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Abstract This paper proposes a nonlinear model for
more accurate and efficient dynamic analysis of a rotat-
ing cantilever beam with elastic deformation. The pro-
posed nonlinear model is described by partial integro-
differential equations with non-Cartesian deformation
variables, i.e., the stretch, chordwise and flapwise
deformations. After the equations of motion are dis-
cretized by using the mode superposition method,
dynamic responses are computed by applying theNew-
mark time integration method to the discretized equa-
tions. To show the accuracy and efficiency of the pro-
posed model, convergence characteristics and dynamic
responses for the present model are compared with
those for previous models. This study shows that the
proposedmodel not only yields good accuracy and effi-
ciency in terms of computation, but also overcomes the
limitations of a previous conventional nonlinear model
expressed by Cartesian variables.
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1 Introduction

The dynamic analysis of a rotating flexible beam is
an interesting topic because rotating beams have a
variety of applications such as turbine blades, space
appendages, helicopter blades and flying robot wings.
As a result, amore reliable dynamicmodel for a rotating
beamrequires the stable operation andperformanceof a
rotating machine. Before analyzing previous research,
definitions for the various deformations of a rotating
beam need to be introduced, because they may be help-
ful for understanding the research trends for rotating
beams. A flexible cantilever beam, as shown in Fig. 1,
rotates about the axis perpendicular to the xy plane. In
this paper, the deformations in the x , y and z directions
are called the axial, chordwise (or lagwise) and flap-
wise deformations, respectively, and the extensional
deformation along the curve of a deformed beam is
called the stretch deformation. The elastic deformation
of a beam can be described by two sets of deformation
variables: Cartesian variables and non-Cartesian vari-
ables. The Cartesian deformation variables consist of
the axial, chordwise and flapwise deformations. Mean-
while, the non-Cartesian deformation variables use the
stretch deformation instead of the axial deformation;
therefore, the non-Cartesian variables are composed of
the stretch, chordwise and flapwise deformations.

Many linear models for rotating beams have been
introduced to avoid computational burden for dynamic
analyses. The linear vibrations using Cartesian vari-
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Fig. 1 Configuration of a rotating flexible cantilever beam: a the
top view and b the side view

ables were investigated by various methods such as
the finite element method (FEM) [1,2], the mode
superposition method (MSM) [3,4] and the method
of series solution (MSS) [5]. In this study, the MSM
represents the Galerkin method with mode functions,
assumed mode method, Rayleigh–Ritz method and
modal expansion method, collectively. Hoa [1] intro-
duced a linear dynamic model for a rotating beam in
which only the flapwise deformation is included with
the centrifugal force effect. He obtained discretized
equations by using the FEM. Taking into account the
Coriolis and centrifugal forces, Simo and Vu-Quoc [2]
derived linear equations for the axial and chordwise
motions and also discretized the equations by using
the FEM. Pesheck et al. [3,4] derived nonlinear equa-
tions considering the axial and flapwise deformations
without the chordwise deformation and then obtained
partial differential equations linearized about an equi-
librium state. The linearized equationswere discretized
by the MSM. Banerjee and Kennedy [5] derived the
equations of axial and chordwise motions considering
the centrifugal tension of a beam and then solved the
equations by the MSS. Some papers have been pub-
lished for linear models that are represented with non-
Cartesian variables [6–10]. In these papers, the stretch
deformation was used instead of the axial deformation.
On the basis of solution methods, these papers may be
categorized into the MSM [6–8] and the FEM [9,10].

In most previous studies, the Cartesian variables
were used to obtain nonlinearmodels of rotating beams.

To derive nonlinear equations of motion using Carte-
sian variables, Huang et al. [11] and Kim et al. [12]
adopted the nonlinear von Karman strain, but they used
linearized stress instead of nonlinear stress. When dis-
cretizing the equations, Huang et al. [11] used theMSS
while Kim et al. [12] used the MSM. On the other
hand, some studies on rotating beams used the FEM
to analyze the nonlinear dynamic behaviors of rotating
beams [13–15]. Adopting von Karman strain theory,
Sharf [13] established a nonlinear FEM to analyze the
dynamics of the axial, chordwise and flapwise defor-
mations. Apiwattanalunggarn et al. [14] developed a
nonlinear one-dimensional finite element model repre-
senting the axial and flapwisemotions of a cantilevered
rotating beam. Arvin and Bakhtiari-Nejad [15] per-
formed a nonlinear modal analysis of a rotating beam.
They derived nonlinear equations for the axial and flap-
wise motions and discretized the equations using the
MSM. Based on the discretized equations, nonlinear
normal modes and nonlinear natural frequencies with
or without internal resonance were investigated. How-
ever, they did not compute the dynamic responses from
the discretized equations obtained by the MSM. Using
both the FEM and MSM, Wang [16] obtained inter-
esting results for nonlinear dynamic simulations of the
axial and chordwise motions. He found that the MSM
has poor convergence characteristics compared to the
FEM.

In addition to the models mentioned above, var-
ious models for the nonlinear vibration analyses of
rotating beams have been discussed. Valverde and
García-Vallejo [17] used the absolute nodal coordi-
nate formulation to derive nonlinear differential equa-
tions, and they showed the similarities between the
absolute nodal coordinate formulation and the sub-
structuring technique.Younesian andEsmailzadeh [18]
analyzed the nonlinear vibration of a viscoelastic rotat-
ing beam. Using the classical steps of the special
Cosserat theory of rods, Lacarbonara et al. [19] and
Arvin et.al. [20] derived fully nonlinear equations of
motion of rotating blades. They investigated the nat-
ural frequencies of unshearable blades including cou-
pling between flapping, lagging, axial and torsional
motions and discussed the nonlinear modes of vibra-
tion which are away from internal resonances. Yao et
al. [21] studied the nonlinear dynamic responses of a
rotating blade under high-temperature supersonic gas
flowwhen rotating speed varies. Coupling the Galerkin
methodwith the balance harmonicmethod, Bekhoucha
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et al. [22] investigated the forced vibration for nonlin-
ear rotating anisotropic beams.

It is well known that most of convergence tests in
nonlinear problems generally exhibit the superiority
of the MSM to the FEM in terms of convergence.
This well-known fact is opposed to a claim of Wang
[16]. When computing the dynamic responses of some
nonlinear dynamic systems using the MSM, poor con-
verged computation results may be often encountered.
Therefore, it is necessary to disclose the reason why
the MSM yields poor convergence when applying it to
certain nonlinear models. Furthermore, the nonlinear
model of a rotating beam, which shows good conver-
gence characteristics even when using theMSM, needs
to be developed.

