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Abstract The nonlocal symmetries for the (2 + 1)-
dimensional Konopelchenko–Dubrovsky equation are
obtained with the truncated Painlevé method and the
Möbious (conformal) invariant form. The nonlocal
symmetries are localized to the Lie point symmetries
by introducing auxiliary dependent variables. Thefinite
symmetry transformations are obtained by solving the
initial value problem of the prolonged systems. The
multi-solitary wave solution is presented with the finite
symmetry transformations of a trivial solution. In the
meanwhile, symmetry reductions in the enlarged sys-
tems are studied by the Lie point symmetry approach.
Many explicit interaction solutions between solitons
and cnoidal periodic waves are discussed both in ana-
lytical and in graphical ways.
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1 Introduction

The local symmetries include Lie point symmetries,
contact symmetries and more generally Lie–Bäcklund
symmetries [1]. The local symmetries study is con-
sidered to be one of most effective methods for find-
ing invariant solutions [2,3]. To obtain new solutions
of partial differential equations (PDEs) that are not
obtainable through the local symmetry approach, sev-
eral extensions to local symmetry methods have been
proposed [4–7]. The nonlocal symmetries study is thus
attracted lots of attention. The nonlocal symmetries can
be obtained by algorithmic approach, inverse recursion
operators, Möbious (conformal) invariant form, Dar-
boux transformation, Bäcklund transformation (BT),
nonlinearizations, self-consistent sources, etc. [4–18].

In this paper, we shall study the nonlocal symmetries
of (2 + 1)-dimensional Konopelchenko–Dubrovsky
(KD) equation and their applications. The nonlocal
symmetries for the KD equation are obtained by the
truncated Painlevé expansion and the Möbious (con-
formal) invariant form. By introducing two dependent
variables, one can transform nonlocal symmetries into
Lie point symmetries by extendingoriginal system.The
finite symmetry transformation and similarity reduc-
tions are studied in the enlarged system. Many explicit
soliton–cnoidal wave solutions are found for the KD
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equation. Those solutions cannot be obtained within
the framework of the direct Lie’s symmetry approach.

Thepaper is organized as follows: InSect. 2, the non-
local symmetries for theKD equation are obtainedwith
the truncated Painlevé method and the Möbious (con-
formal) invariant form. To solve the initial value prob-
lem related by the nonlocal symmetries, the nonlocal
symmetries are localized by prolongation theKD equa-
tion. The finite symmetry transformations are obtained
by solving the initial value problem of the Lie’s first
principle. The multi-solitary wave solution of the KD
equation is obtained using the finite symmetry trans-
formations. In Sect. 3, the symmetry reductions for
the extended systems are considered according to the
Lie point symmetry theory. The corresponding explicit
interaction solutions among one soliton and cnoidal
waves are given. The last section is a simple summary
and discussion.

2 Nonlocal symmetries and multi-solitary wave for
KD equation

The (2 + 1)-dimensional Konopelchenko–Dubrovsky
(KD) equation reads [19]

ut − uxxx − 3wy + 3

2
α2u2ux + 3αuxw − 6βuux = 0,

(1a)

uy = wx , (1b)

where α and β are arbitrary constants. (1) is solv-
able by inverse scattering transformation [20]. Vari-
ous methods for obtaining exact solution to the KD
equation have been proposed [21–24]. The full symme-
try group is studied by the general direct method and
the formal function series method [25,26]. Recently,
the interactions between solitons and cnoidal periodic
waves are found by the consistent Riccati/tanh expan-
sion (CRE/CTE) methods [27,28]. Here, we give the
nonlocal symmetries by the truncated Painlevé method
and theMöbious (conformal) invariant form. The sym-
metry reductions related to nonlocal symmetries will
be discussed in the next section.

Based on the truncated Painlevé analysis of the KD
equation, the Laurent series form is [29]

u = u0
φ

+ u1, w = w0

φ
+ w1, (2)

where the function φ(x, y, t) = 0 is the equation of
singularity manifold; the functions u0, u1, w0 and w1

are determined by substituting of expansion (2) into (1)
and vanishing all coefficients of each power of φ inde-
pendently. Comparing the coefficients of (φ−4, φ−2),
we get

u0 = − 2

α
φx , w0 = − 2

α
φy . (3)

We proceed further and collect the coefficients of
(φ−3, φ−1) to get

u1 = 1

α

(
−φxx

φx
− φy

φx
+ 2β

α

)
,

w1 = 1

α

(
− φt

3φx
− φxy

φx
+ φxxx

3φx
+ φ2

y

2φ2
x

− φ2
xx

2φ2
x

+ 2β2

α2

)
.

