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Abstract Recent advance in flapping-wing MAVs
has led to greater attention being paid to the interac-
tion between the structural dynamics of the wing and
its aerodynamics, both of which are closely related to
the performance of a flapping wing. In this paper, an
improved computational framework to simulate a flap-
ping wing is developed. This framework is established
by coupling a preconditioned Navier–Stokes solution
and a co-rotational beam analysis with a restrained
warping degree of freedom. Validation of the present
framework is performed by a comparison with exam-
ples from either earlier analyses or experiments. Fur-
ther, a numerical analysis of a wing under simultane-
ous pitching and plunging motion is examined. The
results are compared with those obtained with a wing
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under pure plungingmotion, in order to assess the addi-
tional motion effect within a spanwise flexible wing.
The comparison shows different aerodynamic charac-
teristics induced by the flexibility of the wing, which
can be beneficial.
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List of symbols

Co-rotational beam formulation

R Rotational matrix
T
s

Operator relating spatial and material
angular variations

E Topology of the configuration
x Position vector
u Nodal transverse displacement vector
ln Deformed length of the element
θ Nodal rotational displacement vector
α Warping degrees of freedom
B Transformation matrix
E CR transformation matrix
H Auxiliary matrix
q Nodal displacement vector
q̇ Nodal velocity vector
q̈ Nodal acceleration vector
V Virtual work
Φ Strain energy
K Kinetic energy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-016-3007-7&domain=pdf


1952 H. Cho et al.

ρ Material density
f Elemental internal force vector
f
K

Elemental inertial force vector
f
e

Elemental external force vector
f
Km

Elemental inertial force vector with pre-
scribed motion

Fpre Predictor
K Elemental stiffness matrix
M Elemental mass matrix
C

K
Elemental gyroscopic matrix

K
Dyn

Elemental dynamic stiffness matrix

(∗)α Quantity including the warping DOF
(∗)G Quantity referring to the global frame
(∗)L Quantity referring to the local frame
(∗)n Time index
h Structural timestep
αint, γ, β Constants in HHT-α method

Governing equation for fluid

W Conservative solution vector−→
F Inviscid flux vector−→
Fv Viscous flux vector
Q

p
Primitive solution vector

Γ
a

Preconditioning matrix

Supplementary symbols

CW Sectional warping coefficient
ztip Displacement at the tip
zm Prescribed plunging motion
zo Amplitude of plunging motion
θm Prescribed pitching motion
θo Amplitude of pitching motion
c Chord length
kG Reduced frequency
fm Physical frequency
U∞ Flow velocity
CP Pressure coefficient
CL Lift coefficient
CT Thrust coefficient

1 Introduction

Flapping-wing micro-air vehicles (MAV) are envi-
sioned as being smaller than 15cmandflying in aerody-
namic environment with lowReynolds numbers. These

vehicles are biologically inspired. The usefulness of
flapping-wing vehicles has been predicted as part of
the long history of studies of natural flyers.

Most MAVs are operated under aerodynamics
regime with low Reynolds numbers. Moreover, these
unsteady flapping wings show the formation of a
leading-edge vortex (LEV), which is another type of
laminar separation, followed by reattachment to the air-
foil surface [1]. Such LEV is formed in flapping wing
during the flapping stroke. For instance, the separa-
tion rolls up on top of the wing and forms a vortex
near the leading edge during the downstroke. Anderson
et al. [2] performed experiments on propulsive thrust-
generating harmonically oscillating two-dimensional
airfoils. From their experiments, it was revealed that
the condition of propulsion at a high-efficiency level
was related to the interaction between the LEV and the
trailing-edge vortex (TEV). Also, it was suggested that
pitching motion typically leads plunging motion by a
phase difference of 90◦. This is regarded as optimal
considering the efficiency of the thrust. Heathcote et
al. [3] conducted an experiment on a rectangular wing
with a NACA0012 airfoil section under pure plunging
motion to investigate the effect of spanwise flexibil-
ity on the thrust, lift and efficiency of propulsion. In
their experiment, a moderate order of flexibility was
observed to be beneficial.

In an earlier investigation regarding a computational
approach, a number of researchers developed fluid–
structure interaction (FSI) framework to attempt to
understand the effects of flexibility on the aerodynam-
ics of various flapping wings. In these studies, model-
ing of the wing was conducted by employing linear or
nonlinear elastic structures based on the finite element
method [4–8]. Recently, Chimakurthi et al. [9,10] built
a numerical framework to facilitate FSI simulations of
flexible flapping wings at various fidelity levels. By
comparing their resultswith the experimentalwork per-
formed by Heathcote et al. [3], they were able to obtain
good agreement between numerical results and exper-
imental observations. Moreover, Gordnier et al. [11]
established the FSI framework using a higher-order
fluid solver and a structural dynamic solver based on
geometrically nonlinear composite beam.An investiga-
tion of complicated aerodynamic phenomena around a
spanwise flexible wing was also conducted.