In this paper, a nonlinear model for a rotating can-
tilever beam is presented, which is described using
non-Cartesian variables, i.e., the stretch, chordwise and
flapwise deformations. Using the nonlinear von Kar-
man strain and the corresponding nonlinear stress, par-
tial integro-differential equations for the stretch, chord-
wise and flapwise motions are derived from the Hamil-
ton principle. The equations of motion are discretized
by the MSM with the mode functions for the longi-
tudinal and transverse vibrations of a stationary can-
tilevered beam, and then, the dynamic responses are
computed from the discretized equations by applying
the Newmark time integration method. Moreover, pre-
vious dynamic models for rotating beams are classi-
fied into three categories: two of them use nonlinear
equations expressed with the Cartesian variable and
the other one uses linear equations. When applying the
MSM to compute dynamic responses, the poor con-
vergence characteristics of a previous nonlinear model
are examined and compared to those of the proposed
model. The comparisons of dynamic responses are per-
formed between the proposed and previous models.

2 Equations of motion

As shown in Fig. 1, a flexible cantilever beam fixed to
a rigid hub of radius a rotates with an angular speed
Ω . The cantilever beam, which is homogeneous and
uniform, has mass density ρ, Young’s modulus E ,
length L and cross-sectional area A. Assuming that the
beam length is long enough compared to the dimen-
sions of the cross section, the beam is regarded as an
Euler–Bernoulli beam in this study. As discussed in the

Sect. 1, the beam deformation may be defined by two
sets of deformation variables. The axial, chordwise and
flapwise deformations of the Cartesian variables are
denoted by u, v and w, respectively. The stretch defor-
mation in non-Cartesian variables is denoted by s. In
this study, the non-Cartesian variables of s, v andw are
used to derive the nonlinear equations of motion for a
rotating beam.

The stretch, axial, chordwise and flapwise deforma-
tions, which are functions of the time t and position
x , are depicted in Fig. 1, and they are related to the
following equation:

ε = ∂s

∂x
= ∂u

∂x
+ 1

2

(
∂v

∂x

)2

+ 1

2

(
∂w

∂x

)2

, (1)

where ε is the normal strain due to the stretch deforma-
tion. The relation between the stretch deformation (s)
and Cartesian deformations (u, v and w) was derived
by Yoo et al. [7], in which more detail derivation pro-
cedure can be found. When the strain ε is expressed in
terms of u, v and w, this strain is called the von Kar-
man strain. As shown in (1), the strain expressed by s
is linear, while the strain expressed by u, v and w is
nonlinear. Integrating (1) with respect to x , the stretch
deformation may be written as

s = u + hv + hw, (2)

where

hv = 1

2

∫ x

0

(
∂v

∂ξ

)2

dξ, hw = 1

2

∫ x

0

(
∂w

∂ξ

)2

dξ

(3)

in which ξ is a dummy variable.
The kinetic and potential energies and thework done

by non-conservative forces are all required to obtain the
equations of motion. When small elastic deformations
as well as large overall motions are considered, the
kinetic energy can be expressed as

T = ρA
∫ L

0

{(
∂u

∂t
− Ωv

)2

+
[
∂v

∂t
+ Ω (a + x + u)

]2
+

(
∂w

∂t

)2
}
dx .

(4)
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The potential energy (or strain energy) due to the
stretch, chordwise and flapwise deformations is given
by

U = 1

2

∫ L

0

[
E A

(
∂s

∂x

)2

+ E Iz

(
∂2v

∂x2

)2

+ E Iy

(
∂2w

∂x2

)2
]
dx, (5)

where Iy and Iz are the area moments of inertia about
the y and z axes, respectively. The work done by non-
conservative pressures may be written as

W =
∫ L

0
(pvv + pww) dx, (6)

where pv and pw are the distributed forces per unit
length in the chordwise and flapwise directions, respec-
tively.

The partial integro-differential equations of motion
for a rotating cantilever beam are derived by substi-
tuting the above kinetic and potential energies and the
work into the Hamilton principle. Using (2), the equa-
tions ofmotion expressed in terms of the stretch, chord-
wise and flapwise deformations can be written as

ρA

[
∂2s

∂t2
− ∂2hv

∂t2
− ∂2hw

∂t2
− 2Ω

∂v

∂t

−Ω2 (s − hv − hw) − Ω̇v
]

− E A
∂2s

∂x2
= ρAΩ2 (a + x) , (7)

ρA

[
∂2v

∂t2
+ 2Ω

(
∂s

∂t
− ∂hv

∂t
− ∂hw

∂t

)
− Ω2v

+ Ω̇ (s − hv − hw)

]
−E A

∂

∂x

(
∂s

∂x

∂v

∂x

)
+ E Iz

∂4v

∂x4

= pv − ρAΩ̇ (a + x) , (8)

ρA
∂2w

∂t2
− E A

∂

∂x

(
∂s

∂x

∂w

∂x

)
+ E Iy

∂4w

∂x4
= pw, (9)

where a superposed dot represents differentiation with
respect to time. The associated boundary conditions are
given by

s = v = w = ∂v

∂x
= ∂w

∂x
= 0 at x = 0, (10)

∂s

∂x
= ∂2v

∂x2
= ∂2w

∂x2
= ∂3v

∂x3
= ∂3w

∂x3
= 0 at x = L .

(11)

Note that (7)–(9) are nonlinear integro-differential
equations because hv and hw are of nonlinear integral
form, as shown in (3), and the second terms of (8) and
(9) are also nonlinear. However, the boundary condi-
tions given by (10) and (11) are linear with respect to
the stretch, chordwise and flapwise deformations.

3 Model classification

The proposed nonlinear model for a rotating beam is
compared to other previous models. Four models con-
sidered for comparison are called Models 1–4 in this
study:Models 1–3 are nonlinearmodels,whileModel 4
is a linearmodel.Model 1, which is the proposedmodel
in this study, is represented by the equations of motion
given by (7)–(9) and the corresponding boundary con-
ditions given by (10) and (11). Therefore, Model 1 is
a nonlinear model described by the stretch, chordwise
and flapwise deformations.

On the other hand, Model 2 is defined as a nonlinear
model described by the axial deformation u (instead
of the stretch deformation s), the chordwise deforma-
tion v and the flapwise deformation w. The equations
of motion and the associated boundary conditions are
obtained by introducing (2) into (7)–(11). The obtained
equations of motion are given by

ρA

(
∂2u

∂t2
− 2Ω

∂v

∂t
− Ω2u − Ω̇v

)
− E A

∂

∂x

[
∂u

∂x

+1

2

(
∂v

∂x

)2

+ 1

2

(
∂w

∂x

)2
]

= ρAΩ2 (a + x) ,

(12)

ρA

(
∂2v

∂t2
+ 2Ω

∂u

∂t
− Ω2v + Ω̇u

)
− E A

∂

∂x

{[
∂u

∂x

+1

2

(
∂v

∂x

)2

+ 1

2

(
∂w

∂x

)2
]

∂v

∂x

}
+ E Iz

∂4v

∂x4

= pv − ρAΩ̇(a + x), (13)

ρA
∂2w

∂t2
− E A

∂

∂x

{[
∂u

∂x
+ 1

2

(
∂v

∂x

)2

+1

2

(
∂w

∂x

)2
]

∂w

∂x

}
+ E Iy

∂4w

∂x4
= pw. (14)

The associated boundary conditions are given by

u = v = w = ∂v

∂x
= ∂w

∂x
= 0 at x = 0, (15)
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∂u

∂x
+ 1

2

(
∂v

∂x

)2

+ 1

2

(
∂w

∂x

)2

= ∂2v

∂x2
= ∂2w

∂x2

= ∂3v

∂x3
= ∂3w

∂x3
= 0 at x = L . (16)

Note thatModel 2 is defined by the equations ofmotion
given by (12)–(14) and the boundary conditions given
by (15) and (16). As shown in (12)–(16), the equa-
tions of motion are not only nonlinear, but one of
the boundary conditions is also nonlinear. Neglecting
the chordwise deformation, Arvin and Bakhtiari-Nejad
[15] derived the equations of motion corresponding to
Model 2. The models proposed by Sharf [13] and Api-
wattanalunggarn et al. [14] can be classified as Model
2.