(4)

Substituting the expressions (2), (3) and (4) into (1),
the field φ satisfies the following Schwarzian KD form

( φt

φx

)
x

− ∂

∂x
{φ; x} − 3

(φy

φx

)
y
− 3

2

(φ2
y

φ2
x

)
x

= 0, (5)

where {φ; x} = ∂
∂x

(
φxx
φx

)
− 1

2

(
φxx
φx

)2
is the Schwarzian

derivative.
According to the definition of residual symmetries

(RS) [16], the nonlocal symmetries of the KD equation
(1) can read out from the truncated Painlevé analysis
(2)

σ u = − 2

α
φx , σw = − 2

α
φy . (6)

This nonlocal symmetries can also be obtained from
the Schwarzian form (5) [30]. The Schwarzian form
(5) is invariant under the Möbious transformation

φ → aφ + b

cφ + d
, ac �= bd, (7)

which means (5) possesses the symmetry σφ = φ2 in
special case a = d = 1, b = 0, c = −ε. The nonlo-
cal symmetries (6) will be obtained with substituting
the Möbious transformation symmetry σφ into the lin-
earized equation of (4).

For the nonlocal symmetries (6), the corresponding
initial value problem is

du
dε = − 2

α
φx , u|ε=0 = u,

dw
dε = − 2

α
φy, w|ε=0 = w. (8)

It is difficult to solve the initial value problem of the
Lie’s first principle (8) due to the intrusion of the func-
tion φ and its differentiations [16]. To solve the ini-
tial value problem (8), one can localize the nonlocal
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symmetries to the local Lie point symmetries for the
prolonged system. We introduce the potential fields to
eliminate the space derivatives of field φ

φx = g, (9)

φy = h. (10)

It is easily verified that the Lie point symmetries for the
prolonged systems (1), (4), (9) and (10) have the form

σ u = − 2

α
g, σw = − 2

α
h, σφ = φ2,

σ g = 2φg, σ h = 2φh. (11)

The initial value problem is correspondingly trans-
formed

du

dε
= − 2

α
g, u|ε=0 = u,

dw

dε
= − 2

α
h, w|ε=0 = w,

dφ

dε
= φ2, φ|ε=0 = φ, (12)

dg

dε
= 2φg, g|ε=0 = g,

dh

dε
= 2φh, h|ε=0 = h.

By solving the above the initial value problem (12) for
the enlarged KD systems (1), (4), (9) and (10), we get
the BT theorem. BT can construct new solutions from
known ones [31,32].

Theorem If u, w, φ, g, h are solution of the enlarged
KD systems (1), (4), (9) and (10), then u, w, φ, g, h are
also solution of the enlarged KD systems

u = u + 2εg

α(εφ − 1)
, w = w + 2εh

α(εφ − 1)
,

φ = φ

1 − εφ
, g = g

(1 − εφ)2
, h = h

(1 − εφ)2
.

(13)

where ε is an arbitrary group parameter.
Using the finite symmetry transformations (13), one

can obtain a new solution from any initial solution.
For example, the multi-solitary wave solution for (5) is
supposed as [33]

φ = 1 +
N∑

n=1

exp(knx + ln y + ωnt), (14)

where kn, ln and ωn are arbitrary constants. The multi-
solitary wave solution (14) is the solution of (5) only
with the relations

ln = kn(k21 − k1kn + l1)

k1
,

ωn = kn(2k31 − 6k21kn + 4k1k2n + 6k1l1 − 6knl1ω1)

k1
.