These previous studies of flapping-wing vehicles
provide a physical understanding of the phenomena
surrounding the wings. They considered the flexibility
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of thewing structures and suggested that spanwise flex-
ibility instilled in a flapping wing may result in other
aspects, i.e., new aerodynamic characteristics, which
can in turn inform more practical designs of a MAV.
However, most of the studies only considered wings
under single-DOF motion such as pure plunging or
pitching motion. Thus, a physical understanding of a
flexible wing under simultaneous pitching and plung-
ing motion is relatively limited. Moreover, an investi-
gation of a flexible wing under simultaneous pitching
and plunging motion is required not only for a better
physical understanding, but also for improved MAVs’
design.

In this paper, an improved computational approach
to simulate a flapping wing is presented. A nonlinear
structural model based on a co-rotational (CR) beam
with a restrained warping degree of freedom is devel-
oped to analyze the structure under a large amount of
transverse and angular motion. This beam element is
coupled with preconditioned Navier–Stokes solutions.
The present framework will be validated by compari-
son with results obtained by previous predictions [11]
and experiments [3]. Ultimately, a numerical analysis
of a wing under simultaneous pitching and plunging
motion will be performed.

2 Description of the FSI framework

The FSI framework exclusive to a flapping wing is
presented in this section. Computational fluid dynam-
ics (CFD) and a coupling methodology, between CFD
and the computational structural dynamics (CSD), are
briefly described here as well.
In the present CFD analysis, a three-dimensional pre-
conditioned Navier–Stokes equation is chosen as the
governing equation. An integral form of the non-
dimensional governing equations under a free-stream
condition is expressed as follows:

d

dt

∫
V
WdV + Γ

a

d

dτ

∫
V
Q

p
dV +

∫
S

−→
F · n̂dS

=
∫
S

−→
Fv · n̂dS (1)

Here, W is the conservative solution vector, Q
p
is the

primitive solution vector,
−→
F is the inviscid flux vector,

and
−→
Fv is the viscous flux vector. For accurate and effi-

cient computations of flows with low Mach numbers,
the preconditioning matrixΓ

a
ofWeiss and Smith [12]

Fig. 1 Diagram of the implicit coupling methodology

is utilized. A dual time stepping method in conjunction
with an approximate factorization-alternate direction
implicit (AF-ADI)method is used to discretize the time
derivative term of the governing equations, while the
Roe’s approximate Riemann solver [13] and the central
difference method are used to discretize the convective
terms and the diffusion terms.
Details of the flow analysis are included in the liter-
ature [14]. A radial basis function is also employed
to consider the structural deformations. A geometric
conservation law is utilized to alleviate problems when
computing the volume of the deforming grid as well.

To couple the structural model with an aerodynamic
model, an implicit coupling approach is applied. In the
implicit coupling approach, both the aerodynamic and
the structural solutions are determined iteratively by
exchanging data more than once per coupled timestep.
Hence, new coupled solutions are obtained for the same
timestep at the end of the sub-iteration routine. A dia-
gram of the implicit coupling approach is presented in
Fig. 1. To exchange the results between CFD and CSD,
linear interpolation is used. In the CFD analysis, dis-
tributed loads are obtained by integrating the pressures
and the skin friction over the surface grid points. These
distributed loads are then interpolated by a linear inter-
polation scheme and transferred to the CSD analysis in
the form of nodal forces.

3 Co-rotational (CR) beam formulation

The nonlinear structural analysis for the flapping wing
is based on the use of several related frames to take
the prescribed rigid body motion of the structure into
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account. Thus, the present analysis relies on a body-
fixed floating frame of reference to describe the pre-
scribed motion and on the CR framework to account
for any geometric nonlinearity. The features and previ-
ous studies about the CR framework are well demon-
strated in Refs. [17,20,25]. A brief review of the CR
framework is described as follows.