Another nonlinear model obtained by using the non-
linear strain and linearized stress is called Model 3,
which was presented by Huang et al. [11] and Kim et
al. [12]. The equations of motion for Model 3, derived
by Kim et al. [12], may be expressed as

ρA

(
∂2u

∂t2
− 2Ω

∂v

∂t
− Ω2u − Ω̇v

)
− E A

∂2u

∂x2

= ρAΩ2(a + x), (17)

ρA

(
∂2v

∂t2
+ 2Ω

∂u

∂t
− Ω2v + Ω̇u

)

−E A
∂

∂x

(
∂u

∂x

∂v

∂x

)
+ E Iz

∂4v

∂x4

= pv − ρAΩ̇(a + x), (18)

ρA
∂2w

∂t2
− E A

∂

∂x

(
∂u

∂x

∂w

∂x

)
+ E Iy

∂4w

∂x4
= pw. (19)

The boundary conditions for Model 3 are given by (15)
and the following equation:

∂u

∂x
= ∂2v

∂x2
= ∂2w

∂x2
= ∂3v

∂x3
= ∂3w

∂x3
= 0 at x = L .

(20)

Note that the equations for the chordwise and flap-
wisemotions, (18) and (19), are nonlinear; however, the
equation for the axial motion, (17), and the boundary
conditions, (15) and (20), are linear. Huang et al. [11]
presented the same model as Model 3; however, they
neglected the chordwise deformation during derivation
of the equations of motion.

Finally, a linearmodel for a rotating cantilever beam,
presented by many researchers [1–10], is Model 4 in
this paper. Typical equations for the stretch, chordwise

and flapwise motions, which are linear partial differen-
tial equations, can be expressed as [9]

ρA

(
∂2s

∂t2
− 2Ω

∂v

∂t
− Ω2s − Ω̇v

)
− E A

∂2s

∂x2

= ρAΩ2 (a + x) , (21)

ρA

(
∂2v

∂t2
+ 2Ω

∂s

∂t
− Ω2v + Ω̇s

)
− ∂

∂x

(
F

∂v

∂x

)

+E Iz
∂4v

∂x4
= pv − ρAΩ̇ (a + x) , (22)

ρA
∂2w

∂t2
− ∂

∂x

(
F

∂w

∂x

)
+ E Iy

∂4w

∂x4
= pw, (23)

where

F = ρAΩ2
[
a (L − x) + 1

2

(
L2 − x2

)]
. (24)

The boundary conditions associatedwith thismodel are
given by equations as (10) and (11). Gunjal and Dixit
[10] used this model for vibration analysis of rotating
cantilever beams. Some authors, e.g., Pesheck et al.
[3,4] and Banerjee and Kennedy [5], used the axial
deformation u instead of the stretch deformation s to
derive the equations of motion, which can be classified
as Model 4. However, they derived the same equations
for the axial and flapwise motions without considering
the chordwise motion.

In Table 1, the deformation variables, equations of
motion, boundary conditions and related papers are
compared between the four models. As depicted in
Table 1, Model 1 is described by the stretch, chordwise
and flapwise deformation variables; however, Models
2–4 can be described by the axial, chordwise and flap-
wise deformation variables. It is also observed in this
table that the equations of motion for Models 1–3 are
nonlinear, while the boundary conditions forModels 1,
3 and 4 are linear.

4 Discretization

Discretized equations are required to obtain numeri-
cal solutions from the integro-differential (or differ-
ential) equations discussed in the previous sections.
As shown in (7)–(9), the stretch deformation is cou-
pled with the chordwise and flapwise deformations.
However, if the flapwise force pw does not exists,
a rotating beam has only the stretch and chordwise
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Table 1 Comparison of the four models for linearity, deformation variables, equations of motion, boundary conditions and related
papers

Model 1 Model 2 Model 3 Model 4

Linearity Nonlinear Nonlinear Nonlinear Linear

Deformation variables s, v, w u, v, w u, v, w s (or u), v, w

Equations of motion (7)–(9) (12)–(14) (17)–(19) (21)–(23)

Boundary conditions (10), (11) (15), (16) (15), (20) (10), (11)

Related papers – [13–16] [11,12] [1–10]

deformations without the flapwise deformation. More-
over, the flapwise deformation is not directly influ-
enced by the rotation of a beam but the stretch and
chordwise deformations are. Therefore, for simplicity
of comparison between the four models, neglecting the
flapwise deformation, only the stretch (or axial) and
chordwise deformations are considered in the further
discussion.

First, consider the discretization of the equations
for Model 1 by using the MSM. Before discretiza-
tion, the variational equations need to be derived
from the equations of motion and corresponding
boundary conditions. The weighting functions for
the stretch and chordwise deformations are denoted
by s̄ and v̄, respectively, which are arbitrary func-
tions. These functions have values of zero at the
boundaries where the essential boundary conditions
are prescribed. Multiplying (7) and (8) by s̄ and
v̄, respectively, integrating the resultant equations
over the beam length, and then applying integration
by parts, the following variational equations can be
obtained:

ρA
∫ L

0

[
s̄

(
∂2s

∂t2
− ∂2hv

∂t2

)
− 2Ω s̄

∂v

∂t
− Ω2s̄ (s − hv)

−Ω̇ s̄v

]
dx + E A

∫ L

0

∂ s̄

∂x

∂s

∂x
dx

= ρAΩ2
∫ L

0
s̄ (a + x)dx, (25)

ρA
∫ L

0

[
v̄
∂2v

∂t2
+ 2Ωv̄

(
∂s

∂t
− ∂hv

∂t

)

−Ω2v̄v + Ω̇v̄ (s − hv)
]
dx

+
∫ L

0

(
E A

∂v̄

∂x

∂s

∂x

∂v

∂x
+ E Iz

∂2v̄

∂x2
∂2v

∂x2

)
dx

=
∫ L

0

[
pv − ρAΩ̇(a + x)

]
v̄dx . (26)

