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Abstract The analysis of whole engine rotordynamic
models is an important element in the design of aero-
jet engines. The models include gyroscopic effects
and allow for rubbing contact between rotor and sta-
tor components such as bladed discs and casing. Due
to the nonlinearities inherent to the system, bifurca-
tions in the frequency response may arise. Reliable and
efficient methods to determine the bifurcation points
and solution branches are required. For this purpose,
a multi-harmonic balance approach is presented that
allows a numerically efficient detection of bifurcation
points and the calculation of both continuous and iso-
lated branches of the frequency response functions. The
method is applied to a test case derived from a commer-
cial aeroengine. A bifurcation structure with continu-
ous and isolated solution branches is observed and stud-
ied in this paper. The comparison with time marching
based on simulations shows both accuracy and numer-
ical efficiency of the newly developed approach.
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1 Introduction

The necessity of improving fuel efficiency of aero-
engines generally requires a further decrease in clear-
ances between rotor and stator components. This unfor-
tunately increases the risk of contact and rubbing when
operational conditions yield a disbalance of the rotor.
While the design of the engine ensures well-behaved
dynamic response for normal operational conditions,
contact and rubbing need additional strategies to deal
with the dynamic response: the interaction between
rotor and stator components may generate a very com-
plex dynamical behaviour, and as already pointed out
by Sinha [1], aeroengine manufacturers have to deter-
mine the loads not only during the initial contact event
but also during any continued rotation of the rotor after
engine shutdown. An accurate and efficient numerical
tool is necessary for this due to the extremely high cost
and complexity of laboratory testing.

In this paper, we present an approach to determine
the vibration response for whole aeroengine rotordy-
namic models (WEM) in which contact and friction
interactions may take place. The goal of the study is
to devise a method that is numerically efficient, but
at the same time allows to unfold complex bifurcation
structures to a reasonable level of accuracy, including
imperfect bifurcations and isolated solution branches.

Many approaches are available to model nonlinear
rotordynamics similar to the one under investigation
here. The most common approaches are harmonic bal-
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ance and transient simulation. The first one allows to
quickly obtain periodic solutions, like for frequency
response of the system, while the second also allows
for analysis of more complex, e.g., irregular behaviour.
Several studies have been devoted to the rotordynam-
ics of systems for which contact between blades and
casing occurs. Petrov [2] proposed a model with rigid
blades. Aidanpaa [3] proposed a model where the blade
deflection is calculated by an equivalent beam deflec-
tion model and the casing is rigid. Sinha [4] devel-
oped a model for the analysis of a system composed of
blades attached to a rigid disc mounted on a shaft. His
approach was also used by Lesaffre [5] and extended
to a dual shaft by Gruin [6]. Parent [7] used the same
model to analyse the divergence and flutter of a whole
engine model with interaction in a bladed rotor-to-
stator contact. Choy and Padovan [8,9] studied the
transient response of the bladed rotor interaction with
a flexible casing.

An important aspect of modelling contact with fric-
tion, which we will sometimes call rubbing in the fol-
lowing, is the manner of dealing with the normal con-
tact itself. On the one hand, contact can be considered
numerically as a pure unilateral contact and solved
rigorously using Lagrangian multipliers [10]. On the
other hand, experimental results suggest that the inter-
action between the rotor and an abradable lining mate-
rial along the casing is more complicated and contact
compliance might play a role. Ahrens et al. [11] have
experimentally measured a contact normal stiffness.
Kascak and Tomko [12] compared different rub mod-
els, smearing rub and abradable rub. For small penetra-
tion, both models behave in the same way. They con-
cluded that both models had a threshold after which
they caused the rotor to proceed into backward whirl.
When the abradable model goes into backward whirl,
it can result in the model encountering an instability,
whereas the smearing model shows more benign behav-
iour. Following these results, the model implemented
in this study is based on a compliant contact, and a
contact normal stiffness is included. For simplicity, the
tangential forces occurring during contact are modelled
by a Coulomb friction model considering pure sliding.

