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Abstract This paper investigates the effect of aggres-
sive or timid characteristics of driver’s behavior with
passing by means of lattice hydrodynamic traffic flow
model. The effect of driver’s characteristic on the sta-
bility of traffic flow is examined through linear sta-
bility analysis. It is shown that for both the cases of
passing or without passing the stability region signifi-
cantly enlarges (reduces) as the proportion of aggres-
sive (timid) drivers increases. To describe the prop-
agation behavior of a density wave near the critical
point, nonlinear analysis is conducted andmKdV equa-
tion representing kink–antikink soliton is derived. It is
observed that jamming transition occurs between uni-
form flow and kink jam phase with increase in aggres-
sive driver’s characteristics for smaller values of pass-
ing. When passing constant is greater than a critical
value, jamming transitions occur among uniform traf-
fic flow and kink-Bando traffic wave through chaotic
phase. Numerical simulation is carried out to vali-
date the theoretical findings which confirm that traffic
jam can be suppressed efficiently by considering the
driver’s characteristics in a single-lane traffic system
with or without passing.
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1 Introduction

In today’s era, traffic congestion is a serious issue due
to the rapid increase in automobiles on road through-
out the world. Due to which, the complexity involved
in traffic flow problems attracted the attention of sci-
entists and researchers. Traffic congestion not only
increases energy consumption and emissions but it also
imposes safety hazards. From the last few decades var-
ious traffic models, such as car-following models, cel-
lular automaton models, lattice hydrodynamic models,
gas-kinetic models, and fluid-dynamic models, have
been developed to understand the dynamics of traf-
fic flow and investigate the properties of traffic jams
[1–28]. Among them, the lattice hydrodynamic model
firstly proposed by Nagatani [10], which incorporates
the idea of the microscopic optimal velocity model,
is one of the convenient model for analyzing the den-
sity wave in traffic flow. In this approach, traffic con-
gestion is represented in terms of kink density wave
through Modified Korteweg–de Vries (mKdV) equa-
tion. Subsequently, this modeling approach was widely
referred and extended to study various nonlinear phe-
nomenonpresent in vehicular trafficflow like backward
effect [12], lateral effect of the lane width [13], antic-
ipation effect of individual driving behavior [14], and
explicit driver’s physical delay [15].

In real traffic, the driver always adjusts his/her veloc-
ity according to observed traffic situation in the sur-
roundings and estimates his/her driving behavior. To
capture this complex phenomenon, few efforts [17,18,
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20,27,28] have been made in the past. In this direction,
Sharma [27] recently analyzed the behavior of driver
characteristic on a two-lane traffic flow phenomena.
To incorporate one of the important traffic character-
istics, Nagatani [10] extended his model to take into
account the passing effect in one-dimensional traffic
flow phenomena. Later, Gupta and Redhu [23] ana-
lyzed the passing effect with driver anticipation effect
on traffic flow and concluded that passing parameter is
an important parameter which plays an important role
to stabilize traffic flow. As seen in real traffic on high-
ways, both the above-mentioned traffic phenomena are
interconnected as aggressive drivers try to move fast
due to which overtaking takes place. Therefore, it will
be more adequate to investigate the driver’s character-
istic with the consideration of passing. This motivates
us to develop a latticemodel by incorporating the effect
of driver’s behavior with passing.

In this paper, a more realistic uni-dimensional lat-
tice hydrodynamic traffic flow model is presented with
the consideration of driver’s behavior and passing is
allowed in the traffic system. The rest of the paper is
organized as follows: In Sect. 3, the stability condition
of traffic flow is derived by means of linear stability
theory. To describe the propagation behavior of traf-
fic jams, Sect. 4 is devoted to the nonlinear analysis
in which mKdV equation is computed near the critical
point. Numerical simulations are carried out to validate
the theoretical findings in Sect. 5, and finally, conclu-
sions are drawn in Sect. 6.