Main idea of the CR framework is a decomposition
of the displacement into rigid body and pure defor-
mational components by using the CR frame located
on each element which translates and rotates catch-
ing up with the element. Such CR frame transforma-
tion accounts for the element rigid body motion so
that the existing elemental hypothesis can be used in
the local system. Accordingly, the element- indepen-
dent co-rotational formulation is suggested by Rankin
et al. [15,16]. The main advantage of the CR for-
mulation is its effectiveness for problems with small
strains but large rotations [17]. A significant num-
ber of three-dimensional CR beam formulations have
been proposed in the literature. In a number of ear-
lier studies, the existing elemental hypothesis based
on a linear strain definition is employed in the local
system [18,19]. However, Battini et al. [20] showed
that a choice of local system may lead to incorrect
results for certain problem, especially when the tor-
sional effects are important. In three-dimensional beam
dynamic formulation, it was considered that the deriva-
tion of inertial terms is impossible because of its com-
plex nature [21]. Thus, many researchers employed the
conventional approach such as constant Timoshenko
mass matrix [21,22] or lumped mass matrix [23,24].
By extension, Le et al.[25] established the consistent
dynamic formulation for three-dimensional beam ele-
ment with an addition of a seventh degree of freedom
to describe the warping of the cross section.

Additionally, in this paper, this concept is extended
to consider the rigid body motion for a flapping-wing
structure. Thus, an additional coordinate is considered
as a fixed frame. The existing coordinates in the CR
framework are then considered as a dynamic frame
following the structure undergoing a motion. In order
for such extension to apply, simultaneously prescribed
motion is combined in terms of acceleration with the
governing equation. In this section, the formulation
procedure regarding the present CR beam element is
presented. Initially, the present CR framework and the
coordinates used in the present derivation are described.
The procedures used to determine the elemental inter-

nal and inertial components related to the present beam
element are then given. Here, the notations regarding
vectors and matrices are expressed by using underlined
symbols, e.g., a vector v equals to v and a matrix A
equals to A.

3.1 Parameterization of the finite three-dimensional
rotations

In this section, the fundamental treatment of the finite
three-dimensional rotations is presented. More details
of the description can be found in the previous stud-
ies [26–29]. Generally, finite rotations are formulated
by an orthogonal matrix R, the rotational matrix, which
is used for describing the rotated position. Because of
its orthogonality, the rotational matrix can be described
in terms of only three independent parameters, i.e., the
rotational vector:

θ = θn (2)

where n is a unit vector and θ = (θT θ)1/2. The rela-
tionship between the rotational vector and matrix can
be defined by Rodrigues’ formula.

R = I + sin θ

θ
θ̃ + 1 − cos θ

θ2
θ̃
2

(3)

where a tilde denotes the skew-symmetric matrix. The
variational form of the rotation matrix in spatial and
material form can be

δR = (δφ̃)R = R(δψ̃) (4)

where δψ̃ and δφ̃ denote material and spatial angu-
lar variations, i.e., infinitesimal rotations superimposed
onto the rotational matrix, respectively. Now, the spa-
tial variation can be described by using the following
relation.

δφ̃ = T
s
(θ)δψ̃ (5)

where

T
s
(θ) = I + 1 − cos θ

θ2
θ̃ + θ − sin θ

θ3
θ̃
2

(6)

3.2 Beam kinematics for the CR framework

Figure 2 shows the coordinates defined in the present
CR framework and rotational transformations when
obeying the elemental kinematics. Beginning with the
elemental fixed frame E

I
, the rotational matrix R

o
can
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Fig. 2 CR elemental kinematics and coordinate transformations

be defined by tracking the elemental initial state. The
rotationalmatrix, R

G
, can be defined by elemental rota-

tional displacement referring to an undeformed con-
figuration E

G
. The complete rotation can be decom-

posed into rigid body rotation referring to the CR frame
E
C

and elastic deformational rotation referring to a
deformed configuration E

L
. Moreover, each variable

consists of the rotational matrices, R
r
and R

L
, respec-

tively. The superscript presented in Fig. 2 indicates
nodal number, and the present CR beam formulation
is based on two-node beam finite element. The origin
of each coordinate is taken at node 1. Thus, the transla-
tional displacements are defined by u1g , the translation
of the cross-sectional centroid at node 1. Subscript g
indicates quantities expressed in E

G
. The rigid rota-

tional matrix R
r
is defined by following.

R
r

= [EC,1, EC,2, EC,3] (7)

The first coordinate axis referring to the CR frame
EC,1 is defined by the line connecting nodes 1 and 2 of
the element.

EC,1 = x2G + u2G − x1G − u1G
ln

(8)

where ln denotes the deformed length of the element.

ln = ||x2G + u2G − x1G − u1G || (9)

The remaining two axes are determinedwith the help
of a vector b.