In the present study, we restrict ourselves to deter-
mine the steady-state periodic response of the sys-
tem for periodic forcing. A harmonic balance method
(HBM) is employed. Due to its numerical efficiency,
this and derived methods can now be found more and
more often in various application domains. Several
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studies have been done on harmonic balance in rotor-
dynamics and rubbing modelling. Kim and Noah [13]
developed harmonic balance with an alternating fre-
quency/time (AFT) technique to obtain synchronous
and sub-harmonic whirling motions of a horizontal Jef-
fcott rotor with bearing clearances. They also studied
the stability of the steady-state motions using perturba-
tion equations. The Floquet multipliers of the associ-
ated monodromy matrix were determined using a dis-
crete HBM/AFT method. Quasi-periodic and chaotic
behaviour was also observed for their Jeffcott rotor
model. Peletan et al. [14] have studied the use of the
harmonic balance method for rub-impact problems.
They have also discussed advantages and limitations
of the method compared to time marching. They con-
cluded that HBM can predict the initiation of the quasi-
periodic partial rub regime, but the partial rub and back-
ward whirl and whip motions cannot be described by
HBM. Kim and Choi [15] have developed a multi-
ple harmonic balance method to obtain quasi-periodic
response of a horizontal Jeffcott rotor with a bearing
clearance.

In this paper, we focus on bifurcations and multi-
plicity of periodic solutions. Asynchronous vibration is
not considered since the analysis of the targeted whole
engine model has not shown any corresponding bifur-
cations, such as the Neimark—Sacker type. A similar
approach has, e.g., been followed by [16]. HBM has
also been applied to study cyclic symmetric systems
with geometric nonlinearities, and bifurcation struc-
tures have been observed and calculated [17,18]. Here
we follow and expand on these ideas and apply them to a
whole engine model as used in industry. It will be shown
that, due to symmetry breaking, many of the bifurca-
tions are imperfect in a weaker or stronger sense. This
spoils many traditional approaches to determine bifur-
cation points. A strategy is thus proposed to deal with
these imperfect bifurcations. The task is twofold: first,
the imperfect bifurcation has to be located in parameter
space, and second, detached branches, not continuously
linked to the originally followed branches, have to be
found. One might note that in fact the geometries of
aeroengines, due to manifold design needs, usually do
not show exact geometric symmetries. The problem of
locating imperfect bifurcations and detached, isolated
solution branches might thus be of substantial impor-
tance whenever the strength of the symmetry breaking
becomes marked.
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The paper is set up as follows: at first, the concept of
whole engine modelling, as understood in the commu-
nity, is described briefly, and the underlying assump-
tions are stated. Then, the harmonic balance method
and the contact models employed in the study are pre-
sented. Then, we show how the bifurcation analysis in
the context of imperfect bifurcations and detached, iso-
lated solution branches is conducted. An example based
on a whole engine model of an aeroengine illustrates
how the methods proposed may be applied. A detailed
analysis of the bifurcations is provided, and the results
obtained by HBM are compared to equivalent transient
simulations. Finally, conclusions are given.

2 Whole engine modelling and numerical solution
procedure

In this study, we are most interested in the motion of
the rotor centreline. The stator elements are considered
in a stationary coordinate frame, and centrifugal forces
and gyroscopic effects have to be included. Consider-
ing an aeroengine as an integral whole and discretising
the geometry through finite elements (FE) in a straight-
forward manner may easily result in a model of sev-
eral million of degrees of freedom when the complex
geometries involved are to be captured. To yield smaller
but still accurate enough models, the individual compo-
nents are represented by the finite element method and
component mode synthesis is used to reduce the size
of each component FE model. Assembling the reduced
models produces an overall whole engine model of the
order of a few thousands of degrees of freedom, which
can be computed by HBM.

