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Abstract A (3+1)-dimensional coupled nonlinear
Schrödinger equation with different inhomogeneous
diffractions and dispersion is investigated, and rogue
wave and combined breather solutions are constructed.
Different diffractions and dispersion of medium lead
to the repeatedly excited behaviors of rogue wave
and combined breather in the dispersion/diffraction
decreasing system. These repeated behaviors includ-
ing complete excitation, rear excitation, peak excitation
and initial excitation are discussed.

Keywords Repeatedly excited behaviors · Rogue
wave ·Combined breather · (3+1)-dimensional coupled
nonlinear Schrödinger equation

1 Introduction

In the last decades, considerable advances have been
made in the investigation of solitons in various fields
of physics and engineering [1–7]. In recent years, rogue
waves (or freak waves)—single waves with amplitudes
significantly larger than the surrounding waves—have
also witnessed tremendous growth in various contexts
of physics and engineering [8,9].

More recently, controllable behaviors of rogue
waves and the related breathers have been studied [10–
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18]. The control for rogue waves [14] and superposed
breather [15] were discussed. Controllable breather
and Kuznetsov-Ma (KM) soliton trains in parity-
time (PT )-symmetric coupled waveguides have been
reported [16]. Nonlinear tunneling effect of control-
lable combined KM soliton in PT -symmetric nonlin-
ear couplers has beendiscussed [17].Controllable com-
bined Peregrine soliton (PS) and KM soliton in PT -
symmetric nonlinear couplers have also been investi-
gated [18].

In the periodic amplification system, the recurrence
of PSwith two peaks in a birefringent fiber with higher-
order effects was reported [19]. Moreover, the recur-
rence of the combined PS and AB [20] and the recur-
rence of a KM soliton crossing Akhmediev breather
(AB) [21] have also been studied in the periodic ampli-
fication system. These recurred behaviors in Refs. [19–
21] originate from the periodic functions in the periodic
amplification system.

In the diffraction/dispersion decreasing system
(DDS), controllable behaviors of rogue waves [14,22]
and breathers [21,23] were not reported to show the
recurrence of excitation. However, we find that rogue
wave and combined breather also possess the repeat-
edly excited behaviors in the DDS, which originates
from different diffractions and dispersion of medium.
The possibility of generation of the so-called nonlinear
paired (or symbiotic) bright and dark solitons arising in
the framework of the system of two coupled nonlinear
Schrödinger equation (CNLSE) [24–26]was predicted.
In this present paper, we study a (3+1)-dimensional
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CNLSEwith different inhomogeneous diffractions and
dispersion and discuss repeated behaviors of symbiotic
roguewave and combined breather, including complete
excitation, rear excitation, peak excitation and initial
excitation.

2 Symbiotic rogue wave and breather solutions

In a real situation, the variation of the fiber geometry
brings the inhomogeneity of medium [27]. When two
optical fields u and v propagating in the same fiber are
considered, the interactions between themare governed
by the variable-coefficient CNLSE as follows:

iuz + 1

2

[
β1(z)uxx + β2(z)uyy + β3(z)utt

]

+χ(z)(σ11|u|2 + σ12|v|2)u = iγ (z)u,

ivz + 1

2

[
β1(z)vxx + β2(z)vyy + β3(z)vt t

]

+χ(z)(σ21|u|2 + σ22|v|2)v = iγ (z)v, (1)

with two normalized complex mode fields u(z, x, y, t)
and v(z, x, y, t), dimensionless propagation distance
z and dimensionless transverse coordinates x, y and
time t . The second and third terms in the left-hand
sides denote the diffractions with different transverse
coordinates (x, y), the fourth term represents disper-
sion, and the last two terms in the left-hand sides stand
for the self-focusing (χ > 0) or the self-defocusing
(χ < 0) nonlinearity with the self-phase-modulation
(SPM) and cross-phase modulation (XPM). The con-
stants σ11, σ12, σ21 and σ22 determine the ratio of the
coupling strengths of the XPM to the SPM. For lin-
early polarized eigenmodes σ11 = σ22 = 1, σ12 =
σ21 = 2/3, whereas for circularly polarized modes
σ11 = σ22 = 1, σ12 = σ21 = 2 with elliptically polar-
ized eigenmodes σ11 = σ22 = 1, 2 < σ12 = σ21 <

2/3 [28]. These terms in the right-hand sides of Eq. (1)
stand for the gain (γ > 0) or the loss (γ < 0).