2 A new LH model

The first lattice hydrodynamicmodel for vehicular traf-
fic that describe the traffic phenomena on an unidirec-
tional single-lane highway, is proposed by Nagatani
[10], is given as

∂tρ j + ρ0(ρ jv j − ρ j−1v j−1) = 0, (1)

∂t (ρ jv j ) = a[ρ0V (ρ j+1) − ρ jv j ]. (2)

where ρ0 is the average density and sensitivity a = 1/τ
corresponds to the inverse of delay time (τ ); ρ j and v j ,
respectively, represent the local density and velocity at
site j at time t . V (.) is the optimal velocity function
which is amonotonically decreasing function having an
upper bound and an inflection point at critical density.
In this model, the variation in traffic flow ρv at site j is

determined by the difference between the actual flow
at site j and the optimal flow ρ0V (ρ j+1) at the next
site j + 1.

The optimal velocity function adopted by Nagatani
[19] is used.

V (ρ) = Vmax

2

[
tanh

(
1

ρ
− 1

ρc

)
+ tanh

(
1

ρc

)]
, (3)

where Vmax and ρc denote themaximal velocity and the
safety critical density, respectively. The optimal veloc-
ity function is monotonically decreasing, and has an
upper bound and a turning point at ρ = ρc = ρ0.
For computation purpose, maximal velocity and criti-
cal density are set at 2.0 and 0.25, respectively.

To mimic the traffic dynamics more realistically,
Nagatani [10] further extended the lattice model by
incorporating the effect of passing in to evolution equa-
tionwhileEq. (1) representing the conservation of vehi-
cles remain unaltered. It was considered that when the
traffic current on site j is greater than the traffic current
on site j + 1 then passing takes place and is propor-
tional to the difference between the optimal current at
site j and j + 1.

∂t (ρ jv j ) = a[ρ0V (ρ j+1(t)) − ρ jv j ]
+ aγ [ρ0V (ρ j+1(t)) − ρ0V (ρ j+2(t))]. (4)

where γ is a passing constant. Later, Gupta and Redhu
[23] modified the Nagatani’s model to analyze the
effect of driver’s anticipation with passing.

Recently, driver’s behavior which plays an impor-
tant role on traffic flow dynamics has been given much
attention [23,27,28]. In general, drivers behavior can
be characterized in three equilibrium states, i.e, aggres-
sive, normal or timid. In real traffic, aggressive drivers
drive faster while the timid drivers drive slower as com-
pared to the normal drivers and influences the traffic
flow to a larger extent. Aggressive drivers always over-
estimate the downstream density by observing inter-
vehicular space that is shorter than the equilibrium
spacing while timid drivers often underestimate it. This
influences the driver’s perceived optimal velocity. To
capture the effect of driver’s characteristics, a lattice
hydrodynamic model in a two-lane system is devel-
oped [27]. A modified evolution equation is proposed
by incorporating a parameter p to reflect the influ-
ence of driver’s characteristics with the consideration
of anticipation driving effect as follows:
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∂t (ρ j (t)v j (t)) = aρ0[V (ρ j+1(t)) + α(2p − 1)

× τV ′(ρ j+1(t))∂t (ρ j+1(t))] − aρ j (t)v j (t). (5)

where α is the anticipation coefficient corresponds to
driver’s behavior. For timid drivers, the positive value
of α corresponds to the explicit driver’s physical delay
in sensing perceived optimal velocity. Here, the big-
ger value of α corresponds to more skillful aggressive
drivers in the model. When α = 0, the new model
reduces toNagatani’s [19] for normal drivers. The para-
meter 0 ≤ p ≤ 1 represents the intensity of influence
of drivers’ characteristics in the traffic stream. Here,
p = 1 represents the drivers aggressive characteristics
in a traffic system with intelligent transportation sys-
tem (ITS). Whereas p = 0 corresponds to the drivers
timid characteristics which usually underestimate the
optimal velocity. Though the above model is able to
analyze the effect of drivers characteristics on a unidi-
rectional road but cannot be applied to the traffic flow
when passing is applied as the passing effect has not
been considered. Therefore, we propose a new evo-
lution equation by incorporating the effect of passing
with the consideration of anticipation driving effect on
a traffic flow system as follows:

∂t (ρ j (t)v j (t)) = aρ0[pV (ρ j+1(t + ατ))

+ (1 − p)V (ρ j+1(t − ατ))]
− aρ j (t)v j (t) + aγ [ρ0V (ρ j+1(t + ατ))

− ρ0V (ρ j+2(t + ατ))]. (6)

For simplicity, using the Taylor series expansion and
neglecting the non-linear terms, the new evolution
equation can be obtained as:

∂t (ρ j (t)v j (t)) = aρ0[V (ρ j+1(t)) + α(2p − 1)

× τV ′(ρ j+1(t))∂t (ρ j+1(t))] − aρ j (t)v j (t)

+ aγρ0[[V (ρ j+1(t) − V (ρ j+2(t)]
+ ατ [V ′(ρ j+1(t))∂t (ρ j+1(t))

− V ′(ρ j+2(t))∂t (ρ j+2(t))]]. (7)

By taking the difference form of Eqs. (1) and (7) and
eliminating speed v j , the density evolution equation is
obtained as

ρ j (t + 2τ) − ρ j (t + τ) + τρ2
0 [V (ρ j+1(t))

− V (ρ j (t))] + τγρ2
0 [2V (ρ j+1(t))

− V (ρ j (t)) − V (ρ j+2(t))]
+ αρ2

0τ(2p − 1)[V ′(ρ j+1(t))Δ̃ρ j+1(t)

− V ′(ρ j (t))Δ̃ρ j (t)]
+ ταγρ2

0 [2V ′(ρ j+1(t))Δ̃ρ j+1(t)

− V ′(ρ j+2(t))Δ̃ρ j+2(t) − V ′(ρ j (t))Δ̃ρ j (t)] = 0.
(8)

Here �ρ j (t) = ρ j+1(t) − ρ j (t) and Δ̃ρ j (t) = ρ j (t +
τ) − ρ j (t).

3 Linear stability analysis

Linear stability analysis is being performed on the pro-
posed model to investigate the influence of driver’s
characteristics on the jamming transition of traffic flow
when passing is allowed. Under the condition of homo-
geneous traffic flow, the state of uniform traffic is rep-
resented by a constant density ρ0 and optimal velocity
V (ρ0). Hence, the steady-state solution of the homo-
geneous traffic flow on a two-lane highway is given
as

ρ j (t) = ρ0, v j (t) = V (ρ0). (9)

Let y j (t) be a small deviation to the steady-state
density on site j . Then,

ρ j (t) = ρ0 + y j (t). (10)

Inserting this perturbed density profile into Eq. (8)
and linearizing it, we obtain

y j (t + 2τ) − y j (t + τ) + τρ2
0V

′(ρ0) � y j (t)

+ ατρ2
0V

′(ρ0)(2p − 1)Δ̃(�y j (t))

− τγρ2
0V

′(ρ0) �2 y j (t)

− αγ τρ2
0 [V ′(ρ0) �2 Δ̃y j (t)] = 0. (11)

Putting y j (t) = exp(ik j + zt) in Eq. (11), we get

e2τ z − eτ z + τρ2
0V

′(ρ0)[eik − 1]
+ αV ′(ρ0)(2p − 1)[eτ z − 1][eik − 1]
− τγρ2

0V
′(ρ0)[eik − 1]2

− ατγρ2
0 [eik − 1]2[eτ z − 1] = 0. (12)
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Fig. 1 Phase diagram in parameter space (ρ, a), α = 0.1 for a γ = 0, and b γ = 0.1, respectively

Substituting z = z1(ik) + z2(ik)2... into Eq. (12), we
obtained the first- and second-order terms of the coef-
ficient (ik) as

z1 = −ρ2
0V

′(ρ0), (13)

z2 = −3τ z21
2

− ρ2
0V

′(ρ0)
2

− ταρ2
0V

′(ρ0)(2p − 1)z1 + γρ2
0V

′(ρ0). (14)