The equation of motion for the reduced whole engine
model (WEM) with nonlinear contact interfaces has the
following form:

M]i + ([C] - [Gle)u
+ (K] = [Klg)u = p(t) —fo(u, ), ey

where u is the vector of generalised displacements of
the reduced model. [M], [C] and [K] are the matri-
ces of mass, damping and stiffness, respectively. [K] o
and [G], are the matrices of centrifugal stiffening and
gyroscopic effects. p(¢) is the vector of periodic exci-
tation forces, and f; is the vector of nonlinear forces
caused by the contacts between rotor and stator ele-
ments.

A periodic response of the system will be consid-
ered, with the response having the same frequency
as the excitation, w, which is given by the rotational
speed of the rotor, due to an arbitrary unbalance mass
p(t) = —mgis@?* cos(wt).

A truncated Fourier series is used to approximate
the generalised displacements,

nh
uit)y=0°+ Z U™ cos(mpot) + U™ sin(mywt),

n=1

@)

where U?, U™ and U™ are vectors of the coefficients
of the multi-harmonic representation, with m, denoting
the harmonics retained in the Fourier series, and nh
the truncation parameter. Inserting (2) into (1) leads
to a frequency domain formulation of the problem. In
frequency domain, the system can be reduced to the
nonlinear degrees of freedom [19], which again permits
to reduce the size of the system. The method is based on
a accurate calculation of the forced response function
matrix [A] (w) = [[A] + iw[C] — 0* [M]],

[A] (@) ~ [A]° + [A](w), )

where [;1] (w) is the modal synthesis of [A] truncated to
the mode Ny, and [A]O is the static correction to provide
the exact value of [A] at the frequency wg. The residual
of the nonlinear system at each frequency w reduced to
the nonlinear degrees of freedom for the jth harmonic
is:

R;(Q") = Q" — [Aly (m )P
— [Alytnt (m j)P}

+ [l (m0)F (™) = 0
j=1,...,nh. 4)

where R is the residual function for the jth harmonic,
0" is the vector of unknowns at the nonlinear nodes
(Fourier coefficients of the displacements), Plj and P‘}l
are the external forces applied to the linear and non-
linear nodes. The nonlinear forces Fy include con-
tact forces and gyroscopic effects. System (4) is solved
using a continuation method with the frequency w as
the continuation parameter, coupled with a Newton—
Raphson solver.

The implementation of the contact forces follows
[2]. A rotor in contact with a stator is considered. 0z is
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Fig. 1 Definition of the contact forces (normal and tangential)
for the rotor—stator contact model

the axis of the rotor. As presented in Fig. 1, the displace-
ments of the rotor and stator centrelines in the plane xy
are (u" (), ug, (¢)) and (u5.(2), ui (1)) so that the distance
between the rotor and the stator is u () = u" — u® + e,
where e is the eccentricity of the rotor. Contact occurs
when § = |lu|| — g is positive, where g defines the
clearance between the rotor and the stator. For a perfect
circular shapes, the clearance is defined by g = Ry— R;
with Ry and R; are the radius for the stator and for the
rotor, respectively. The contact forces f applied to the
rotor are decomposed into normal and tangential com-
ponents at the contact point,

f = fun+ fit, ®)

where n and ¢ are the normal and tangential vector at
the point where the contact occurs and are related to
the distance u by:

1 1 (—
nziz_[“"} and t=—[ “y]. (6)
llell  [lull [y llee|l | ux

The magnitude of the normal force f; is related to the
normal penetration § of the rotor into the stator. If a
Hertzian contact is considered, the relation is

fo = ked2. )

The tangential force is caused by friction. A Coulomb-
type sliding friction law is assumed, with the friction
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force oriented opposite to the sliding direction, and

ftzgﬂfna (8)

where u is the coefficient of friction and § = 1 isa
sign function, which depends on the rotor rotation and
whirl directions.