Using the MSM, the approximate solutions for the
stretch and chordwise deformations, often called the
trial functions, may be expressed as a series of the basis
functions. The trial functions for s and v can be written
as

s(x, t) =
N∑
j=1

S j (x)T
s
j (t), v(x, t) =

N∑
n=1

Vn(x)T
v
n (t),

(27)

where N is the total number of basis functions, S j and
Vn are the basis functions, and T s

j and T
v
n are unknown

functions of time to be determined. The basis func-
tions S j and Vn are selected as the mode functions for
the longitudinal and transverse vibration of a stationary
cantilevered beam:

S j (x) = √
2 sin (2 j − 1)

πx

2L
, (28)

Vn (x) = cosh λnx − cos λnx

− sinh λnL − sin λnL

cosh λnL + cosh λnL
(sinh λnx − sin λnx) ,

(29)

where λn is the nth root of the following frequency
equation:

cos λnL cosh λnL + 1 = 0. (30)

It should be noted that the basis functions given by (28)
and (29) are the comparison functions because they
satisfy the essential boundary conditions given by (10)
and the natural boundary conditions given by (11). In
other words, the comparison functions can be selected
as the basis functions forModel 1 because the boundary
conditions for Model 1 are linear, as shown in (10)
and (11). The weighting functions for the stretch and
chordwise deformations can be also represented by a
series of basis functions as follows:
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s̄(x, t) =
N∑
i=1

Si (x)T̄
s
i (t), v̄(x, t) =

N∑
m=1

Vm(x)T̄ v
m(t),

(31)

where T̄ s
i and T̄ v

m are arbitrary functions of time.
The discretized equations for Model 1 are obtained

by substituting (27) and (31) into (25) and (26). The
arbitrariness of T̄ s

i and T̄ v
m leads to the following dis-

cretized equations:

N∑
j=1

(
ms

i j T̈
s
j + ksi j T

s
j

)
+

N∑
n=1

(
gsvin Ṫ

v
n + ksvin T

v
n

)

+Ns
i = f si for i = 1, 2, . . . , N , (32)

N∑
n=1

(
mv

mnT̈
v
n + kv

mnT
v
n

) +
N∑
j=1

(
gvs
mj Ṫ

s
j + kvs

mj T
s
j

)

+N v
m = f v

m for m = 1, 2, . . . N , (33)

where

ms
i j = ρA

∫ L

0
Si (x)S j (x)dx,

mv
mn = ρA

∫ L

0
Vm(x)Vn(x)dx,

gsvin = −2ρAΩ

∫ L

0
Si (x)Vn(x)dx,

gvs
mj = 2ρAΩ

∫ L

0
Vm(x)S j (x)dx,

ksi j =
∫ L

0

[
E AS′

i (x)S
′
j (x) − ρAΩ2Si (x)S j (x)

]
dx,

kv
mn=

∫ L

0

[
E IzV

′′
m(x)V ′′

n (x)−ρAΩ2Vm(x)Vn(x)
]
dx,

ksvin = −ρAΩ̇

∫ L

0
Si (x)Vn(x)dx,

kvs
mj = ρAΩ̇

∫ L

0
Vm(x)S j (x)dx,

f si = ρAΩ2
∫ L

0
(a + x) Si (x)dx,

f v
m =

∫ L

0

[
pv − ρAΩ̇ (a + x)

]
Vm(x)dx, (34)

and Ns
i and N v

m are nonlinear internal forces given by

Ns
i =

N∑
n=1

N∑
p=1

βsv
inp

(
T̈ v
n T

v
p + 2Ṫ v

n Ṫ
v
p

+T v
n T̈

v
p − Ω2T v

n T
v
p

)
,

N v
m =

N∑
j=1

N∑
n=1

αv
mjnT

s
j T

v
n +

N∑
n=1

N∑
p=1

βv
mnp

[
2Ω(Ṫ v

n T
v
p

+T v
n Ṫ

v
p ) + Ω̇T v

n T
v
p

]
, (35)

in which

αv
mjn = E A

∫ L

0
V ′
m(x)S′

j (x)V
′
n(x)dx,

βs
inp = −1

2
ρA

∫ L

0
Si (x)

∫ x

0
V ′
n(ξ)V ′

p(ξ)dξdx,

βv
mnp = −1

2
ρA

∫ L

0
Vm(x)

∫ x

0
V ′
n(ξ)V ′

p(ξ)dξdx .

(36)

In (34) and (36), the superposed prime (′) represents
differentiation with respect to the spatial coordinate x
(or ξ ). The discretized equations for the stretch and
chordwise motions can be written in matrix-vector
form:

MT̈ + GṪ + KT + N(T, Ṫ, T̈) = F, (37)

where

M =
[
ms 0
0 mv

]
,G =

[
0 gsv
gvs 0

]
,K =

[
ks ksv
kvs kv

]
,

T =
{
Ts

Tv

}
,N =

{
Ns

Nv

}
,F =

{
fs
fv

}
, (38)

in which ms , mv , gsv , gvs , ks , kv , ksv and kvs are
N × N matrices, and Ns , Nv , fs and fv are N × 1
column vectors:

ms =
[
ms

i j

]
,mv = [

mv
mn

]
, gsv = [

gsvin
]
,

gvs =
[
gvs
mj

]
,ks =

[
ksi j

]
,kv = [

kv
mn

]
,ksv = [

ksvin
]
,

kvs =
[
kvs
mj

]
,Ns = {

Ns
i

}
,Nv = {

N v
m

}
,Ts = {

T s
i

}
,

Tv = {
T v
m

}
, fs = {

f si
}
, fv = {

f v
m

}
. (39)

5 Time integration

The trapezoidal rule of the Newmark time integration
method is used to obtain dynamic responses for (37).
The approximate values of T, Ṫ and T̈ at time t = tn
are denoted bydn , vn and an , respectively. The ordinary
differential equation, given by (37), at t = tn+1 can be
written as the following balance equation:
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Man+1 + Gvn+1 + Kdn+1

+N(dn+1, vn+1, an+1) = Fn+1, (40)

where Fn+1 is the value of F at t = tn+1. When
using the trapezoidal rule, the approximate displace-
ment and velocity vectors, dn+1 and vn+1, respec-
tively, are determined by the following displacement
and velocity update equations:

dn+1 = dn + �tvn + 1

4
�t2 (an + an+1) , (41)

vn+1 = vn + 1

2
�t (an + an+1) , (42)

where �t is the time step size defined by �t = tn+1 −
tn .