When z2 < 0, the homogeneous steady-state flow
becomes unstable for long-wavelength waves. While
for z2 > 0 the uniform flow becomes stable. Thus, the
neutral stability condition for the steady-state is given
as

τ = − 1 − 2γ

ρ2
0V

′(ρ0)[3 − 2α(2p − 1)] . (15)

Thus the instability criterion for the homogeneous
traffic flow is given as

τ > − 1 − 2γ

ρ2
0V

′(ρ0)[3 − 2α(2p − 1)] . (16)

It is clear from Eq. (15) that parameters representing
drivers’ behavior p and passing effect γ play an impor-
tant role on the stability of traffic flow in a single-lane
traffic system. For p = 1, the above unstability condi-
tion (Eq. 15) reduces to the one obtained by Gupta and

Redhu [23]. The neutral stability curves in the phase
space (ρ, a) are shown by solid curves in Fig. 1a, b
for different parameter values. For a fix γ , Fig. 1a
depicts the effect of p on stability corresponding to
without passing, i.e., γ = 0 while Fig. 1b examines
the similar effect corresponding to the passing case for
γ = 0.1. It is observed that the apex of these curves
(ρc, ac)decreaseswith an increase in p in both the cases
ensuring that larger value of p leads to enlargement in
the stability region and hence, the traffic jam is sup-
pressed efficiently. Moreover, on comparing Fig. 1a, b,
it can also be concluded that under the similar condi-
tions aggressive (timid) drivers have positive (negative)
effect on the stability of traffic flow. It can be explained
as in real traffic flow under the jam situation, aggres-
sive drivers try to overtake if possible otherwise they
try to accommodate themselves in a less denser lane by
changing their lane quite frequently to overcome the
congestion.

4 Nonlinear stability analysis

We investigate the effect of driver’s behavior on the
evolution characteristic of traffic jam around the criti-
cal point (ρc, ac) on coarse-grained scales using reduc-
tion perturbation technique in this section. Long-
wavelength expansion method is used to understand
the slowly varying behavior near the critical point. For
that, the slow variables X and T for a small positive
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Table 1 The coefficients ki of the model

k1 k2 k3

b + ρ2
c V

′ 3
2b

2τ + ρ2
c V

′[ 12 + bατ(2p − 1) − γ ] 7
6b

3τ 2 + ρ2
c V

′
6 [1 + 3α(2p − 1)bτ(1 + bτ) − 6γ (1 + ατb)]

k4 k5 k6 k7

ρ2
c V

′′′
6 3bτ + ατ(2p − 1)ρ2

c V
′ 5

8b
4τ 3 + ρ2

c V
′

24 [1 + 6α(2p − 1)(b2τ 2

+ 2
3b

3τ 3+ 2
3bτ)−14γ −12αγ (b2τ 2+2bτ)

ρ2
c V

′′′
12

Table 2 The coefficients gi of the model

g1 g2 g3

− 7
6b

3τ 2c − ρ2
c V

′
6 [1 + 3αbτc(2p − 1)(1 + bτc)

− 6γ bτcα − 6γ ]
ρ2
c V

′′′
6

3
2b

2τc + bα(2p − 1)τcρ2
c V

′

g4 g5

(3b + α(2p − 1)ρ2
c )τcg1 + 5

8b
4τ 3c + ρ2

c V
′

6 [(−7γ
12 + 1

4

− αγ (6bτc + 3b2τ 2c ) + α(2p − 1)(bτc + 3b2τ 2c
2 + b3τ 3c )]

ρ2
c V

′′′
12 − [3bτc + αρ2

c τcV
′(2p − 1)]g2

scaling parameter ε (0 < ε � 1) are defined as fol-
lows:

X = ε( j + bt), T = ε3t, (17)

where b is a constant to be determined. Let ρ j satisfy
the following equation:

ρ j (t) = ρc + εR(X, T ). (18)

By expanding Eq. (8) using Taylor expansion up
to fifth order (see “Appendix”) of ε with the help of
Eqs. (17) and (18), the following nonlinear equation is
obtained.