The expression of the contact forces in the absolute
frame is:

_ fx _ fn(‘s) 1 —é//L Uy
f(t)_[fy]_nu(r)n [SM 1 ”ul ©)

The torque M; due to contact interactions and
applied to the centreline of the structure is given by

Mr = Ry ft = §uRs fn(8). (10)

The expressions for the contact forces are not avail-
able as explicit analytic functions, so it is not possi-
ble to get explicit analytical expressions for the fre-
quency domain representations of the contact force. An
alternating frequency/time (AFT) procedure is used to
get the frequency domain representation of the contact
forces. The unknowns of the problem are the displace-
ment coefficients of the centre of the rotor and the stator
in the absolute frame. At each iteration of the nonlin-
ear solution process (explained subsequently), the har-
monic coefficients of the displacements are thus known
and permit to get the penetration § in time domain, using
inverse discrete Fourier transform. Once the forces f (¢)
and the torque M;(t) have been calculated, they are
projected into the frequency domain via DFT (discrete
Fourier transform) or FFT (fast Fourier transform). The
Newton nonlinear solver needs the Jacobian matrix,
which means that the derivatives [J"’ | of the harmonic
nonlinear forces F,,; with respect to the variables (dis-
placements and frequency) have to be calculated, which
is again achieved using the alternating frequency/time
procedure [20].

The system (4) is then solved and an arc-length con-
tinuation method is employed to avoid problems with
turning points. Solutions (Q, w) are parameterised by
the curvilinear parameter s defined by:

As = AQTAQ + Ao’ (11)

The size of the system is increased as w becomes
an unknown. A new equation has to be added. In this
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study, the pseudo-arc-length method is applied and the
nonlinear system to be solved is:

RQ". ") =0 (12a)
N(QF, oF, As) = grad* AY* — Ask =0, (12b)

where R is the residual function, N is the scalar function
defined by the pseudo-arc-length method, ¥ = (Q, )7
is the vector of unknowns and grad is the gradient of
R at the previously calculated point Y*~! defined by:

-1
grad = (_[D]QRI [D]“’R) (13)
where [D]g R is the Jacobian matrix of R and [D],, R
the gradient of R with regards to w.

A prediction—correction approach is used to build
the response curve. After convergence at one frequency,
anew pointis predicted using the gradient and corrected
solving the nonlinear system (12b). The corrector is
based on a Newton—Raphson approach which is used
together with a line search method, where the Newton
direction is defined as the solution of a linear algebraic
problem,

DR DR , it1 _ [-R(XY)
[DQN" Dle}AY =1_nar) | (14)

where i is the iteration of the Newton solver. This sys-
tem is not directly solved, but a block elimination tech-
nique is performed since the matrix in (14) is a bordered
matrix [21]. This technique permits to factorize only
the Jacobian matrix DR, which is require by the later
bifurcation analysis. In the code, a LU decomposition
of DgR is performed using the LAPACK routines. One
might note that the system (14) can be also solved using
an iterative method based on Arnoldi iteration [22,23],
which is, however, not followed here.

3 Analysis of singular points and of imperfect
bifurcations

Points on the frequency response function curve
obtained by the above-described continuation method
can be classified in regular and different types of sin-
gular points [22]:

— A regular point of R(X, w) = 0 is one for which
the implicit function theorem works: Ry # 0 or
R,R # 0. There is only one curve through the
point.

— A turning point corresponds to a singularity of the
Jacobian in which zero is a simple eigenvalue of
the Jacobian matrix Dy R and D,R ¢ Im(DxR).
The further properties mean that the dimension of
the kernel of DyR (with ¥ = (X, w)) is one.
This kernel is spanned by the eigenvector @p :
Ker(Dy R) = span[®1].

— A simple singular bifurcation point X, wy has
zero as a simple eigenvalue of DyR and D, €
Im(DxR). A simple bifurcation point is char-
acterised by a two-dimensional kernel of DyR,
where one dimension corresponds to the eigenvec-
tor @, = (vg, 1) and is solution of

DxRvy + Dy,R =0, (15)
under the transversal condition
(@*, DxxR®1®1)°
—(D*, Dxx R®1D,) (D", Dxx RO, P7) > 0.
(16)

Problem (12b) has exactly two different stationary
solution branches intersecting at X, wp.