To initialize time integration, the initial value of the
acceleration vector a0 should be computed with the
known initial displacement and velocity vectors,d0 and
v0. Substitution of the initial values into (40) leads to

Ma0 + Gv0 + Kd0 + N(d0, v0, a0) = F0, (43)

where a0 is an unknown vector. Since (43) is a non-
linear equation for a0, The Newton–Raphson iteration
method needs to be applied to determine a0 from (43).
The iteration procedure is given by

a(k+1)
0 = a(k)

0 + �a(k)
0 , (44)

where k is an iteration number and�a(k)
0 is determined

from the following equation:

J(k)
0 �a(k)

0 = −Ma(k)
0 − Gv0 − Kd0

−N
(
d0, v0, a

(k)
0

)
+ F0, (45)

where J(k)
0 is the Jacobian matrix given by

J(k)
0 = M +

∂N
(
d0, v0, a

(k)
0

)

∂a(k)
0

. (46)

After obtaining the initial values for the displace-
ment, velocity and acceleration vectors, it is required
to advance the solutions using the displacement and
velocity update equations, given by (41) and (42). The
updated acceleration an+1 should be determined first
to compute the updated displacement and velocity vec-
torsdn+1 and vn+1 from (41) and (42) for specified time
step size �t , and the known vectors dn and vn . Intro-
duction of (41) and (42) into (40) yields a nonlinear
equation for the unknown vector an+1. The Newton–
Raphson method should be applied again to solve the

nonlinear equations for an+1. The iteration procedure
to compute an+1 is given by

a(k+1)
n+1 = a(k)

n+1 + �a(k)
n+1, (47)

where �a(k)
n+1 is computed from

J(k)
n+1�a(k)

n+1 = −Ma(k)
n+1 − Gv(k)

n+1 − Kd(k)
n+1

−N
(
d(k)
n+1, v

(k)
n+1, a

(k)
n+1

)
+ Fn+1, (48)

where

J(k)
n+1 = M +

∂N
(
d(k)
n+1, v

(k)
n+1, a

(k)
n+1

)

∂a(k)
n+1

+1

2
�t

⎡
⎣G +

∂N
(
d(k)
n+1, v

(k)
n+1, a

(k)
n+1

)

∂v(k)
n+1

⎤
⎦

+1

4
�t2

⎡
⎣K +

∂N
(
d(k)
n+1, v

(k)
n+1, a

(k)
n+1

)

∂d(k)
n+1

⎤
⎦ .

(49)

6 Convergence characteristics

The convergence characteristics for only Models 1 and
2 are investigated in this section, because the charac-
teristics for Models 3 and 4 were discussed in previ-
ous studies [1,4,9,11,12]. First of all, a convergence
test is performed to find the number of basis functions
withwhich reliable numerical results are obtained from
Model 1. For the convergence test, dynamic responses
of the stretch and chordwise deformations are com-
puted for a cantilever beamwith varying rotating speed
that was presented byWang [16]. To generalize the fur-
ther discussions, the following dimensionless parame-
ters are introduced in this study:

τ = t

T
, ξ = x

T
, s∗ = s

L
, u∗ = u

L
, v∗ = v

L
,

σ ∗ = σ

E
, γ = TΩ,λ = T 2Ω̇, δ = a

L
, α =

√
AL2

Iz
,

(50)

where

T = L2

√
ρA

E Iz
. (51)
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In (50), τ is the dimensionless time, ξ is the dimen-
sionless position, s∗ is the dimensionless stretch defor-
mation, u∗ is the dimensionless axial deformation, v∗
is the dimensionless chordwise deformation, σ ∗ is the
dimensionless stress, γ is the dimensionless rotating
speed, λ is the dimensionless rotating acceleration, δ

the dimensionless hub radius, and α is the slenderness
of a beam.

The rotating cantilever beam, which is the same
beam studied by Sharf [13] andWang [16], has a beam
length of L = 10 m, hub radius of a = 0, cross-
sectional area of A = 4 × 10−4 m2, density of ρ =
3000 kg/m3, Young’s modulus of E = 7×108 N/m2,
and area moment of inertia of Iz = 1.333 × 10−8 m4.
These values for the physical parameters correspond to
the dimensionless parameters of δ = 0 and α = 447.22
. The zero values are imposed on the initial conditions
for the stretch and chordwise deformations; further-
more, no external force is exerted on the cantilever
beam. The rotating speed profile of Sharf [13] and
Wang [16] can be expressed as the following dimen-
sionless angular speed:

γ (τ) = 2

5

(
τ − 15

2π
sin

2πτ

15

)
. (52)

The dimensionless speed, given by (52), and the cor-
responding dimensionless acceleration are plotted in
Fig. 2, which shows that the rotating speed increases
smoothly and the acceleration has a maximum value at
τ = 7.5. The dimensionless time step size of 10−4 is
used to compute the dynamic responses for the defor-
mations.

The convergence test for the dynamic responses is
performed by investigating the dynamic responses of
the deformations at the free beam end, i.e., at ξ = 1,
as the number of basis functions N increases. When
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Fig. 2 Dimensionless rotating speed and acceleration profiles

applying the MSM to Model 1, the dimensionless
stretch and chordwise deformations for the various
number of basis functions are plotted in Fig. 3a and
c, respectively. The dimensionless axial deformations,
shown in Fig. 3b, are computed by using (2). As pre-
sented in Fig. 3, it is difficult to distinguish the dif-
ferences between the curves for various values of N
because these curves are overlapped. This implies that
the dynamic response at the free end converges fast
as N increases. Table 2 exhibits the convergence char-
acteristics for the root-mean-square (RMS) values of
the dynamic responses shown in Fig. 3. The errors in
Table 2 are computed based on the RMS values when
N = 20. Explaining in more detail, the error when
N = i is calculated by dividing the difference between
the RMS values for N = i and 20 by the RMS value
for N = 20. Table 2 also confirms that the RMS val-
ues of the stretch, axial and chordwise deformations
converge fast as the number of the basis functions
increases.

The convergence test is also performed when apply-
ing the MSM to Model 2. To discretize the equations
of Model 2, given by (12) and (13), neglecting the flap-
wise deformation, the approximate solutions for the
axial and chordwise deformations are assumed as

u(x, t) =
N∑
j=1

Uj (x)T
u
j (t), v(x, t)=

N∑
n=1

Vn(x)T
v
n (t),

(53)

where Uj is the same as S j defined by (28) and Vn is
given by (29). In other words, the discretized equations
for Model 2 are obtained with the same basis functions
used for Model 1. Using the similar procedures pre-
sented in Sects. 4 and 5, the dynamic responses of the
beam deformations at the free end are computed. The
computed results for various numbers of the basis func-
tions are illustrated in Fig. 4, where it is seen that the
dynamic response converges very slowly as the num-
ber of basis function increases. Comparison of Figs. 3
and 4 demonstrates considerable differences between
the dynamic responses of Models 1 and 2 when the
MSM is used. The RMS values of the deformations of
Model 2 for the number of basis functions are listed in
Table 3, which demonstrates poor convergence. Com-
parison of Tables 2 and 3 shows that the RMS values of
Model 2 when N = 20 are significantly different from
the converged values in Table 2. It may be concluded
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Fig. 3 Dynamic responses
of the deformations at the
free beam end, computed by
applying the mode
superposition method to
Model 1, for various
numbers of the basis
functions: a the stretch
deformations, b the axial
deformations and c the
chordwise deformations
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that the RMS values obtained by applying the MSM to
Model 2 are not converged ones. In other words, the
MSM applied to Model 2 has poor convergence char-
acteristics.