ε2k1∂X R + ε3k2∂
2
X R + ε4(∂T R + k3∂

3
X R + k4∂X R

3)

+ ε5(k5∂T ∂X R + k6∂
4
X R + k7∂

2
X R

3) = 0. (19)

The coefficients ki (i = 1, 2, . . . , 7) are given in

Table 1, where V ′ = dV (ρ)
dρ |ρ=ρc , V

′′′ = d3V (ρ)

dρ3 |ρ=ρc .
Near the critical point (ρc, ac), the value of τ is set as

τ = τc(ε
2 + 1). (20)

By taking b = −ρ2
c V

′ and eliminating the second-
order and third-order terms of ε, we obtain

ε4(∂T R − g1∂
3
X R + g2∂X R

3)

+ ε5(g3∂
2
X R + g4∂

4
X R + g5∂

2
X R

3) = 0, (21)

where the coefficients gi (1, 2, . . . , 5) are given in
Table 2. To convert Eq. (21) into standard mKdV equa-
tion, the following transformations are adopted.

T ′ = g1T, R =
√
g1
g2

R′. (22)

Then, Eq. (21) can be written as

∂ ′
T R

′ − ∂3X R
′ + ∂X R

′3 + εM[R′] = 0, (23)

where M[R′] = 1
g1

[g3∂2X R′ + g4∂4X R
′ + g1g5

g2
∂2X R

′3].
After ignoring O(ε) correction term from Eq. (23), we
get the solution of the standard mKdV equation as

R′
0(X, T ′) = √

c tanh

(√
c

2
(X − cT ′)

)
, (24)

Here c is the propagation velocity for the kink–antikink
solution and is computed by solving the following nec-
essary condition:
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(R′
0, M[R′

0]) ≡
∫ ∞

−∞
dX R′

0M[R′
0] = 0, (25)

withM[R′
0] = M[R′]. By solvingEq. (25), the selected

value of c is

c = 5g2g3
2g2g4 − 3g1g5

. (26)

Hence, the kink–antikink solution is given by

ρ j = ρc + ε

√
g1c

g2
tanh

(√
c

2
(X − cg1T )

)
, (27)

with ε2 = ac
a − 1 and the amplitude A of the solution

is

A =
√
g1
g2

ε2c. (28)

The above kink solution exist only if the following
condition is satisfied.

1−13γ −14γ 2+α2(5−12γ 2 + 12γ (−1 + p) − 6p)

+ 6α(γ (7 − 5p)+2(−1 + p) + 2γ 2(1 + p)) > 0.
(29)

So the existence condition for kink solution is

0 ≤ γ < f (α, p). (30)

where

f (α, p) = 13 + α(30p − 42) + 12α2(1 − p) − (3 − 2α)
√
25 + (−168 + 156p)α + (96 − 144p + 36p2)α2

2(−14 + 12α(1 + p) − 12α2)
.

(31)

The mKdV equation (23) exists only for 0 ≤ γ <

f (α, p) and cannot be derived from above nonlinear
analysis for γ ≥ f (α, p). For a particular case, when
α = 0 and p = 1, the existence condition for kink
solution matches with the results obtained in Ref. [19].
Moreover, for γ < f (α, p), the kink–antikink solu-
tion of mKdV equation represents the coexisting phase
which includes both congested phase and freely mov-
ing phase described by ρ j = ρc ± A in the phase
space(ρ, a). The coexisting curves obtained from non-
linear analysis are plotted by dashed lines in Fig. 1a. It
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Fig. 2 Phase diagram in parameter space (γ, a)

is worthy to note that the coexisting and neutral stabil-
ity curves divide the phase plane into stable, metastable
and unstable region as shown in Fig. 1a. The traffic flow
in the stable region will remain stable under a distur-
bance, while in metastable and unstable region, a small
disturbance will lead to the congested traffic.