— A Hopf bifurcation occurs when Dy R has exactly
one pair of eigenvalues +wg, wo > 0 on the imag-
inary axis.

During the construction of the response curve (fre-
quency response function in this case), singular points
can occur and the method must be able to deal with
them. In the case of a turning point, the continuation
method passes the singular point without any problem,
since merely a change of direction versus the frequency
parameter occurs.

When a simple singular point with a bifurcation
is present, continuation methods without special con-
sideration of it can experience convergence problems,
since the direction of the gradient before and after the
singular point may change. To overcome this issue, the
singular point is usually first detected and then calcu-
lated precisely, and finally, the individual bifurcating
branches arising are calculated. After this operation,
each branch emanating from the singular point can be
followed.

Different approaches exist to detect a simple bifur-
cation point during the continuation procedure [22].
Here we make use of an approach proposed by Allgo-
wer [24]. It is based on the sign of the cosine between
two consecutive gradients. If the cosine is negative,
i.e., the two gradients have opposite direction, a simple
bifurcation point exists.
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Fig. 2 Duffing system ii + 0.05: 4+ u + u3 = cos(wt) [16] with
a simple bifurcation point (a), and a modified duffing system
i +0.054 + u + u® + 0.0001u% = cos(wt) with imperfect
or perturbed bifurcations, leading to isolated solutions for the
perturbed case (b). (Color figure online)

To calculate the singular points precisely, a num-
ber of approaches have been developped [21,22,24].
Unfortunately, they cannot be applied directly to our
problem, since the number of degrees of freedom is still
too large to allow for efficient numerical implementa-
tion of them [22]. Instead, we developed the following
approximate approach, which consists of four steps:

1. Approximation of the bifurcation point. Once a
simple bifurcation has been detected, the bifurca-
tion point is approximated using the secant method
to find the root of the determinant H (X, w) =
DxR.

2. The vectors (@1, @) which span the null space
(kernel) of H(Xp, wp) are approximated, by cal-
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culating the two first eigenvectors of H (Xj, wp)*
H(Xp, wp). The size of this matrix is (ney + 1) *
(neq + 1). The span vector ¥ of the kernel of
the adjoint gradient H (Xp, wp)* is approximated
calculating the first eigenvector of H (X, wp)
H(Xp, wp)*, Wwhose size is neg * neg

. The algebraic bifurcation equation (ABE) defined

by the following expression [22],

<¢>*, Dny”d>1d51> o?

C11

+2<¢*, Dnyb<1§1q)2>ozﬂ

12

+ (0%, Dyy K" ®202) 7 = 0, (17)

€22

is approximated using (@1, @2), ¥ and anumerical
calculation of the coefficients:

Cij = <£, H(Pi, &)) i,j=12. (18)

A numerical finite difference method is used to
approximate the second derivative

9;0;8(0,0) = H(®i, P))
where g is defined by:
g, p) = @"H(¥) +a® + P2). 19)

The following difference formulae are used:
8(e,0) —2g(0,0) + g(—¢,0)

972(0,0) = = ,
(0, €) —2g(0,0) + g(0, —¢)
835(0,0)= 2 R ,
01028(0, 0)
_8le ) g€ —6) — g6, =€) —g(=€, ©)
4¢2 ’
02018(0,0) = 9,9,g(0, 0). (20)

The mesh size € can be chosen to be on the order
of the cubic root of relative machine precision. The
algebraic bifurcation equation (17) is solved and
gives the coefficients «;, 8; i =1, 2.

. Finally, the tangents 71 and 1 are approximated

using these coefficients (r; = 1P| + B1 P2 and
2 = @1 + B2 ®2).
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This continuation strategy works very well with
proper bifurcations. Figure 2a shows as an example
the application of the approach to a Duffing oscilla-
tor, as studied, e.g., in [16]. For a symmetric restoring
forces, a bifurcation occurs at a frequency of about 0.69
Hz. Our approach succeeded in following the solution
branches. When the symmetry of the restoring forces
is broken by adding a quadratic term with a small coef-
ficient (10_4), a perturbed, or imperfect, bifurcation
results, see Fig. 2b. In that case, there are no cross-
ing solution branches any more, and one can also not
speak any more about a clear bifurcation point. Still,
however, the resulting solution branches can be fol-
lowed continuously, with one of the branches (branch
2) being isolated from the main branch (branch 1).