EC,3 = EC,1 × b

||EC,1 × b|| , EC,2 = EC,3 × EC,1 (10)

where the vector b is directed along the local EG,2

direction in the initial configuration, whereas in the
deformed configuration, its orientation is obtained as

b = 1

2
(b1 + b2), bi = Ri

G
R
o
{0, 1, 0}T (i = 1, 2)

(11)

The rigid motion previously described is accompa-
nied by local deformational displacements and rota-
tions with respect to the local element axes. In this
context, due to the particular choice of the local sys-
tem, the local translations at node 1 are zero.Moreover,
at node 2, the only nonzero component is the translation
along EC,1. This can easily be evaluated by following

uL = ln − l (12)

In the present derivation, the total rotation is a com-
bination of the rigid body and elastic deformational
components. Possible intermediate separation can be
conducted, as described below.

The orientation of the deformed frame can be
obtained by the product R

r
R
L
. Simultaneously, the

orientation can also be obtained through the product
R
G
R
o
. With the orthogonality of the operators, the

local rotational operator can be obtained as

R
L

= RT
L
R
G
R
o

(13)

The local rotation is then evaluated through the
matrix logarithm of the local operator, i.e., log R

L
.

Then, the off-diagonal components in log R
L

are
expressed in terms of the local rotation. Consequently,
the local nodal displacement vector qα

L
has only nine

components and is given by

qα

L
= {uL , θ1L , θ2L , α1

L , α2
L}T (14)

with αi (i = 1, 2) denoting the additional warping
degrees of freedom. Here, the superscript α denotes the
quantities including the warping degrees of freedom.

The variation of the local nodal displacement vector
and the global counterpart are as

δqα

L
= {δuL , δθ1L , δθ2L , δα1

L , δα2
L}T (15)

δqα

G
= {δu1G , δθ1G, δu2G , δθ2G, δα1

G , δα2
G}T (16)

3.3 Elemental matrices and force vectors

First, the formulations of the internal force vector and
elemental stiffness matrix are summarized. A complete
description can be found in [20]. The local internal
force vector and local tangent stiffness matrix related
to corresponding nodal displacement vector, Eq. (15),
are derived by re-introducing the beam kinematics

123



1956 H. Cho et al.

in Sect. 3.2. In other words, the local displacements
(deformational components) are defined by eliminat-
ing the rigid bodycomponents from theglobal displace-
ments. Thus, it is possible to express the local displace-
ment vector as a function of the global displacement
vector. And the relationship between the variation of
local and global displacements can be expressed as

δqα

L
= Bαδqα

G
(17)

where Bα is a transformation matrix. Moreover, the
virtual work of the structure can be expressed by using
the local and global displacement and internal force
vectors, respectively.

V = δqαT
L

f α

L
= δqαT

G
f α

G
(18)

By equating Eq. (18), the relationship between the local
and global internal force vectors is defined as

f α

L
= Bα f α

G
(19)

The global tangent stiffness matrix is defined by taking
the variations of Eq. (19)

K α

G
= BαT K α

L
Bα + ∂(BαT f α

L
)

∂qα
G

� f α
L

(20)

In order to define the local stiffness matrix K α

L
and internal force vector f α

L
, a beam formulation

suggested by Battini et al. [20] is employed. The
fundamental kinematic description is initially intro-
duced by Gruttmann et al [30]. Now, it is possible
to define the local stiffness matrix and internal force
vector through successive differentiations of the strain
energy Φ.

K α

L
= ∂2Φ

∂qα2
L

, f α

L
= ∂Φ

∂qα
L

(21)

After it is completed, the derivation of the inertial
force vector and elemental inertial matrices, i.e., mass
and gyroscopic matrices, will be presented. Here, the
intermediate quantities are expressed by the relevant
symbols. Details of the derivation including the for-
mulation of the symbols can be found in [31]. Recall-
ing the element kinematics, the separation of the local
deformation and the rigid body motion is conducted,
but different assumptions are applied for representing
the local displacements. Thus, linear interpolation is
used for the axial displacement, whereas cubic inter-
polations are used for the transverse displacements and
for the axial rotation. Using the interpolation and the

CR transformationmatrix, the variational formof trans-
verse and rotational displacement in elemental level can
be

δu = R
r
H

1
ET δq

G
(22)

δθ = Rα

r
H

2
EαT δqα

G
(23)

where q
G

is elemental displacement vector defined
without warping terms and H

1
andH

2
are auxiliary

matrices defined by the elemental interpolating func-
tions.

On the other hand, the kinetic energy of the element
is expressed by considering the position vector, refer-
ring to E

G
, of an arbitrary point upon the deformed

beam configuration.