Considering the relation between system parameters

χ(z) = G

4BA2
0

[
k2β1(z)α2(z)α3(z)

α1(z)

+ l2β2(z)α1(z)α3(z)

α2(z)
+ m2β3(z)α1(z)α2(z)

α3(z)

]

× exp [−2Γ (z)], (2)

and using the following transformation

{
u(z, x, y, t)
v(z, x, y, t)

}
=

⎧
⎪⎪⎨

⎪⎪⎩

√∣∣∣ σ22−σ12
σ12σ21−σ11σ22

∣∣∣
√∣

∣∣ σ11−σ21
σ12σ21−σ11σ22

∣
∣∣

⎫
⎪⎪⎬

⎪⎪⎭

×A(z)U [Z(z), X (z, x, y, t)] exp[iφ(z, x, y, t)],
(3)

with the amplitude A(z) = A0[α1(z)α2(z)α3(z)]1/2
exp [Γ (z)], the effective propagation distance Z(z) =
1
4B [k2δ1(z)α1(z) + l2δ2(z)α2(z) +m2δ3(z)α3(z)], the
transformation variable X (z, x, y, t) = 1

2 [kα1(z)x +
lα2(z)y+mα3(z)t]− 1

2 [kdδ1(z)α1(z)+leδ2(z)α2(z)+
m f δ3(z)α3(z)], the phase φ(z, x, y, t) = − 1

2 [aα1(z)
x2 + bα2(z)y2 + cα3(z)t2] + dα1(z)x + eα2(z)y +
f α3(z)t− 1

2 [d2δ1(z)α1(z)+e2δ2(z)α2(z)+ f 2δ3(z)α3

(z)], the chirp factors α1(z) = 1/[1−aδ1(z)], α2(z) =
1/[1 − bδ2(z)] and α3(z) = 1/[1 − cδ3(z)], the accu-
mulated diffractions δ1(z) = ∫ z

0 β1(s)ds, δ2(z) =∫ z
0 β2(s)ds and the accumulated dispersion δ3(z) =∫ z
0 β3(s)ds, the accumulated gain/loss Γ (z) = ∫ z

0 γ (s)
ds and constants a, b, c, d, e, f, k, l,m, Eq. (1) can be
transformed into the famous NLSE with constant coef-
ficients

iUZ + B

2
UXX + G|U |2U = 0, (4)

with two constants B and G. Here we choose B = 1
and G = 1.

From the transformation (3) and the modified Dar-
boux transformation technique in Ref. [8], symbiotic
rogue wave solution of Eq. (1) reads

{
u(z, x, y, t)
v(z, x, y, t)

}
=

⎧
⎪⎪⎨

⎪⎪⎩

√∣
∣∣ σ22−σ12
σ12σ21−σ11σ22

∣
∣∣

√∣∣∣ σ11−σ21
σ12σ21−σ11σ22

∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭

×A(z)

[
(−1)n + Mn + i(Z − Z0)Nn

Ln

]

× exp

{
i

[(
1 − v2

2

)
(Z − Z0) + v0X + φ

]}
,

(5)

where 2M1 = L1 = 8, N1 = 1+4[X−v0(Z−Z0)]2+
4(Z − Z0)

2 for first-order rogue wave solution with
n = 1 and M2 = [(X − v0 (Z − Z0))

2 + (Z − Z0)
2 +

3
4 ][(X − v0 (Z − Z0))

2+5 (Z − Z0)
2+ 3

4 ]− 3
4 , N2 =

(Z − Z0) {(Z − Z0)
2 −3[X−v0 (Z − Z0)]2+2[(X−

v0 (Z − Z0))
2 + (Z − Z0)

2]2 − 15
8 }, L2 = 1

3 [(X − v0
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(Z − Z0))
2 + (Z − Z0)

2]3 + 1
4 [(X − v0 (Z − Z0))

2 −
3 (Z − Z0)

2]2 + 9
16 (X − v0 (Z − Z0))

2 + 33
16 (Z

− Z0)
2 + 3

64 for second-order rogue wave with n = 2,
X, Z and φ are given below Eq. (3), and Z0 and v0 are
two arbitrary constants.

Moreover, from the transformation (3) and the mod-
ified Darboux transformation technique in Ref. [9],
symbiotic combined rogue wave and breather solution
of Eq. (1) reads
{
u(z, x, y, t)
v(z, x, y, t)

}

=

⎧
⎪⎪⎨

⎪⎪⎩

√∣∣
∣ σ22−σ12
σ12σ21−σ11σ22

∣∣
∣

√∣∣∣ σ11−σ21
σ12σ21−σ11σ22

∣∣∣

⎫
⎪⎪⎬

⎪⎪⎭
A(z)

[
1 + G + iF

H

]

× exp

{
i[(1 − v2

2
)(Z − Z0) + v0X + φ]