From a path-following perspective, perturbing a sys-
tem can be a way to deal with symmetry breaking bifur-
cations. Allgower calls this approach a branch switch-
ing by perturbation [24]. In the systems, we are looking
at, imperfect bifurcations, indicating a lack of symme-
tries, do seem to be inherent to the nature of the system,
however. We will see in the numerical application to a

whole engine model with several rubbing elements that
small even terms of the nonlinear forces often exist and
create perturbated, imperfect bifurcation.

With the above-described continuation technique,
such imperfect bifurcations neither can be detected,
nor can the isolated branches be detected or followed.
This can lead to miss a whole solution branches. More-
over, in the numerical continuation scheme, there is

1 2 3

Fig. 4 Simplified centreline whole engine model with rubbing
elements in red dots. (Color figure online)

Step i

i

Predictor
Xpre = X1 + AsT?

v

Corrector
Solve F(X',w") = 0 + arc-length equation

/\ #s
As

QS(TI', 1) cwry
\ =

- cStep
y_yes

T

no Calculate bifurcation point with secant
method
Solve det([J(wpi)]) =0

Check turning point
det[J'] = det[J"'] <0

New gradient
Step i+1

/\

Qonvm gence

perturbed bifurcation

Calculate tangents to
bifurcation point —
(solve ABE)

Fig. 3 Flow chart of the strategy implemented in the continuation method to deal with imperfect bifurcations
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Fig. 5 Frequency response of the rotor. (Color figure online)

the risk of entering and being trapped in an isolated
branch, which prevents building the complete fre-
quency response function. A numerical strategy was
therefore designed to deal with perturbated, imperfect
bifurcations and their resulting isolated branches within
continuation.

When approaching an imperfect bifurcation during
continuation, first the test on the cosine functions sug-
gests the presence of a bifurcation. If the secant method
to find the bifurcation point does not converge, it means
that the bifurcation is perturbated. To determine the
solutions branches, the approaches to calculate the con-
tinuous branch and to calculate the isolated branches

Fig. 6 Frequency response g x10

differ. In order not to enter in the isolated branch in
following the continuous branch, simply the step size
As of the continuation is reduced and a flag is switched
on. The flag permits to cancel the attempt to calculate a
bifurcation point when the sign of the cosine between
two following gradients is negative. The continuous or
main branch is therefore the straightforward part in the
technique: on the main branch, the step size As has
plainly to be reduced to smoothly stay on the branch
and overpass the imperfect bifurcation.

To determine the isolated solutions, we exploit our
knowledge on the existence of these other solutions.
When the proximity of an imperfect bifurcation is
detected as described above, the tangent at the calcu-
lated point which is in the isolated branch is saved in a
file. The saved point and the tangent are used to restart
the calculation and build the isolated branch. In the
vicinity of the imperfect bifurcation, this approach was
always sufficient to obtain convergence onto the iso-
lated branch, which can then be continued again.

A flow chart of the proposed modified continua-
tion method for the capture of imperfect bifurcations is
shown in Fig. 3.

To check stability of the periodic solutions, a num-
ber of different techniques are already implemented
in the available tool set and have been applied: sign
of the Jacobian determinant, Floquet analysis, Hill’s
criteria [16,25] and calculation of the monodromy
matrix [26]. Since the techniques are all well known
[27], we will not present them here. Whenever in the

of transversal force (y axis)
for the second rubbing
element. (Color figure
online)

6 bifurcation 1

y—Force
o

bifurcation 2
af Z

bifurcation 6
bifurcation 5
bifurcation 4 22

bifurcation 3

0 0.05 0.1
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Fig.7 Maximum and minimum radial displacement during one vibration cycle versus frequency. Static gap values are indicated in red.
a Rubbing element 1, b rubbing element 2, ¢ rubbing element 3, d rubbing element 4. (Color figure online)

following an indication on the stability of solutions is
given, appropriate calculations on stability character-
istics have been conducted to demonstrate either linear
stability or instability.