K = 1

2

∫
l
ρq̇αT q̇αdl (24)

By introducing Eqs. (22) and (23) into a resulting
variational form of Eq. (24), the inertial force vector is
obtained as

f α

k,G
= Eα f α

k,L
(25)

Using the linearization of the inertial force vector
and elemental transverse and rotation, mass and gyro-
scopic matrices can be obtained. The brief form of the
matrices are as

Mα

G
= EαM

L
EαT (26)

Cα

k,G
= EαC

k,L
EαT (27)

where Mα

L
and Cα

k,L
denote mass and gyroscopic

matrices referred to E
C
, respectively. The matrix, Eα ,

denotes a transformation matrix defined by R
r

3.4 Governing equation

In nonlinear time-transient analyses of structures, the
displacements, velocities and accelerations must be
obtained at each timestep in an iterative manner,
i.e., through Newton–Raphson method. Earlier work
[32] and [27] discussed the application of the time
integration method for the CR formulation. In the
present paper, the Hilbert Hughes Taylor (HHT)-α
method [33], a variant of the Newmark algorithm, is
employed to solve the nonlinear equation. The resulting
algorithm is a predictor–corrector type, similar to that
in an earlier study [34]. And it is extended to consider
the prescribed motion of the structure. In this section,
the superscript, n, denotes the timestep at tn. Newmark
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time integration formulas enforce displacements and
velocities such that they are updated according to the
following relationships.

qα,n+1
G

= qα,n
G

+ hq̇α,n+1
G

+h2
{( 1

2 − β
)
q̈α,n
G

+ βq̈α,n+1
G

}
(28)

q̇α,n+1
G

= q̇α,n
G

+ h
{
(1 − γ ) q̈α,n

G
+ γ q̈α,n+1

G

}
(29)

Eqs. (28) and (29) can now be transformed into

Δq̈α

G
= 1

βh2

(
Δqα

G
− hq̇α,n

G
− h2

2
q̈α,n
G

)
(30)

Δq̇α

G
= γ

βh
Δqα

G
− γ

β
q̇α,n
G

+ h(2β − γ )

2β
q̈α,n
G

(31)

The resulting tangent inertial matrix can be consid-
ered as

K α

Dyn,G
= 1

βh2
Mα

G
+ γ

βh
Cα

k,G
(32)

where Mα

G
and Cα

k,G
denote mass and gyroscopic

matrices referred to the global frame, respectively.
The nonlinear governing equation of motion can be

expressed as

f α

e
− f α

G
(qα

G
) − f α

Km,G
(qα

G
, q̇α

G
, q̈α

G
) = 0 (33)

where f α
e
, f α

G
and f α

Km,G
denote the external, internal

and inertial force vectors. And the prescribed motion
of the flapping wing is now considered as the time
derivative term. Thus, the relevant acceleration of the
motion, aα

f m , is accounted for the structural inertial
term.

f α

Km,G
= f α

K ,G
− Mα

G
aα
f m (34)

In HHT-α method, the time-transient equilibrium
equation is rewritten as

(1 + αint ) f α,n+1
e

− (1 + αint ) f α,n+1
G

− f α,n+1
Km,G

+ αint

(
f α,n
G

− f α,n
e

)
= 0

(35)

When re-expressing Eq. (35) according to this pro-
cedure, it becomes possible to include a component
of the terms from the previous step. Using the trun-
cated Taylor expansion for the internal force vector,
f n+1
G

, the following derivation of the predictor can be
obtained.

(1 + αint )K
α,n
G

+ K α,n
Dyn,G

= Fα
pre (36)

Fα
pre = (1 + αint ) f

α,n+1
e

− f α,n
G

− f α,n
K ,G

− α f α,n
e

+Cα,n
k,G

(
γ

β
q̇α,n
G

− h(2β − γ )

2β
q̈α,n
G

)

+ Mα,n
G

(
hq̇α,n

G
+ h2

2
q̈α,n
G

− aα
f m

)
(37)

By taking the equilibrium force vector and the pre-
dictor into consideration, an iterative time integration
algorithm can be established.

4 Validation of the present structural analysis

The purpose of this section is to assess the performance
of the present CR beam element. Several numerical
applications are assessed to estimate the performance
of the present CR beam analysis method in both static
and time-transient conditions.