(15)

Substituting (14) into (4), we get the trivial solution of
(1)

u = 2β

α2 − k1
α

− l1
αk1

, (16a)

w = 2β2

α3 + l21
2αk21

− k21
6α

− l1
α

− ω1

3αk1
. (16b)

By using the finite symmetry transformations (13), a
solution of Eq. (1) presents in the following form

u = 2β

α2 − k1
α

− l1
αk1

+
∑N

n=1 2εkn exp(knx + ln y + ωnt)

−1 + ε + α
∑N

n=1 ε exp(knx + ln y + ωnt)
,

(17a)

w = 2β2

α3

+ l21
2αk21

− k21
6α

− l1
α

− ω1

3αk1

+
∑N

n=1 2εln exp(knx + ln y + ωnt)

−1 + ε + α
∑N

n=1 ε exp(knx + ln y + ωnt)
.

(17b)

It means that a nontrivial solution (17) is obtained from
a trivial solution (16) by using the finite symmetry
transformations (13). Figure 1 shows the wave solu-
tion of the potential function M = uy = wx with the
parameters n = 3, ε = − 1

2 , k1 = 1, k2 = −1, k3 =
1
2 , l1 = −1, ω1 = −2, α = 1, β = 1.

3 Similarity reductions related to nonlocal
symmetries

By introducing the potential fields (9) and (10), the non-
local symmetries become the usual local symmetries
in the prolonged systems. We can thus use the sym-
metry reduction related to the nonlocal symmetries to
study the prolonged systems. These symmetry reduc-
tion solutions cannot be obtained within the framework
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Fig. 1 Wave solution for the potential function M = uy = wx

with the parameters n = 3, ε = − 1
2 , k1 = 1, k2 = −1, k3 =

1
2 , l1 = −1, ω1 = −2, α = 1, β = 1 and x = 0

of the direct Lie’s symmetry method. The Lie point
symmetries σ k (k = u, w, φ, g, h) for the prolonged
systems are the solutions of the linearized prolonged
systems (1) (4), (9) and (10)

σ u
t − σ u

xxx − 3σw
y + 3

2
α2(u2σ u)x + 3ασ u

xw

+ 3ασwux − 6β(uσ u)x = 0, (18a)

σ u
y − σw

x = 0, (18b)

σ u + 1

α

(σ
φ
y

φx
+ σ

φ
xx

φx
− σ

φ
xφy

φ2
x

− σ
φ
xφxx

φ2
x

)
= 0, (18c)

σw + σ
φ
t + 3σφ

xy − σ
φ
xxx

3αφx
− σ

φ
xφt

3αφ2
x

− σ
φ
yφy

αφ2
x

− σ
φ
xφxy

αφ2
x

+ σ
φ
xφxxx

3αφ2
x

+ σ
φ
xxφxx

αφ2
x

+ σ
φ
xφ

2
y − σ

φ
xφ

2
xx

αφ3
x

= 0,(18d)

σφ
x − σ g = 0, (18e)

σφ
y − σ h = 0. (18f)

The symmetry components σ k (k = u, w, φ, g, h) are
supposed to have the forms

σ u = Xux + Yuy + Tut −U,

σw = Xwx + Ywy + Twt − W,

σφ = Xφx + Yφy + Tφt − Φ, (19)

σ g = Xgx + Ygy + Tgt − G,

σ h = Xhx + Yhy + Tht − H,

where X,Y, T,U,W, Φ,G, H are functions of x, t, u,

w, φ, g, h. From the implication of (19), the prolong
systems are invariant under transformations

u → u + εσ u, w → w + εσw,

φ → φ + εσφ, g → g + εσ g, h → h + εσ h,

(20)

with the infinitesimal parameter ε.
Substituting (19) into the symmetry equations (18)

and requiring u, w, φ, g, h to satisfy the prolonged sys-
tems, the overdetermined equations are obtained with
collecting the coefficients of u, w, φ, g, h and its deriv-
atives. The infinitesimals X , Y , T , U , W , Φ, G and H
are given by solving the overdetermined equations