}
, (6)

whereG = κ{κ[κ2(4Z2
s2+4X ′2

s2+1)−8] cosh(δZs1)+
8δ cos(κX ′

s1)}/8, F = κ{8Zs2[δ cos(κX ′
s1) − κ cosh

(δZs1)] +δκ(4Z2
s2 + 4X ′2

s2 + 1) sinh(δZs1)}/4, H =
−{δ[κ2(4Z2

s2+4X ′2
s2+1)−16] cos(κX ′

s1)+κ([κ2(4Z2
s2

+4X ′2
s2 − 3)+ 16] cosh(δZs1) −16δ[Zs2 sinh(δZs1)+

X ′
s2 sin(κX

′
s1)])}/(4κ) with Zs1 = Z − Z ′

0, Zs2 =
Z − Z0, X ′

s1 = Xs1 − v0Z , X ′
s2 = Xs2 − v0Z , Xsj =

X − X j , δ = κ
√
4 − κ2/2, κ = 2

√
1 + n2, j = 1, 2,

with X, Z and φ being given below Eq. (3), an arbitrary
constantv0 and themodulation frequencyκ . Z0, Z ′

0 and
X j decide the center of solution in Z − X coordinates.
If 0 < Im(n) < 1 or Im(n) > 1 in solution (6), a rogue
wave is combined by a breather or KM soliton, respec-
tively. Here we choose Z0 = Z ′

0 and 0 < Im(n) < 1;
thus, solution (6) describes a rogue wave embedded on
a breather.

As said in Refs. [29,30], nonautonomous solitons
exist only under certain conditions and the parameter
functions describing dispersion, nonlinearity and gain
or absorption inhomogeneities cannot be chosen inde-
pendently. Solutions (5) and (6) also exist under the
relation between system parameters (2).

3 Repeatedly excited behaviors of rogue wave and
combined breather

We consider repeatedly excited behaviors of rogue
wave and combined breather in the following system
with diffraction functions β1(z), β2(z) and dispersion
function β3(z) as [31–33]

β j (z) = β j0 exp(−gz), (7)

where positive parameters β j0( j = 1, 2, 3) and g are
related to diffraction or dispersion. When g > 0, this
system describes the exponential DDS.

As we all know, second-order rogue wave (5)
reaches its peak at location X = 0, Z = Z0 and
then gradually disappears in the Z − X coordinates.
Based on the expression of Z below Eq. (3) and (7),
we obtain Z = k2β10[1−exp(−gz)]/[4g−4aβ10(1−
exp(−gz))] + l2β20[1 − exp(−gz)]/[4g − 4bβ20(1 −
exp(−gz))]+m2β30[1− exp(−gz)]/[4g− 4cβ30(1−
exp(−gz))], which hints that the value of Z approaches
the maximum value Zm = k2β10/[4(g − aβ10)] +
l2β20/[4(g − bβ20)] + m2β30/[4(g − cβ30)] as z
approaches infinity. The degree of excitation of second-
order roguewave is decided by the relation between the
maximum Zm and peak location Z0.

When Zm = Z0, the critical value of g can be
obtained if other parameters are chosen as certain val-
ues. If parameters are chosen as k = 0.9, l = 1,m =
1.1, a = 0.45, b = 0.5, c = 0.55, β10 = 0.25, β20 =
0.3, β30 = 0.35, Zm = Z0 = 6 produces triple roots of
parameter g, namely g1 = 0.1177, g2 = 0.1593, g3 =
0.2166. We find that Zm non-montonically changes,
that is, Zm increases and decreases again and again.
Therefore, repeatedly excited behaviors of rogue wave
will happen in the DDS.

In the following, we discuss repeatedly excited
behaviors for one of component u from the symbiotic
solution. Actually, similar repeatedly excited behaviors
will also happen for another component v of the sym-
biotic solution.

Figure 1 displays repeatedly excited behaviors of
rogue wave with the add of values of g in the DDS.
If g = 0.115 < g1 in Fig. 1a, then Zm > Z0; thus,
the complete second-order rogue wave is excited. If
g = 0.1177 = g1 in Fig. 1b, then Zm = Z0; thus,
the second-order rogue wave is excited to the peak
and self-similarly sustains its peak along the propa-
gation distance. If g = 0.14 > g1, then Zm < Z0

in Fig. 1c; thus, the threshold of exciting a complete
rogue wave is never reached, and the rogue wave is
only excited to the initial part. If g1 < g = 0.15 <

g2 in Fig. 1d, then Zm > Z0 again; thus, the full
second-order rogue wave is excited again. If g1 <

g = 0.1593 = g2 in Fig. 1e, the maintenance of
peak excitation of rogue wave happens once again. If
g = 0.17 > g2 in Fig. 1f, the complete excitation
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Fig. 1 a, d, g complete excitation, b, e, h peak excitation, and c,
f, i initial excitation of the second-order rogue wave in the DDS,
respectively. Parameters are chosen as A0 = 0.5, k = 0.9, l =
1,m = 1.1, a = d = 0.45, b = e = 0.5, c = f = 0.55, β10 =
0.25, β20 = 0.3, β30 = 0.35, Z0 = 6, v0 = 0.1, σ12 = σ21 =

