.2. The initial conditions are
chosen as follows:

�xn(0) = 4,�xn(1) = �xn(0) = 4 for n 
=
50, 51;�xn(1) = 4+0.1 forn = 50;�xn(1) = 4−0.1
for n = 51, where the total car number is N = 100.

Figure 3 shows the space–time evolution of the head-
way after t = 10, 000 time steps for different val-

ues of p. The patterns (a) to (d) in Fig. 3 correspond
to p = 0, 0.05, 0.1 and 0.15, respectively. Figure 3
clearly shows that the traffic flow is unstable in pat-
terns (a)–(c), because the linear stability condition of
Eq. (14) is not satisfied at a = 1, and the initial homo-
geneous flow will evolve into traffic jam under a small
perturbation. The propagating behavior of traffic jam
can be described by the kink–antikink solution of the
mKdV equation. However, in pattern (d), the density
waves disappear and the traffic flow is uniform over the
whole space with the same sensitivity, which indicates
that the honk effect can suppress effectively the traffic
jam and enhance the stability of traffic flow. This qual-
itative conclusion is the same as that in Tang’s model
[39].

Figure 4 shows headway profile of the density wave
at t = 10, 200 corresponding to Fig. 3.We can find that
the amplitude of FVD model (i.e., p = 0) fluctuates
much more widely than those (i.e., p 
= 0) of the new
model, which indicates that the stability is improved
by introducing the honk effect. Furthermore, with the
increasing value of p, the fluctuation of headway is
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Fig. 4 Headway profile of the density wave at t = 10, 200
corresponding to Fig. 3

Fig. 5 Hysteresis loops for different values of p

reduced obviously. In particular, when p = 0.15, the
stop-and-go phenomenon disappears and traffic flow
becomes uniform state due to the satisfaction of the
stability condition (14). All these results are consistent
with the above analysis.

In order to further prove that the honk effect can
improve the stability of traffic flow, the hysteresis phe-
nomena of traffic flow are explored. Figure 5 shows
the velocity-headway trajectory corresponding to the
cases p = 0, 0.05, 0.1 and 0.15, respectively. After
sufficiently long time, the traffic state is close to station-
ary where the motions of vehicles organize hysteresis
loops. The hysteresis loop will gradually be reduced
with the increase in p, which indicates that the honk
effect plays positive function on the stabilization of
traffic flow. In particular, when p = 0.15, the stabil-

ity condition [see Eq. (14)] is satisfied, the loop will
shrink into a point H on the optimal velocity curve, and
the traffic flow is a stable state. Therefore, the simula-
tion results are in good agreement with the theoretical
analysis.

6 Conclusions

In this paper, we proposed an extended car-following
model to simulate traffic flow under honk environment.
To do so, two optimal velocity functions describing the
forward looking effect and the honk effect of the fol-
lowing vehicle are introduced, respectively. The stabil-
ity of traffic flow and the density waves were inves-
tigated analytically through the linear stability theory
and nonlinear analysis method. The mKdV equation
near the critical point has been derived to describe the
traffic jam. Furthermore, the numerical results are in
good agreement with the theoretical analysis, which
indicates that the honk effect plays an important role in
improving the stability of traffic flow and suppressing
the traffic jam.

However, the present work is limited on single lane,
and the lane-changing behaviors as well as the driver’s
attributions (e.g., aggressive and conservative char-
acteristics) have not been considered. Moreover, the
obtained results are qualitative. In the future, thismodel
will be further extended to investigate the above prob-
lems.
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