X = 1

3
f1t x + 1

6
f2t y + 1

18
f1t t y

2 + f3,

Y = 2

3
f1t y + f2, T = f1 + C4, Φ = C3α

2
φ2 + C2φ − C1,

G = C3αφg + C2g − 1

3
f1t g,

H = C3αφh + C2h − 1

6
f2t g − 1

9
f1t t gy,

W = −2

3
f1tw − 1

6
f2t u − 1

9
f1t t yu − C3h

+ 1

9α
f1t t x + 1

54α
f1t t t y

2 + 1

18α
f2t t y + 2β

9α2 f1t t y

+ 1

3α
f3t + β

3α2 f2t + 4β2

3α3 f1t ,

U = −1

3
f1t u − C3g + 1

9α
f1t t y + 1

6α
f2t + 2β

3α2 f1t , (21)

where f1, f2 and f3 are arbitrary functions of t ,
C1,C2,C3 and C4 are arbitrary constants. The cor-
responding group invariant solutions can be obtained
with the symmetry constraint condition σ k = 0 defined
by (19). It is equivalent to solve the following charac-
teristic equations

dx

X
= dy

Y
= dt

T
= du

U
= dw

W
= dφ

Φ
= dg

G
= dh

H
.

(22)

To solve the characteristic equations, two special cases
are listed in the following.
Case I In this case f1 = 0, without loss of generality,
we rewrite the arbitrary functions f2 and f3 as

f2 = C4m1t , f3 = m2t , (23)

where m1 and m2 being arbitrary functions of t . The
similarity solutions are after solving out the character-
istic equations (22)

φ = − Δ

C3α
tanh

(
Δ

2C4
(t + Φ)

)
− C2

C3α
,

Δ =
√
2C1C3α + C2

2 , (24a)
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g = − G

cosh2
(

Δ
2C4

(t + Φ)
) , (24b)

h = − exp (− 2 f1
3C4

)

cosh2
(

Δ
2C4

(t + Φ)
) H

+ exp (− 2 f1
3C4

)G

18C4 cosh2
(

Δ
2C4

(t + Φ)
)

×
∫

exp(
2 f1
3C4

)(2 f1t t y + 3C4m1t t )dt, (24c)

u = U + 2C3

Δ
G tanh

(
Δ

2C4
(t + Φ)

)
+ m1t

6α
, (24d)

w = W − 1

6
m1tU − C3

3Δ
m1t G tanh

(
Δ

2C4
(t + Φ)

)

− C3

6C4
G

∫
m1t

cosh2
(

Δ
2C4

(t + Φ)
)dt

+ C3

9C2
4

G
∫ exp (− 2 f1

3C4
)
∫
exp( 2 f1

3C4
)(2 f1t t y+3C4m1t t )dt

cosh2
(

Δ
2C4

(t+Φ)
) dt

− 2C3

C4
H

∫ exp(− 2 f1
3C4

)

cosh2
(

Δ
2C4

(t + Φ)
)dt

− 1

72α
m2

1t + 1

18α
m1t t y + β

3α2m1t + m2t

3C4α
, (24e)

where the similarity variables ξ = x − 1
6m1t y − m2

C4
,

η = y − m1 and the group invariant functions Φ =
Φ(ξ, η), G = G(ξ, η), H = H(ξ, η), U = U (ξ, η)

and W = W (ξ, η). Substituting (24) into (9), (10), (4)
and (5), the invariant functions G, H , U , W and Φ

satisfy the reduction systems

G = Δ2

2C3C4α
Φξ , (25a)

H = Δ2

2C3C4α
exp

(
2 f1
3C4

)
Φη

+ Δ2

36C3C2
4α

(∫
exp

(
2 f1
3C4

)
(2y f1t t

+ 3C4m1t t ) dt − 3C4m1t exp

(
2 f1
3C4

))
Φξ , (25b)

U = −Φη + Φξξ

αΦξ

+ 2β

α2 , (25c)

W = − Δ

C4α
Φη tanh

(
Δ

2C4
(t + Φ)

)
− Δ2

6C2
4α

Φ2
ξ − 1

3αΦξ

− Φξη

αΦξ

+ Φξξξ

3αΦξ

+ Φ2
η

2αΦ2
ξ

− Φ2
ξξ

2αΦ2
ξ

+ Δ2

12C2
4α

Φξ

∫
m1t

cosh2
(

Δ
2C4

(t + Φ)
)dt + 1

36α
m2

1t +
2β2

α3 ,

(25d)

Δ2

C2
4

ΦξξΦ
4
ξ − Φ2

ξ Φξξξξ − 3ΦηηΦ
2
ξ

+ 4ΦξΦξξΦξξξ − 3Φ3
ξξ + 3ΦξξΦ

2
η − ΦξΦξξ = 0.