1.5, σ11 = σ22 = 1with a g = 0.115, b g = 0.1177, c g = 0.14,
d g = 0.15, e g = 0.1593, f g = 0.17, g g = 0.2, h g = 0.2166
and i g = 0.23, respectively. We take y = 2, t = 3. Results are
similar for other values of y and t

is restrained, and rogue wave is initially excited. If
g2 < g = 0.2 < g3 in Fig. 1g, g = 0.2166 = g3
in Fig. 1h and g = 0.23 > g3 in Fig. 1i, the complete

excitation, peak excitation and initial excitation of the
second-order rogue wave will appear again. This phe-
nomenon of repeated excitation has not been reported
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Fig. 2 a, d, g complete excitation, b, e rear excitation, c, h peak
excitation and f, i initial excitation of a rogue wave embedded
on a breather in the DDS, respectively. Parameters are chosen as
the same as those in Fig. 1 except for n = 0.85i, X1 = X2 = 0

with a g = 0.115, b g = 0.117, c g = 0.1177, d g = 0.15, e
g = 0.158, f g = 0.17, g g = 0.2, h g = 0.2166 and i g = 0.23,
respectively. We take y = 2, t = 3. Results are similar for other
values of y and t

in the system with same diffractions and dispersion in
Ref. [34].

Similar case of repeated excitation also happens for
a rogue wave embedded on a breather. In the Z − X

coordinates, the roguewave and breather in solution (6)
altogether reach their peaks at location X = 0, Z = Z0

and then gradually disappear. Adjusting the relation
between Zm and Z0, we can also discuss control-
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lable excitation of the rogue wave embedded on a
breather.

Figure 2 exhibits repeatedly excited behaviors of
the rogue wave embedded on a breather with the add
of values of g in the DDS. If g = 0.115 < g1 in
Fig. 2a, then Zm > Z0; thus, the complete excitation
of the rogue wave embedded on a breather appears. If
g = 0.117 (a bit smaller than g1) in Fig. 2b, rogue
wave and breather are all excited rear part, and the rear
part of rogue wave and breather do not disappear along
z. If g = 0.1177 = g1 in Fig. 2c, then Zm = Z0;
thus, the rogue wave and breather are all excited to
their peaks and self-similarly maintain their maximum
amplitudes along the propagation distance. If g > g1,
the complete excitation of the rogue wave embedded
on a breather is restrained. If g1 < g = 0.15 < g2
in Fig. 2d, then Zm > Z0 again; thus, the rogue wave
embedded on a breather is excited again. If g = 0.158
(a bit smaller than g2) in Fig. 2e, the rear excitation of
rogue wave and breather happens again, and the rogue
wave embedded on a breather propagates along z with
a tail. If g = g2, the maintenance of peak excitation of
rogue wave happens once again. If g = 0.17 > g2 in
Fig. 2f, the complete excitation is restrained, and the
rogue wave embedded on a breather is initially excited.
If g2 < g = 0.2 < g3 in Fig. 2g, g = 0.2166 = g3
in Fig. 2h and g = 0.23 > g3 in Fig. 2i, the complete
excitation, peak excitation and initial excitation of the
rogue wave embedded on a breather will also happen.
This phenomenon of repeated excitation has not been
reported in the system with same diffractions and dis-
persion in Ref. [35]. Therefore, different diffractions
and dispersion ofmedium lead to the repeatedly excited
behaviors of rogue wave and combined breather in the
DDS.

4 Summary

In summary, we investigate a (3+1)-dimensional
CNLSEwith different inhomogeneous diffractions and
dispersion and construct rogue wave and combined
breather solutions. From the relation between the trans-
formation variable Z and real distance z, we obtain the
maximum value of Zm in DDS. Comparing values of
Zm andpeak location Z0,we study complete excitation,
rear excitation, peak excitation and initial excitation of
roguewave and combined breather. InDDS, a new phe-
nomenon of repeatedly excited behaviors is discussed.

The reason to appear these repeatedly excited behaviors
is the existence of different diffractions and dispersion
of medium. These repeated behaviors including com-
plete excitation, rear excitation, peak excitation and ini-
tial excitation are discussed.
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