In addition, the convergence characteristics are also
investigated when the FEM is applied to Model 2. The
equations of Model 2, given by (12) and (13), are dis-
cretized by using two-node beam elements introduced
by Chung and Yoo [9]. The dynamic responses of the
deformations at the free end, computed by adopting
the FEMwith various numbers of elements, are plotted
in Fig. 5, where n represents the number of elements

used for computations. It is seen in this figure that the
dynamic responses for the axial and chordwise defor-
mations converge as the number of elements increases.
The RMS values for these dynamic responses are sum-
marized in Table 4, which shows that the RMS val-
ues of the axial and chordwise deformations converge
with an increasing number of elements. Comparing the
RMS values of the axial and chordwise deformations
in Tables 2, 3, 4, the converged values obtained from
the FEM applied to Model 2 are almost the same as the
values from the MSM applied to Model 1 and they are
significantly different from the converged values from
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Table 2 Convergence characteristics of the RMS values of the deformations for the number of basis functions N , when applying the
MSM to Model 1

Number of basis
functions, N

Stretch deformation Axial deformation Chordwise deformation

RMS value (×10−5) Error (%) RMS value (×10−3) Error (%) RMS value (×10−2) Error (%)

2 3.351459 0.2285 1.254198 0.1535 3.937360 0.0532

4 3.358119 0.0302 1.253079 0.0641 3.936398 0.0288

6 3.358841 0.0088 1.252619 0.0274 3.935830 0.0143

8 3.359018 0.0035 1.252416 0.0112 3.935497 0.0059

10 3.359080 0.0016 1.252343 0.0054 3.935377 0.0028

12 3.359107 0.0008 1.252311 0.0028 3.935324 0.0015

14 3.359121 0.0004 1.252295 0.0015 3.935297 0.0008

16 3.359128 0.0002 1.252286 0.0008 3.935282 0.0004

18 3.359132 0.0001 1.252280 0.0003 3.935272 0.0002

20 3.359135 0.0000 1.252276 0.0000 3.935266 0.0000

Fig. 4 Dynamic responses
of the deformations at the
free beam end, computed by
applying the mode
superposition method to
Model 2, for various
numbers of the basis
functions: a the stretch
deformations and b the
chordwise deformations
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the MSM applied to Model 2. However, the conver-
gence speed of the MSM for Model 1 is much faster
than the speed of the FEM for Model 2. The MSM for
Model 1 and the FEM for Model 2 lead to converged
responses, but theMSM forModel 2 leads to erroneous

responses. The converged responses are illustrated in
Fig. 6. This figure shows that the MSM for Model 1
and FEM for Model 2 yield almost the same results but
the MSM for Model 2 leads to results with large errors.
In other words, the MSM for Model 1 can obtain reli-
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Table 3 Convergence
characteristics of the RMS
values of the deformations
for the number of basis
functions N , when applying
the MSM to Model 2

Number of basis
functions, N

Axial deformation Chordwise deformation

RMS value (×10−4) Error (%) RMS value (×10−2) Error (%)

2 1.569783 67.7 1.621037 37.8

4 2.831227 41.8 2.046870 21.4

6 3.361267 30.9 2.205178 15.4

8 3.716992 23.6 2.306471 11.5

10 3.992242 18.0 2.382138 8.6

12 4.160487 14.5 2.428153 6.8

14 4.334152 10.9 2.474107 5.0

16 4.488792 7.8 2.514276 3.5

18 4.670275 4.0 2.559280 1.8

20 4.866227 0.0 2.605437 0.0

able results, while the MSM for Model 2 cannot. This
is because the basis functions for Model 1 are the com-
parison functions, but the basis functions for Model 2
are not.

To show that the MSM applied to Model 2 yields
unreliable computation results, the stress distributions
over the beam length are investigated for three cases:
the MSM for Model 1, the MSM for Model 2 and the
FEM forModel 2.When the rotating acceleration has a
maximum value, that is, when the dimensionless time
is 7.5 (Fig. 2), the stress distributions are computed by
the following stress:

σ ∗
s = σ ∗

x = ∂s

∂x
= ∂u

∂x
+ 1

2

(
∂v

∂x

)2

, (54)

The stress distributions over the beam length for various
numbers of the basis functions or elements are plotted
in Fig. 7, where Fig. 7a–c shows the stress distributions
when applying theMSMtoModel 1,when applying the
MSM toModel 2 andwhen applying the FEM toModel
2, respectively. As shown in Fig. 7a and c, the stress
distributions converge with an increasing number of
basis functions or elements, when the MSM is applied
to Model 1 or when the FEM is applied to Model 2.
However, when theMSM is used forModel 2, the stress
distribution is not converged even for a large number
of basis functions.

The reason why the MSM applied to Model 2 does
not result in a converged stress distribution is because
the basis functions used in (53) are not the compari-

son functions but instead the admissible functions. As
is well known, the comparison functions satisfy both
the essential and natural boundary conditions, while
the admissible functions satisfy the essential bound-
ary conditions. The derivatives of the basis functions
for the chordwise motion, given by (29), with respect
to x are not equal to zero at x = L (or ξ = 1), so
the basis functions used in (53) do not satisfy the nat-
ural boundary conditions of (16). These basis functions
satisfy only the essential boundary conditions of (15).
This means that they are not the comparison functions
but the admissible functions. In fact, it is practically
impossible to find the comparison functions satisfying
both boundary conditions of (15) and (16). In Fig. 7b,
the stresses at the free end or ξ = 1 are not equal to
zero; however, in Fig. 7a and c, the stresses at ξ = 1 are
equal to zero. The nonzero stresses at ξ = 1 in Fig. 7b
are caused by selecting the admissible functions, which
do not satisfy the natural boundary condition given in
(16).

In summary, converged computation results can be
obtained when the FEM is applied to Model 2, but
converged results cannot be obtained when the MSM
is applied to Model 2. However, the FEM applied to
Model 2 requires a large amount of elements to obtain
converged computation results. The convergence char-
acteristics of the axial and chordwise deformations pre-
sented in Tables 1 and 3 are plotted in Fig. 8, where
Fig. 8a and b are for the axial and chordwise defor-
mations, respectively. In this figure, the solid lines
represent converged RMS values, the circle symbol
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Fig. 5 Dynamic responses
of the deformations at the
free beam end, computed by
applying the FEM to Model
2, where n is the number of
elements: a the axial
deformations and b the
chordwise deformations
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Table 4 Convergence
characteristics of the RMS
values for the deformations
when applying the FEM to
Model 2 as the number of
elements n increases

Number of
elements, n

Axial deformation Chordwise deformation

RMS value (×10−3) Error (%) RMS value (×10−2) Error (%)

20 1.052113 15.79 3.657353 6.97

40 1.188398 4.88 3.850450 2.06

60 1.222188 2.18 3.895784 0.91

80 1.234959 1.15 3.912668 0.48

100 1.241055 0.67 3.920681 0.28

120 1.244418 0.40 3.925088 0.16

140 1.246464 0.23 3.927765 0.10

160 1.247800 0.13 3.929510 0.05

180 1.248718 0.05 3.930710 0.02

200 1.249377 0.00 3.931570 0.00

represents the RMS value when applying the MSM
to Model 1, and the square symbol represents the
RMS value when applying the FEM to Model 2. As
shown in Fig. 8, the MSM applied to Model 1 leads
to much faster convergence than the FEM applied to
Model 2. This means that the FEM applied to Model
2 is much more inefficient than the MSM applied to
Model 1.