From Fig. 1, it is clear that with an increase in p, the
corresponding neutral and coexisting curves both lower
down, which indicates that the aggressive behavior of
the driver can help in stabilizing the traffic flow. Addi-
tionally, the coexisting curves do not exist at γ = 0.1
for any value of p as the condition γ < f (α, p) is not
satisfied (see Fig. 1b). Figure 2 shows the phase dia-
gram in parameter space (γ, a) for different values of
p. The curve ac = 3−2α(2p−1)

1−2γ for γ < f (α, p) rep-

resents the phase boundaries between no jam and kink
jam, while for γ ≥ f (α, p), it represents the phase
boundaries between no jam and chaotic region. It is
clear from Fig. 2 that there exist only two regions no
jamandkink jam in thephase diagram forγ < f (α, p).
Moreover, the kink (no jam) region reduces (enhances)
with an increase in the value of p. These results are
in accordance with the findings of Ref. [24] that traf-
fic jam can be suppressed efficiently by incorporat-
ing more aggressive drives in the traffic stream. For
γ ≥ f (α, p), i.e., when passing is high, based upon
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Fig. 3 Spatiotemporal evolutions of density when γ = 0.05, α = 0.1, and a = 3.2 for a p = 0, b p = 0.4, c p = 0.8, and d p = 1.0,
respectively

the kinds of density wave, the unstable region is fur-
ther divided into two subregions: kink jam and chaotic
jam. The boundary between kink and chaotic jam is
the line a = 3−2α(2p−1)

1−2 f . Similar to the previous case,
in this case also the free flow region enhances while
both the chaotic and kink jam regions reduce with an
increase in the value of p.

5 Numerical simulation

Now, we carry out numerical simulation of the new
model to investigate the effect of drivers characteris-
tics with passing on traffic flow dynamic as well as
to validate the theoretical results obtained by linear
and nonlinear analysis in the previous section. Peri-
odic boundary condition is adopted, and the following
initial condition is chosen:

ρ j (1) = ρ j (0) =

⎧⎪⎨
⎪⎩

ρ0; j 
= M
2 , M

2 + 1

ρ0 − σ ; j = M
2

ρ0 + σ ; j = M
2 + 1

where, σ = 0.1 is the initial disturbance and M is the
total number of lattice sites taken as 100.

As discussed in the previous section that the mKdV
equation exists only for 0 ≤ γ < f (α, p), we will
discuss our numerical results for two different range of
γ as follows:
Case 1: γ < f (α, p)

Figure 3 depicts the effect of parameter p represent-
ing the drivers’ characteristics on the simulation results
of spatio-temporal evolution of density after 2 × 104

time steps for smaller rate of passing γ = 0.05. It is
clear from Fig. 3a–c that a small disturbance in the
uniform density leads to the kink–antikink soliton rep-
resenting stop-and-go waves which propagates in the
backward direction. Due to this, initial homogeneous
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flow under a small amplitude disturbance evolves into
congested flow as the stability condition is not satisfied.
These stop-and-go density waves are expressed by the

kink–antikink soliton solution of the mKdV Eq. (23)
discussed in Sect. 4. For p = 1.0, we entered into the
stable region and a small amplitude perturbation to the
homogeneous density dies out with time and stop-and-
go wave disappears as shown in Fig. 3d. The traffic jam
disappears, and flow becomes almost homogeneous at
p = 1.0.