4 Bifurcation analysis for an example system

The rotor—stator contact elements and solution meth-
ods described above have been implemented in the
FORTRAN 90-based computer code package FORSE
developed at Imperial College London. The model sub-
jected to the analysis is an idealisation of a three shaft
aeroengine with four rubbing elements, see Fig. 4.

The model consists of 1311 degrees of freedom after
component mode synthesis. It was further reduced in
the frequency domain to 28 degrees of freedom tak-
ing the contact into account in the rubbing elements
(4 % 3 x 2dofs) and gyroscopic effects (4 dofs) into
account. The coefficient of friction is set to 0.1 for the
four rubbing elements. The rotating system is excited
by an unbalance mass at fixed eccentricity. All the
resulting values (displacements, frequency, forces ...)
in this study have been normalised to a fixed but arbi-
trary value. Different values of truncation parameters
for the Fourier series terms selected have been tested in
the calculations, and from the results eleven harmonics
have turned out to yield satisfactory results, resulting in
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Fig.8 Map of the contact conditions during one cycle versus frequency. Black colour indicates contact, a rubbing element 1, b rubbing

element 2, ¢ rubbing element 3, d rubbing element 4

a good compromise between accuracy and simulation
time.

Later on, we will show and discuss only results with
full implementation of rubbing elements with corre-
sponding normal contact force and tangential friction
force models. The response functions have been cal-
culated for a system without any rubbing elements
and with rubbing elements. Corresponding frequency
response functions for the centreline node of the fan are
depicted in Fig. 5. Most clearly, once contacts occur in
the rubbing elements, the shape of the response curve
of the strongly nonlinear system strongly differs from
the results without rubbing elements.

Figure 6 depicts a resulting force response of the
second contact element. The maximum (continuous
line) and minimum (dashed line) of the force during
one cycle are shown versus the frequency of excita-
tion. For the bifurcated branches, only the maximum

@ Springer

response values are drawn for clarity. In the considered
frequency range, six bifurcations are present where five
of them are imperfect. They have been numbered in
ascending order with respect to their appearances in
frequency.

Figure 7 shows the maximum and minimum dis-
placement of the centreline of the rotor at each rub-
bing element versus frequency. The initial gap values
between the rotor and the stator are also shown to give
an impression when contact occurs at the respective
contact element. Note, however, that due to the com-
pliance of the structure, contact does not necessarily
coincide with displacements of this original gap value.
Nevertheless, it can be seen that contact element 2
is the first to come into contact when the frequency
increases.

Figure 8 shows the contact conditions during a vibra-
tion cycle (wt) for the four rubbing elements over fre-
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Fig. 9 Bifurcation 1-6. Symmetry breaking during the bifurcations, a bifurcation 1, b bifurcation 2, ¢ bifurcation 3, d bifurcation 4, e

bifurcation 5, f bifurcation 6. (Color figure online)

quency. The maps are plotted for the main branch solu-
tions only, since the bifurcated branches do not show
significantly different behaviour. The second rubbing
element (Fig. 8b), which is the first to come in contact,
as already been seen before. It has an intermittent con-
tact at first, but then, the contact becomes permanent
over the whole cycle for higher frequencies. The first
contact element shows a very similar behaviour. The
last two rubbing elements have a more complicated
map with several clusters of intermittent contacts.

We are now coming back to a fuller discussion of
the characteristics of the six bifurcations that were
detected. Figure 9 shows the bifurcation structures of
all six bifurcations. As pointed out already, bifurcation
number one (9a) is a simple perfect bifurcation, while
bifurcations two to six are all imperfect to a lesser or
stronger extent. In particular, bifurcations three to six
demonstrate a remarkably complex structure. In all of
the imperfect bifurcations, except for the sixth, isolated
solution branches arise. Only the last bifurcation cre-
ates a continuous curve, with all the branches joining
into one single curve.