7 Dynamic response

In this section, the dynamic responses of Model 1 are
compared to the responses of the other models. As
shown in the previous section, the MSM for Model 2
cannot have correct responses and the FEM for Model
2 has slow convergence characteristics. For this rea-
son, the comparisons of dynamic responses are made
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Fig. 6 Comparison of the converged responses obtained by
applying the MSM to Model 1, the FEM to Model 2, and the
MSM to Model 2: a the axial deformations and b the chordwise
deformations

between Models 1, 3 and 4. For computation in this
section, the dimensionless slenderness ratio is selected
as α = 70 and the dimensionless hub ratio is selected
as δ = 0.1 . The initial conditions of zero are imposed,
and the rotating speed profiles are shown in Fig. 9. The
maximum value of the dimensionless rotating speed is
5, and the dimensionless rising time is 10. The smooth
rotating speed profile is defined by

γ (τ) =
{

τ/2 − (5/2π) sin(πτ/5) for 0 ≤ τ ≤ 10
5 for 10 ≤ τ ≤ 30

,

(55)

and the non-smooth profile is defined by

γ (τ) =
{

τ/2 for 0 ≤ τ ≤ 10
5 for 10 ≤ τ ≤ 30

. (56)

The dynamic responses when the smooth speed pro-
file is applied to the rotating beam are presented in
Fig. 10, where the solid, dashed and dotted lines repre-
sent Models 1, 3 and 4, respectively. Figure 10a shows
the dimensionless stretch/axial deformations, Fig. 10b
shows the dimensionless chordwise deformations, and

Fig. 10c shows the dimensionless normal stresses. It
should be noted that in Fig. 10a the responses of Mod-
els 1 and 4 are for the stretch deformation, while the
response of Model 3 is for the axial deformation. In
Fig. 10c, the dimensionless normal stresses of Models
1 and 4 are computed by (54), while the dimensionless
normal stress of Model 3 is computed by the following
linearized stress given by Kim et al. [12]:

σ ∗
x = ∂u

∂x
. (57)

As shown in Fig. 10, when a rotating beam has a
smooth speed profile, the stretch/axial deformation and
the normal stress do not exhibit significant differences
between Models 1, 3 and 4. However, if the dynamic
responses are magnified as shown in Fig. 10c, the non-
linear effect, which is the difference between Models
1 (or 4) and 3, is observed.

It is interesting to observe the dynamic responses
of Models 1, 3 and 4 when the rotating speed has
a non-smooth profile. The dynamic responses for the
non-smooth profile, illustrated in Fig. 11, show larger
oscillations than the responses for the smooth profile
illustrated in Fig. 10. These large oscillations for the
non-smooth rotating speed profile are caused by abrupt
changes in the rotating acceleration at τ = 0 and 10.
Another meaningful observation in Fig. 11 is that the
dynamic responses for Model 3 have considerable dif-
ferences from those for Models 1 and 4. This implies
that the linearized stress used in Model 3 may yield
some errors when a rotating beam has a non-smooth
speed profile. It should be noted that it is hard to observe
the differences of the dynamic responses between the
nonlinear model (Model 1) and linear model (Model
4) in Fig. 11. This is because the values the rotating
speed and acceleration used for the computations are
relatively small: the maximum rotating speed is γ = 5
and the rotating acceleration is λ = 0.5 . When these
values are large, the differences between Models 1 and
4 are discussed below.

In the rest of this section, only the two models,
i.e., Models 1 and 4, are compared and discussed in
more detail. The section for convergence characteris-
tics shows that the MSM and FEM for Model 2 show
poor and slow convergence characteristics, respec-
tively, compared to Model 1. It is shown in Figs. 10
and 11 that the dynamic responses for Model 3 have
larger errors than the responses for Models 1 and 4.
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Fig. 7 Stress distributions
over the beam length when
the rotating acceleration is
maximum, taken from
Fig. 2: a when applying the
MSM to Model 1, b when
applying the MSM to Model
2 and c when applying the
FEM to Model 2
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For these reasons, Models 2 and 3 are excluded from
the following discussion.

The dynamic responses of Models 1 and 4 are com-
pared for the three different values of rotating acceler-
ation during the rising time intervals when maintaining
the same maximum value of the non-smooth rotating
speed profiles. Since the responses of Model 3 have
relatively large errors, they are omitted in compari-
son. The dynamic responses are computed for the non-
smooth rotating speed profiles, shown in Fig. 12, where

the three profiles have different values of the rotating
acceleration and the same maximum value of the rotat-
ing speed. In this figure, the solid, dashed and dotted
lines represent the speed profileswith the accelerations,
λ = 1, 2 and3, respectively, during the rising time inter-
val. The stretch deformations for Models 1 and 4 are
shown in Fig. 13a–c, and the chordwise deformations
for Models 1 and 4 are shown in Fig. 13d–f. In Fig. 13,
the solid and dashed lines stand for the responses of
Models 1 and 4, respectively. As shown in Fig. 13,
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Fig. 8 Convergence characteristics for the dynamic responses of
the deformation at the free end: a the axial deformation and b the
chordwise deformation; the circle and square symbols represent
the RMS values for the MSM applied to Model 1 and the FEM
applied to Model 2, respectively

Dimensionless time, τ
0 5 10 15 20 25 30D

im
en

si
on

le
ss

 ro
ta

tin
g 

sp
ee

d,
 γ

0

2

4

6

Smooth profile

Non-smooth profile

Fig. 9 Smooth and non-smooth profiles of the dimensionless
rotating speed

the differences of the responses between Models 1 and
4 increase with the rotating acceleration. Comparing
the equations of chordwise motion for Models 1 and
4, i.e., (8) and (22), respectively, the terms related to
the rotating acceleration are different from each other:
Ω̇ (s − hv − hw) in (8) and Ω̇s in (22). This is a signif-
icant contribution to the response differences between
Models 1 and 4, shown in Fig. 13.