(25e)

It is obvious that once the solutions Φ are solved out
with (25e), the fields for G, H ,U andW can be solved
out directly from (25a)–(25d). The explicit solutions
for KD equation (1) are immediately obtained by sub-
stituting Φ, G, H , U and W into (24).

The special soliton–cnoidal wave interaction solu-
tion for the reduction equation (25e) is

Φ = k1ξ + l1η + a1Eπ (sn(kξ + lη,m), n,m), (26)

where k1, l1, a1, k, l, n and m are constants and Eπ

is the third incomplete elliptic integrals. Substituting
(26) into (25e), vanishing all the coefficients of dif-
ferent powers of sn leads to the nontrivial solution for
constants

Δ2 = 4k2(1 − n)(m2 − n)

nk21
C2
4 , a1 = k1

k
,

l = 4k2k1(12m2n − 20m2 − 7n2 + 12n) + n

12k1
√
2n(2 − n)(2m2 − n)

,

l1 = k1l

4k
+ 1

4k1n√
4k31n

2+k41(192k2m2n+16n3k2−64k2n2−64k2n2m2+9n2l2

k2
).

(27)

The solution u for (1) can be explicitly expressed by
Jacobi elliptic functions

u = Δk1(nS2 − 2)

C4α(nS2 − 1)
T +

(
C4kn

2(αk1m1t − 6αl1 + 12βk1)S
4

− 3nC4(αkk1m1t − 4αkl1 + 12βkk1)S
2

− 12αC4k1k
2nSCD + 2C4αm1t kk1 − 3αkl1 − 3αlk1

+ 12βk1k
)/(

kk1C4α
2(n2S4 − 3nS2 + 2)

)
(28)

where S = sn(kx+ly− 1
6km1t y−lm1t− km2

C4
,m), C =

cn(kx + ly − 1
6km1t y − lm1t − km2

C4
,m), D =

dn(kx + ly − 1
6km1t y − lm1t − km2

C4
,m), T =

tanh

(
Δ
2C4

t + k1Δ
2C4

x + 6Δl1−k1�m1t
12C4

y − Δl1m1
2C4

− �k1m2
2C2

4

+ k1Δ
2C4k

Eπ (S, n,m)
)
, and the constantsΔ, l and l1 sat-

isfy (27). The explicit solution (28) for theKD equation
denotes the interaction between a soliton and cnoidal
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Fig. 2 Plot of one kink soliton in the periodic wave background
expressed by (28). The parameters are m = 0.9, n = 0.5, k1 =
−2, k = 1, C4 = 1, α = 1, β = 1, m1 = t, m2 = t . a The

wave propagation pattern of the wave along t axis at x = 0 and
y = 0. b One-dimensional image at t = 0 and x = 0. c The
three-dimensional view at time x = 0
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Fig. 3 Plot of second type of one kink soliton in the quasiperi-
odic wave background expressed by (28). The parameters are
m = 0.9, n = 0.5, k1 = −2, k = 1, C4 = 1, α = 1, β =
1, m1 = cos(t), m2 = t . a The wave propagation pattern of the

wave along t axis at x = 0 and y = 0. b The three-dimensional
view at time x = 0. c The density plot of the corresponding
solution at time x = 0
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Fig. 4 Plot of third type of special soliton–cnoidal wave inter-
action solution by (28). The parameters are m = 0.9, n =
0.5, k1 = −2, k = 1, C4 = 1, α = 1, β = 1, m1 = t, m2 =

t2. a The wave propagation pattern of the wave along t axis at
x = 0 and y = 0. b The three-dimensional view at time x = 0.
c The density plot of the corresponding solution at time x = 0

periodic waves. We can get many new types of interac-
tion solutions because of the existence of the arbitrary
functions m1 and m2 in (28). Figure 2 exhibits one
kink soliton in the periodicwave background expressed
by (28). Figure 3 exhibits the second type of spe-
cial interaction solution between one kink soliton and
the quasiperiodic wave by (28). Figure 4 exhibits the
third type of special soliton–cnoidal wave structure by