First, a static analysis of an example, originated in
Ref. [35], regarding a box-girder bridge is conducted.
The cross-sectional dimensions and equivalent beam
properties are summarized in Fig. 3. The length of the
bridge is 60m. And the Young’s modulus E and Pois-
son’s ratio ν are 30GPa and 0.15, respectively. Both
ends are supported, while warping is not constrained.
When subjected to the applied torque of 26.9mN, on

Fig. 3 Configuration and properties of cross section

Fig. 4 Analysis condition including boundary and loading con-
ditions
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Fig. 5 Comparison of the
deformed configuration
along the beam spanwise
axis

Fig. 6 Plate under the harmonic plunging motion

the mid-span of the bridge, the rotational displacement
along the beam spanwise axis is compared to that pre-
dicted byMSC.NASTRANandanalytical solution sug-
gested in Ref. [35]. The structural modeling of this
example including the boundary condition is depicted
in Fig. 4. In the NASTRAN prediction, the geomet-
rically nonlinear beam element with warping degrees
of freedom is used. And, both present and NASTRAN
predictions employ 30 beam elements. As illustrated in
Fig. 5, the present result shows good correlation with
the MSC.NASTRAN prediction and analytical solu-
tion. Also, due to the warping effect, the rotational dis-
placement along the beam spanwise axis shows a non-
linear feature which may not be accurately predicted
when using only the conventional Saint-Venant hypoth-
esis.

Second, a cantilevered plate under the prescribed
harmonic plunging motion is analyzed. The analysis
condition and equivalent beam properties regarding the
cross section of the plate are illustrated in Fig. 6. The
Young’s modulus E and Poisson’s ratio ν are 210GPa
and 0.3, respectively. Themotion is prescribed as a har-
monic function to the root of the plate (Fig. 6), where
zo is the amplitude, 0.0175m, and fm is the plung-
ing frequency, 1.78Hz. The present analysis using ten
elements, corresponding to total of 77 degrees of free-
dom, is compared with the ANSYS prediction. In the
ANSYS prediction, 2,000 three-dimensional solid ele-
ments, corresponding to 43,809 degrees of freedom, are
used in order for structural modeling of the plate. The
time history of the plate tip displacement, normalized
by the motion amplitude zo, is shown in Fig. 7. In the
figure, the dotted line is the ANSYS prediction. Due
to the out-of-plane deformational components along
y-axis in the ANSYS prediction, there exists discrep-
ancy between the present result andANSYSprediction.
However, the present analysis shows good correlation
with the ANSYS prediction within the peak-to-peak
difference of 0.79%.

Fig. 7 Comparison of the
results with a plate under
the prescribed harmonic
plunging motion
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5 Fluid–structure interaction analysis of
NACA0012 rectangular wing

In the present FSI framework, a CR beam element is
employed for the structural analysis. Verifications of
each aerodynamic and structural aspect are performed
by attempting to simulate the situation in the experi-
ment conducted by Heathcote et al [3]. A wing under
simultaneous pitching and plunging motion will then
be simulated. In the present CFD analysis, 389,400 grid
cells and 29,000 surface boundary nodes are used, with
39 elements employed in the beam analysis.

5.1 Wing under pure plunging motion

In this section, the present FSI framework is validated
in a comparison with the results observed in the exper-
iment conducted by Heathcote et al [3]. In that experi-
ment, rectangular cantilevered wings (the NACA 0012
cross section) with different degrees of flexibility were
subjected to prescribed plunging motion. In this paper,
rigid and flexible wings are considered. The wing con-
figuration and material properties are summarized in
Table 1, while Table 2 shows the operating condition
used in the present analysis. The reduced frequency kG

Table 1 Properties of the present rigid and flexible wing under
pure plunging motion

Rigid Flexible

Semi-span width (m) 0.3 0.3

Chord length (m) 0.1 0.1

Thickness (m) – 0.001

Poisson’s ratio – 0.3

Material density (kg/m3) – 7800

Young’s modulus (GPa) – 210

Table 2 Operating conditions of the wing under the pure plung-
ing motion

Value

Reynolds number 30,000

Flow velocity (m/s) 0.3

Water density (kg/m3) 1000

Plunging amplitude (m) 0.0175

Reduced frequency, kG 0–1.82

Fig. 8 Schematic of the thrust and lift

is varied from0 to 1.82. kG and is defined in terms of the
motion frequency (π fmc)/U∞. Here, fm, c and U∞
are plunging frequency, wing sectional chord length
and free-stream velocity, respectively. The plunging
motion zm is set as time-varying harmonic function,
zo cos (2π fmt). Here, zo is the plunging amplitude.

Figure 8 shows a schematic of the presently defined
forces and motions. The propulsive force acting on the
wing opposite to the flow velocity vector is represented
by the thrust. The lift is defined as the force acting
perpendicular to the thrust.