The effects of the rotating acceleration on the
dynamic responses are investigated for Models 1 and
4. Figure 13 shows that the average values (or DC
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Fig. 10 Dynamic responses for the smooth profile of the rotating
speed shown in Fig. 9: a the stretch/axial deformations, b the
chordwise deformations and c normal stresses

values) of the responses in the constant speed region
are nearly the same even if the rotating acceleration
in the rising time interval is changed. This means that
the average value of the response is not influenced by
the rotating acceleration. However, the rotating accel-
eration has an influence on the frequency and ampli-
tude of vibration. To examine this influence, by using
the fast Fourier transform, the frequency spectra are
obtained from the responses in the intervals of con-
stant rotating speed. The frequency spectra of the vibra-
tions in the constant speed intervals are presented in
Fig. 14, where Fig. 14a–c is for the stretch deforma-
tions when λ = 1, 2 and 3, respectively, and Fig. 14d–f
is for the chordwise deformations. As shown in Fig. 14,
the vibration amplitude is dependent on the rotating
acceleration. The amplitude of Model 4 seems to be
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proportional to the acceleration, but the amplitude of
Model 1 does not. It is interesting that the vibration

frequency of Model 1 decreases as the rotating accel-
eration increases; however, the frequencies of Model
4 remain constant regardless of the acceleration. For
the case of Model 1, the dimensionless peak frequen-
cies corresponding to λ = 1, 2 and 3 are 1.006, 0.976
and 0.970, respectively. However, the peak frequencies
of Model 4 do not vary for the change of the rotating
acceleration, so they are the same at a value of 1.002
for all the three values of λ . This implies that Model
1, which is a nonlinear model, has ‘instantaneous’ nat-
ural frequencies affected by the rotating acceleration,
while Model 4, which is a linear model, has con-
stant natural frequencies unaffected by the accelera-
tion.

Consider the dynamic response differences between
Models 1 and 4 for the change in rotating speed. To
investigate these differences, the dynamic responses
are computed for the three non-smooth rotating speed
profiles shown in Fig. 15. The maximum dimension-
less rotating speeds of the three profiles are selected
as γmax = 10, 20 and 30. However, the dimension-
less rotating acceleration maintains a constant value
of λ = 2 to eliminate the effect of the acceleration.
The dynamic responses computed by using these speed
profiles are presented in Fig. 16, in which Fig. 16a–c
is for the stretch deformations, while Fig. 16d–f is for
the chordwise deformations. The two models have no
difference in the average values of the responses in
the constant speed intervals if their maximum speeds
are the same. The average value of the dimensionless
stretch deformation increases with the maximum rotat-
ing speed, whereas the average value of the dimen-
sionless chordwise deformation remains zero regard-
less of the value of γmax . The increasing average value
with the rotating speed is caused by the centrifugal
force, which is proportional to the square of the rotating
speed.

Similarly to the frequency spectra shown in Fig. 14,
the frequency spectra in Fig. 17 are obtained by the
fast Fourier transform of the dynamic responses in the
constant speed intervals, shown in Fig. 16. This fig-
ure shows that the differences of the vibration fre-
quencies between Models 1 and 4 become large as
the maximum rotating speed increases. Since Model
1 considers nonlinear terms, which Model 4 does not
have, it may be said that the vibration frequencies com-
puted with Model 1 are more reliable than the frequen-
cies with Model 4. On the other hand, it is observed
in Fig. 17 that the vibration frequencies of both the
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Fig. 13 Dynamic responses of Models 1 and 4 for the three
non-smooth profiles of the rotating speed shown in Fig. 12: a the
stretch deformations for λ = 1, b the stretch deformations for

λ = 2, c the stretch deformations for λ = 3, d the chordwise
deformations for λ = 1, e the chordwise deformations for λ = 2,
f the chordwise deformations for λ = 3

stretch and chordwise deformations increase with the
maximum rotating speed. In addition, as the maxi-
mum rotating speed increases, the vibration amplitude
of the stretch deformation increases (Fig. 17a–c), but

the amplitude of the chordwise deformation decreases
(Fig. 17d–f). These phenomena occur due to the stiff-
ening effect, which is also caused by the centrifugal
force.
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Fig. 14 Frequency spectra for the vibrations of Fig. 13 during
the time intervals of constant rotating speed: a the stretch defor-
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8 Conclusions

For the dynamic analysis of a rotating flexible beam,
the nonlinear model (Model 1) is proposed and com-
pared to the previousmodels (Models 2–4). The nonlin-
ear integro-differential equations of motion for the pro-
posed model are derived in terms of the stretch, chord-
wise and flapwise deformations. During the deriva-
tion, the nonlinear von Karman strain and the corre-
sponding nonlinear stress are adopted to consider the
geometric nonlinearity due to large deformation. After
discretizing the nonlinear equations using the MSM,
the discretized equations of the dynamic responses are
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Fig. 16 Dynamic responses of Models 1 and 4 for the three
non-smooth profiles of the rotating speed shown in Fig. 15: a
the stretch deformations for γmax = 10, b the stretch deforma-
tions for γmax = 20, c the stretch deformations for γmax = 30,

d the chordwise deformations for γmax = 10, e the chordwise
deformations for γmax = 20, f the chordwise deformations for
γmax = 30

computed by applying the Newmark time integration
method.

The dynamic responses of the proposed model are
more accurate than the responses of the three previ-
ous models. When the MSM is used for discretization,
Model 1 has fast converged solutions, but Model 2 can-

not have converged solutions. If the FEM is applied to
Model 2, converged solutions can be obtained. How-
ever, the convergence speed of the FEM applied to
Model 2 is much slower than the speed of the MSM
applied to Model 1, because applying the FEM to
Model 2 requires many more degrees of freedom than
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Fig. 17 Frequency spectra for the vibrations of Fig. 16 dur-
ing the time intervals of constant rotating speed: a the stretch
deformations for γmax = 10, b the stretch deformations for

γmax = 20, c the stretch deformations forγmax = 30,d the chord-
wise deformations for γmax = 10, e the chordwise deformations
for γmax = 20, f the chordwise deformations for γmax = 30

the MSM to Model 1. Meanwhile, Model 3 may yield
larger errors in computed responses than Models 1 and
4 because the used stress model of Model 3 is lin-
earized. On the other hand, comparing Models 1 and 4,
the responses ofModel 1may be considerably different
from the responses of Model 4 for some non-smooth
rotating speedprofiles. SinceModel 1 considers nonlin-
ear terms, whichModel 4 does not have, it may be con-
cluded that Model 1 produces more reliable responses
than Model 4.

For non-smooth rotating speed profiles, the effects
of the rotating acceleration and speed are also investi-
gated. When the rotating acceleration varies with the
remaining maximum speed, the rotating acceleration
does not influence the average value of the dynamic
response, but influences the vibration frequency and
amplitude.When themaximum rotating speed changes
with the same acceleration in the rising time, the rotat-
ing speed increases the vibration frequencies for the
stretch and chordwise deformation. Furthermore, the
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speed increases the vibration amplitude of the stretch
deformation but decreases the amplitude for the chord-
wise deformation.
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