Figure 10 shows for bifurcations 1 and 4 how the
contact forces behave. While for bifurcation 1 the solu-

tions of the new branch differ only by a temporal phase
shift of half a period and are apart from that identi-
cal, for bifurcation 4 the two new branches are actually
distinct ones.

The bifurcations at higher forcing frequencies are
all imperfect. To determine the solutions, the continua-
tion strategy presented above was successfully applied.
Interestingly, the imperfect bifurcations are all related
to a symmetry breaking. For example, there is the
appearance of non-vanishing mean displacements. In
frequency domain, this means that the Oth harmonic,
and in consequence also higher-order even harmonics,
does not vanish any more. This is shown in Fig. 11.
Obviously, this effect has substantial implications for
the amplitude of the resulting forces.

For completeness, Fig. 12 shows two orbit plots for
the centreline displacements. Two characteristic fre-
quencies for bifurcations number five and six, 0.30 and
0.3725, have been selected. It can be seen that bifur-
cation number five leads to orbits with a mirror-plane
symmetry, while the orbits resulting from bifurcation
number six do not show this symmetry in the solution.

For verification of our approach, the results of the
frequency domain analysis have been compared to time
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Fig. 11 Mean or Oth harmonic displacement of the fourth
contact element versus frequency. (Color figure online)

domain simulation [28]. Figure 13 shows the excellent
agreement between the two approaches. Some minor
differences are observed in the zone of the sixth bifur-
cation due to the fact that not enough cycles were cal-
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ity of solutions. The bifurcated branches differ by a half-period
phase shift only. ¢ After the high-frequency bifurcation point.
d Contact force versus angular position, e contact force versus
angular position, d contact force versus angular position. (Color
figure online)

culated in the transient simulation to reach the steady
state.

Figure 14 shows that in the time domain simulation,
where the forcing frequency is slowly, ideally adiabati-
cally changed, one bifurcated branch is obtained during
acceleration of the rotor, while the other one is reached
during deceleration. Overall it turns out that the bifur-
cated branches calculated by HBM are excellently ver-
ified by means of the transient simulations.

5 Summary and conclusion

A method has been demonstrated to calculate the
frequency response functions of a whole aeroengine
model based on harmonic balance method. A new
strategy has been presented to detect and trace sim-
ple bifurcations and imperfect bifurcation with isolated
branches. The new approach has allowed us to study the
frequency response behaviour of an idealised whole
engine model of a commercial aeroengine. The differ-
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ent bifurcations occurring in the frequency response
have been studied. The presence of several contact
elements in the model leads to a comparatively com-
plex bifurcation sequence in the dynamics response.
The new method permits to build the full frequency
response, while it is not possible with usual bifurca-
tion analysis as the continuation algorithm enters in
an isolated loop. The findings have been compared to
the outcome of a time marching simulation, and excel-
lent agreement was observed. The harmonic balance
method permits to get the response in several minutes
when almost day computation is necessary with time
domain integration.

The method was tested on a system containing 4
rubbing elements and 11 retained harmonics for the
simulation which is already a large system compared
to similar studies. It is possible that the method will
have difficulty with very large system containing a lot
of rubbing elements. The value of the determinant will
increase exponentially with the number of rubbing ele-
ments. Every time arubbing element is added, the deter-
minant is more or less multiplied by the contact stiffness
of the added rubbing element. In order to overcome
this issue, the system of equation has to be rescaled,
but it can be a difficult task for an industrial model. If
the isolated branches are too much separated from the
main branch, the continuation method would not detect
them. The proposed method was not designed to find
all possible solutions but to be able to build frequency
response in the presence of imperfect bifurcations.

Future work will comprise the implementation of a
bladed rotor-to-stator contact model, which will allow
to see the effects of rubbing on the dynamics of indi-
vidual blades.
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