First, the present results are compared with those
from the aforementioned analysis [11] and experiment
[3], when kG is equal to 1.82. Figure 9 shows the thrust
coefficientCT history. The presentCT history is in good
agreement with that from the experiment in both rigid
and flexible wing cases. The present prediction shows
a similar history when compared with that observed in
the experiment. Figure 10 shows the normalized wing
tip displacement history. The tip displacement ztip is
normalized by the amplitude of the plunge motion zo.
With regard to the structural flexibility, a phase shift
exists in its history due to the inertial and aerodynamic
loads.The averageCT and thepeak-to-peak relative dif-
ferences in wing tip deflection compared to the experi-
ment are summarized in Table 3. The present prediction
demonstrates excellent agreement with the experimen-
tal results, showing the averaged CT and the peak-to-
peak difference of 6.6 and 0.8%, respectively. By com-
paring the present result with the previous prediction,
the present prediction shows improved accuracy com-
pared with that obtained from the experiment. After the
completion of the assessment, the present results are
examined when varying kG from 0 to 1.82. The aver-
aged CT, the amplitude and phase shifts of the wing tip
displacement are compared with those from the exper-
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Fig. 9 Comparison of CT
history of the wing under
pure plunging motion

Fig. 10 Comparison of tip
displacement history of the
wing under the pure
plunging motion

Table 3 Comparison of the averaged CT and normalized tip
displacement (ztip/zo), kG = 1.82

Averaged CT ztip/zo

Value Difference
(%)

Value Difference
(%)

Present 0.299 6.56 3.257 0.8

Gordnier
et al. [11]

0.278 13.1 3.188 2.91

Experiment [3] 0.320 – 3.284 –

iment in Figs. 11, 12 and 13, respectively. The present
results shows a good correlation, with the maximum
discrepancy standing at 6.6%. These results show the
benefit obtained with regard to the thrust of the flexible
wing over the rigid wing for the greater kG . Moreover,
the amplitude and phase shift of the wing tip displace-
ment are both greater with respect to the increase in
kG . From the analysis of the wing under pure plung-
ing motion, the FSI analysis results here allow accurate
predictions regarding the physical aspects induced by
a flexible flapping wing.

Fig. 11 Comparison of the averaged CT, kG = 0 ∼ 1.82

5.2 A wing under the simultaneous pitching and
plunging motion

In this subsection, the analysis of a wing under simul-
taneous pitching and plunging motion is presented.
The main analytical parameters are identical to those
in the previous analysis, with pitching motion also
considered. The operating conditions with regard to
the motion are sourced from the literature regarding a
pitching airfoil [36]. The pitchingmotion θm(t) is set as
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Fig. 12 Comparison of the amplitude of the tip displacement,
kG = 0 ∼ 1.82

Fig. 13 Comparison of the phase lag of the tip displacement,
kG = 0 ∼ 1.82

θosin(2π fmt). Here, fm is the frequency of the pitch-
ing motion. The pitching frequency has a value iden-
tical to that utilized in the pure plunging wing analy-
sis. Additionally, θo is the amplitude of the pitching

motion, which is set in this case to be 4◦. Figure 14
shows the history of the thrust coefficient, CT, when
kG is equal to 1.82. By adding the pitching motion, the
magnitude of the thrust history is increased. Moreover,
the averaged value of the CT history, when kG is equal
to 1.82, shows that the effect of the flexibility of the
wing is enhanced when the pitching motion is added.
For a wing under the pure plunging motion, the effect
of the flexibility induces an increase of approximately
48.4%. However, the wing under simultaneous pitch-
ing and plunging motion is predicted to increase by
52.6%. The effects upon both a rigid and flexible wing
are therefore investigated. Each wing shows the bene-
fit stemming from the addition of pitching motion. In
particular, the flexible wing shows an increase in the
averaged CT value by 40.4%. Also, the history of the
lift coefficient CL, when kG is equal to 1.82, is illus-
trated in Fig. 15. Increased amplitude of the lift coeffi-
cient history is obtained due to the additional pitching
motion. The similar trends, observed in the CT history,
are also shown in amplitude in the CL history.

The wing tip displacement is then examined in more
detail. The history of the tip-transverse displacement is
illustrated in Fig. 16. In addition, the elastic twist of
the tip is shown in Fig. 17. The amplitude of the trans-
verse displacement and the phase shift in the history
are increased by approximately 10%, when the pitch-
ing motion is added. In addition, the tip elastic twist of
the wing under the simultaneous pitching and plunging
motion is five times greater than that predicted for the
wing under only pure plunging motion.