Figure 4 describes the density profile at time t =
20300s corresponding to the panel of Fig. 3. On
comparing the stop-and-go waves for different val-
ues of p, it can be easily depicted that the ampli-
tude of stop-and-go waves gradually decreases with
an increase in the value of p. This ensures the fact
that the aggressive driver’s characteristics have a pos-
itive effect on the stability of traffic flow and help
in removing the traffic congestion in real traffic for
smaller rate of passing. A natural consequence of
these results is that aggressive driving characteristics
are much more efficient than timid driving character-
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Fig. 5 Spatiotemporal evolutions of density when γ = 0.3, α = 0.1, and a = 3.5 for a p = 0, b p = 0.4, c p = 0.8, and d p = 1.0,
respectively
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Fig. 6 Density profiles at time t = 20300 when γ = 0.3, α =
0.1, and a = 3.5 corresponding to the panel of Fig. 5

istics in suppressing traffic congestion. Our simula-
tion results are consistent with theoretical findings for
γ < f (α, p).

Case 2: γ ≥ f (α, p)
Here, we further examine the effect of driver’s char-
acteristics on the traffic flow dynamics when passing
is allowed at a significant rate (γ = 0.3). Figure 5
display the simulation results of spatiotemporal evo-
lution of density after sufficiently long time, namely
2 × 104 time steps for the different values of p. It can
be observed from Fig. 5 that the pattern of density pro-
files is different for larger value as compared to smaller
values of p.

Patterns in Fig. 5a–c demonstrate that parallel to
previous case of smaller rate of passing, initial small
amplitude disturbance is amplified for smaller values
of p leading to the kink–antikink soliton waves which
propagates in the backward direction. While for higher
values of p, the initial disturbance evolves in to chaotic
waves. These waves band with one another, break up
and propagates in the backward direction. So, It is evi-
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Fig. 7 Plots of density difference ρ(t) − ρ(t − 1) versus ρ(t) when γ = 0.3, α = 0.1, and a = 3.5 for a p = 0, b p = 0.4, c p = 0.8,
and d p = 1.0, respectively
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dent that the kink as well as the chaotic region exists in
the unstable region on the phase plane which verifies
the theoretical results presented in Sect. 4 and shown
in Fig. 5.

To further analyze the effect of aggressive driver’s
characteristics on the steady-state density profiles,
Fig. 6 describes the density profiles at time t =20,300s
corresponding to the panel of Fig. 5. For γ = 0.3,
the steady-state density profiles are expressed by kink-
Bando waves till a <

3−2α(2p−1)
1−2 f (α,p) . Note that the ampli-

tude of the density waves decreases with the increase
in p which is similar to the results obtained in the pre-
vious case for small rate of passing. Further increase
in p, the kink-Bando wave converts into chaotic wave.
These numerical findings agree well with the theoret-
ical results that for a < ac, the traffic will be in kink
phase and while a is greater than ac, traffic flow will be
chaotic. This result is quit interesting as the aggressive
driver’s characteristics on one hand plays a crucial role
in stabilizing the traffic flow for smaller rate of passing
while on the other hand above a critical value of p, their
effect on traffic flow dynamics become adverse when
passing is allowed at larger rate.

To further classify traffic states, the phase space plot
of density difference ρ(t) − ρ(t − 1) against ρ(t) at a
fixed site is plotted for t = 20,000–30,000 in Fig. 7 cor-
responding to Fig. 6. The patterns shown in Fig. 7a–c
exhibit the limit cycle which correspond to the periodic
traffic behavior. The irregular traffic behavior which
exhibits the behavior characteristic of chaos is shown
by the set of dispersed points around a closed loop in the
phase space plot in Fig. 7d. This validate the fact that
as the drivers characteristics crosses the critical value,
the traffic becomes irregular on a single-lane unidirec-
tional highway when passing is allowed at higher rate.
Therefore, from theoretical and simulation results, it is
reasonable to conclude that traffic jam can efficiently
suppressed by considering the driver’s characteristics
in a single-lane traffic system with passing.