(28). For Figs. 2, 3 and 4, the arbitrary constants are
m = 0.9, n = 0.5, k1 = −2, k = 1, C4 = 1, α =
1, β = 1. The arbitrary functions m1 and m2 are
selected m1 = t, m2 = t ; m1 = cos(t), m2 = t ;
m1 = t, m2 = t2, respectively. For the density of
Figs. 3c and 4c, the bright part is crest and the dark
part is trough.By selectingdifferent arbitrary functions,
one kink soliton–cnoidal periodic wave becomes one
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soliton–cnoidal periodic wave solution from Figs. 2a
and 4a. The interaction behaviors are thus differentwith
selecting different arbitrary functions. These types of
interaction solutions in Figs. 3 and 4 cannot be obtained
by CRE/ CTE methods.
Case II f1 = f2 = C4 = 0. Following the similar
procedure as case I, the similarity solutions are given
after solving out the characteristic equations (22)

φ = − Δ

αC3
tanh

(
Δ

2 f3
(φ′ + x)

)
− C2

αC3
,

Δ =
√
2C1C3α + C2

2 , (29a)

g = − g′

cosh2
(

Δ
2 f3

(φ′ + x)
) , (29b)

h = − h′

cosh2
(

Δ
2 f3

(φ′ + x)
) , (29c)

u = u′ + 2C3

�
g′ tanh

(
Δ

2 f3
(φ′ + x)

)
, (29d)

w = w′+ 2C3

�
h′ tanh

(
Δ

2 f3
(φ′ + x)

)
+ f3t
3α f3

(φ′+x).

(29e)

Substituting (29) into (9), (10), (4) and (5), the invari-
ant functions φ′, g′, h′, u′ and w′ satisfy the reduction
systems

g′ = Δ2

2αC3 f3
(30a)

h′ = Δ2

2αC3 f3
φ′
y, (30b)

u′ = − 1

α
φ′
y + 2β

α2 , (30c)

w′ = 1

2α
φ′2

y − 1

3α
φ′
t + Δ2

6α f 23
+ 2β2

α3 , (30d)

3 f3φ
′
yy + f3t = 0, (30e)

where f4 and f5 are arbitrary functions of t . Fromabove
the detail calculations, we have the following reduction
theorem.

Theorem If φ′ is a solution of the reduction equation
(30e), then the explicit solution for the KD equation
reads

u = Δ

α f3
tanh

(
Δ

2 f3
(φ′ + x)

)
− 1

α
φ′
y + 2β

α
,

w = Δ

α f3
φ′
y tanh

(
Δ

2 f3
(φ′ + x)

)
+ f3t

3α f3
φ − φ′

t
3α

+ φ′2
y

2α

+ f3t x

3α f3
− Δ2

6α f 23
+ 2β2

α3 . (31)

4 Conclusion

The nonlocal symmetries of the KD equation are stud-
ied by the truncated Painlevé expansion and the Möbi-
ous invariant form. To solve the initial value prob-
lem related by the nonlocal symmetries, the nonlocal
symmetries are localized by introducing multiple new
dependent variables. The nonlocal symmetries become
the local Lie point symmetries for the prolonged sys-
tems. The finite symmetry transformations of the pro-
longed KD systems are derived by solving the ini-
tial value problem related by the nonlocal symme-
tries. Based on the finite symmetry transformations,
the multi-solitary wave solution for the KD equation
is given from a trivial solution of the KD equation.
With the help of the localization procedure, the non-
local symmetries are used to find possible symme-
try reductions. The interaction solution between soli-
ton and cnoidal periodic waves is given as shown in
(28). The interaction solution (28) includes the arbi-
trary functions m1 and m2. Some interesting interac-
tion behaviors are shown by selecting different arbi-
trary functions in graphical way. These types of the
interaction solutions may be useful for studying the
ocean waves.

In this paper, with the aid of the nonlocal symme-
tries, new solutions of the KD equation are constructed
by symmetry reductions of the enlarged systems. There
exist other methods to construct the nonlocal symme-
tries [4–15]. Moreover, localization is viewed as an
important step to extend applicability of nonlocal sym-
metries. Hence, one of the important problems is how
to localize those types of nonlocal symmetries to the
Lie point symmetries and how to obtain new interac-
tion solutions with those various nonlocal symmetries.
These fields merit our further study.
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