In order to interpret the details of such multi-
physical phenomena, the vorticity contours are exam-
ined by observing the four instantaneous intervals, i.e.,
0.25, 0.5, 0.75 and 1.0 t/T . These are indicated as
Interval A, B, C and D, respectively, in Fig. 18. It

Fig. 14 Comparison of the
CT history of the wing
under the simultaneous
pitching and plunging
motion
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Fig. 15 Comparison of the
CL history of the wing
under the simultaneous
pitching and plunging
motion

Fig. 16 Comparison of the
tip displacement of the wing
under the simultaneous
pitching and plunging
motion

Fig. 17 Comparison of the
tip elastic twist history of
the wing with the
simultaneous pitching and
plunging motion

Fig. 18 Indication of the
instantaneous interval
during harmonic motions
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Fig. 19 Comparison of the vorticity contours observed in the flexible wing

Fig. 20 Comparison of the pressure coefficient, CP, contours at the 70% position of wing span in Interval B

was found that the flexible wing under pure plung-
ing motion would induce a stronger TEV than that
induced by a rigid wing [3]. In this section, a com-
parison is conducted only between the flexible wing
under pure plunging and the simultaneous motion. Fig-
ure 19 shows the vorticity contour of the cross section
at the 30 and 70% positions along the wingspan. In
Fig. 19, the white and black regions indicates the vor-
ticity in the counterclockwise (CCW) and clockwise

(CW) directions, respectively. The addition of pitching
motion induces stronger generation of the LEV than
that induced by thewing in the pure plunging condition.
This is clearly shown at Interval B. The pressure coef-
ficient CP at the 70% position along the wingspan is
further compared at Interval B as illustrated in Fig. 20.
It was found that the strong vorticity induces a greater
difference in the pressure between the upper and lower
surfaces of the wing.
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In brief, the flexible wing under simultaneous pitch-
ing and plunging motion is predicted to generate the
strongest vorticity. Such strong vorticity is believed to
be caused by both pitching motion and elastic twist.
Therefore, it is shown that the improvement in the
aerodynamic efficiency is mainly caused by the greater
angle of attack induced by the pitching motion. Addi-
tionally, the greater transverse displacement and elas-
tic twist of the flexible wing brings extra benefit with
regard to the wing aerodynamic loads on the wing. As a
result, such a strong LEV results in a greater difference
in the pressure between the upper and lower surfaces
of the wing. This condition then increases aerodynamic
net force acting on the wing, i.e., the thrust and lift.

Finally, the present results are examined while vary-
ing kG from 0 to 1.82. The averaged CT of the wing,
amplitude and phase shifts of thewing tip displacement
history are shown in Figs. 21, 22, and 23, respectively.
The relevant values, when kG is equal to 1.82, are indi-
cated in the figures. The slope of each physical value is

Fig. 21 Comparison of the averaged CT, k = 0 ∼ 1.82

Fig. 22 Comparison of the amplitude of tip history, k = 0 ∼
1.82

Fig. 23 Comparison of the phase lag of tip history, k = 0 ∼ 1.82

increased when considering the simultaneous pitching
and plunging motion.

6 Conclusion

In this paper, an improved computational framework
of the FSI analysis for a flapping wing is developed.
Generally, a flapping wing is under the simultaneous
motion, and the vein is an open cross section. In order
to ensures the reliability regarding the torsional behav-
ior of the wing under this type of simultaneous motion,
a CR beam with a restrained warping degree of free-
dom is developed. Such a beam element is coupledwith
preconditioned Navier–Stokes solutions. First, the CR
beam analysis is validated through a comparison with
MSC.NASTRAN. The present results show good cor-
relations both in a static and time-transient analysis.
Next, validation of the present FSI framework is con-
ducted via a comparison with results obtained from
either a previous analysis or earlier experiments. The
present framework shows good agreement in this case,
with a maximum discrepancy value of 5.7%. Further,
a numerical analysis of a wing under the simultane-
ous pitching and plunging motion is conducted. An
improvement in aerodynamic efficiency is predicted
with a maximum increase of the wing thrust coefficient
of more than 52%. Such results are mainly caused by
the increased angle of attack induced by the pitching
motion. In detail, there exists a combined effect of the
LEV and TEV upon the wing under the simultaneous
pitching and plunging motion. Specifically, the flex-
ible wing under simultaneous pitching and plunging
motion shows the strongest vorticity. Such strong vor-
ticity is maintained around the tip due to both the pitch-
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ingmotion and elastic twist. Therefore, an aerodynamic
benefit can be expected when a moderate flexibility of
the wing and the simultaneous pitching and plunging
motion are present.However, there are some limitations
regarding the present analysis. The predicted physi-
cal phenomena can be different in the realistic flap-
ping wing. Because, the present analysis is conducted
under the wing with NACA0012 section. A realistic
flapping wing is not slender and consists of a vein and
wing membrane. Thus, the structural analysis will be
extended through the use of a nonlinear shell so that it
is capable of describing such a detailed configuration.
To realize this, a multi-body approach will be used to
analyze the wing components, simultaneously, i.e., the
vein as the beam element and themembrane as the shell
element.
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