6 Conclusion

A new lattice hydrodynamic model for traffic flow is
developed to analyze the effect of driver’s character-
istics on the traffic flow dynamics when passing is
allowed. The traffic behavior has been analyzed the-
oretically by the means of linear as well as nonlinear
analysis and found that driver’s characteristics play a

significant role in stabilizing the traffic flowon a single-
lane highwaywith or without passing. Through nonlin-
ear stability analysis, we derived the mKdV equation
to describe the traffic jam near the critical point and
obtained the condition for the existence of kink soli-
ton solution of mKdV equation. The effect of different
important parameters on the neutral stability curves and
the coexisting curves are plotted and results are com-
pared in the density-sensitivity phase space for smaller
and larger rate of passing. It is observed that there exist
two different regions kink jam and no jam on the phase
plane for smaller rate of passing while an additional
phase known as chaotic jam is seen when the rate
of passing exceeds the critical value. It is concluded
that in both the cases with or without passing, aggres-
sive driver’s characteristics are prompt to increases the
stability of traffic flow significantly while the timid
driver’s characteristics have a opposite effect on the
stability of traffic flow and increase congestion. The
results obtained form numerical simulation are com-
pared and found consistent with the theoretical find-
ings. Finally, it is concluded that driver’s characteris-
tics has an significant impact on the stability of traffic
flow on a single-lane traffic system with passing.

Though the present work is complete to describe
the effect of driver’s characteristics in traffic system
with passing on a one-dimensional highway yet the
proposed model should be extended to more realistic
situation like multi-lane traffic system or a network.
Moreover, the proposed results should also be validated
by the experimental investigations on some real road
which is our one of the future prospective.

Appendix

In this appendix, we give the expansion of each terms
in Eq. (8) using Eqs. (17) and (18) to the fifth order of
ε.***

ρ j (t + τ) = ρc + εR + ε2(bτ)∂X R

+ ε3

2
(bτ)2∂2X R + ε4

6
(bτ)3∂3X R + ε4τ∂T R

+ ε5

24
(bτ)4∂4X R + ε5bτ 2∂T ∂X R. (32)

ρ j (t + 2τ) = ρc + εR + ε2(2bτ)∂X R

+ ε3

2
(2bτ)2∂2X R
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+ ε4

6
(2bτ)3∂3X R + ε4(2τ)∂T R

+ ε5

24
(2bτ)4∂4X R + ε5(4bτ 2)∂T ∂X R. (33)

ρ j+1(t) = ρc + εR + ε2∂X R + ε3

2
∂2X R

+ ε4

6
∂3X R + ε5

24
∂4X R. (34)

ρ j+1(t + τ) − 2ρ j (t + τ) + ρ j−1(t + τ)

= ε3∂2X R + ε4(bτ)∂3X R

+ ε5

12
(1 + 6b2τ 2)∂4X R. (35)

The expansion of optimal velocity function at the turn-
ing point is

V (ρ j ) = V (ρc) + V ′(ρc)(ρ j − ρc)

+ V ′′′(ρc)
6

(ρ j − ρc)
3. (36)

V (ρ j+1) = V (ρc) + V ′(ρc)(ρ j+1 − ρc)

+ V ′′′(ρc)
6

(ρ j+1 − ρc)
3. (37)

Using Eqs. (36) and (37), we get

V (ρ j+1) − V (ρ j ) = V ′(ρc)
[
ε2∂X R

+ ε3

2
∂2X R + ε4

6
∂3X R + ε5

24
∂4X R

]

+ V ′′′(ρc)
6

[
ε4∂X R

3 + ε5

2
∂2X R

3

]
. (38)

Some other important expansions are also computed
using Eqs. (32)–(38) and are given as

V ′(ρ j+1(t))Δ̃ρ j+1(t) − V ′(ρ j (t))Δ̃ρ j (t)

= ε3

2
(bτ)V ′(ρc)∂2X R + ε4

2
(b2τ 2 + bτ)V ′(ρc)∂3X R

+ ε5V ′(ρc)
[
τ∂T ∂X R

+ (4bτ + 6b2τ 2 + 4b3τ 3)

24
∂4X R

]
. (39)

By inserting (32), (33), (35), (38), and (39) into Eq. (8),
we obtain Eq. (19).
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