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Abstract Wepresent the iterative classical point sym-
metry analysis of a shallow water wave equation in
2 + 1 dimensions and that of its corresponding non-
isospectral, two-component Lax pair. A few reductions
arise and are identified with celebrate equations in the
Physics andMathematics literature of nonlinear waves.
We pay particular attention to the isospectral or non-
isospectral nature of the reduced spectral problems.

Keywords Lie symmetries · Reduction · Nonlinear ·
Soliton · KdV equation · Painlevé test

1 Introduction

Invariance of a differential equation under a group of
transformations is synonymous of existence of sym-
metry and, consequently, of conserved quantities [25].
Such invariance helps us to achieve partial or complete
integration of the equation.
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A conserved quantity for a first-order differential
equation can lead to its integration by quadrature,
whilst for higher-order ones, it leads to a reduction
of their order [28,31]. Many of the existing solutions
to physical phenomena described by differential equa-
tions have been obtained through symmetry arguments
[28,29,31]. Nevertheless, finding conserved quantities
is a nontrivial task.

The most famous and established method for find-
ing point symmetries is the classical Lie symme-
try method (CLS) developed by Lie in 1881 [20–
22,28,31]. Although the CLS represents a very pow-
erful tool, it yields cumbersome calculations to be
solvedbyhand.Notwithstanding, the increasednumber
of available software packages for symbolic calculus
has made of generalizations of the CLS analysis very
tractable approaches to find conservation laws, explicit
solutions, etc.

If we impose that symmetries leave certain subman-
ifold invariant, we find the class of conditional sym-
metries or the so-called nonclassical symmetry method
(NSM) introduced by Bluman and Cole [4] and later
applied bymany authors [3,9,15,26,27]. A remarkable
difference between the CLS and NSM is that the latter
provides us with no longer linear systems of differ-
ential equations from which to obtain the symmetries
[5,36,37].

In this paper, we aim to perform the CLS on the so-
called Bogoyavlenskii–Kadomtsev–Petviashvili equa-
tion [denoted as (2 + 1)-BKP equation, henceforth]
which takes the form [13,14]
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14 P. G. Estévez et al.

(
uxt + uxxxy + 8uxuxy + 4uxxuy

)
x + σuyyy = 0,

σ = ±1. (1)

This equation is amodel for evolutionary shallowwater
waves represented by the scalar field u(x, y, t) as the
height of the wave. In [38], it was proved that this
equation is a reduction of the well-known (3 + 1)-
Kadomtsev–Petviashvili equation for the description
of wave motion [12,18]. Notice that the (2 + 1)-BKP
equation is also a modified version of the Calogero–
Bogoyanlevski–Schiff equation [6,7,30].

Equation (1) is integrable according to the Painleve
property (PP) and admits a Lax pair [14]. Results
on solutions of solitonic nature for (1) were pursued
through the singular manifold method [14,16,34,35].
In particular, lump solitons, or solutions which decay
polynomially in all directions, were found. The inter-
est of lump solutions roots in their nontrivial dynamics
and interactions [13,17,24].

In particular,we focus on the study of its correspond-
ing Lax pair in 2+ 1 dimensions [13]. It is a complex,
two-component linear problem [14]

ψxx = −iψy − 2uxψ,

ψt = 2iψyy − 4uyψx + (2uxy + 2iωy)ψ (2)

and its complex conjugate

χxx = iχy − 2uxχ,

χt = −2iχyy − 4uyχx + (2uxy − 2iωy)χ (3)

withψ(x, y, t) andχ(x, y, t)being the eigenfunctions.
The compatibility condition of the cross-derivatives
(ψxxt = ψt xx ) in (2) retrieves (1) in the form.

uxt + uxxxy + 8uxuxy + 4uxxuy = ωyy,

uyy = ωxy (4)

where we have introduced the auxiliary scalar field
ω(x, y, t). We restrict ourselves to the case σ = −1.
Results for σ = 1 can be obtained by considering that
if u(x, y, t) is a solution for σ = −1, then u(x, iy, i t)
is a solution for σ = 1. The compatibility condition for
(χxxt = χt xx ) in (3) yields (4) too.

Notice that the spectral parameter is not present in
the Lax pair. This does not necessarily imply that it is an
isospectral Lax pair. Indeed, there exists a gauge trans-
formationwhich allowsus to express the nonisospectral

spectral linear problem as a spectral parameter-free lin-
ear problem. The converse is possible by introducing
“λ” or spectral parameter, conveniently.

The importance of reduced spectral problems and
reduced spectral parameters resides in the fact that in
1+ 1 dimensions, it is not usual to find nonisospectral
versions. The nonisospectrality of 1 + 1-dimensional
Lax pairs gives rise to some inconveniency, since the
inverse scattering transform (IST) [1,2] can no longer
beworked upon them, for example. If the IST cannot be
used, the possibilities of solving the nonlinear equation
through an associated spectral problem are diminished.
On the other hand, many of the Lax pairs found in
2 + 1 dimensions are nonisospectral [15,16]. For this
matter, we pay closer attention at the reductions of the
associated spectral problem. In this way, we stress out
the importance of finding isospectral Lax pairs in 1+1
dimensions and the surprising nature of nonisospectral
ones.

In Sect. 2, we introduce the CLS for partial differen-
tial equations (PDEs) and apply it to the spectral prob-
lem (2) and its corresponding compatibility condition
(4). In Sect. 3, we will obtain a classification of its pos-
sible reductions to 1+1 dimensions of the equation and
the Lax pair, depending on different values of the arbi-
trary functions appearing in the obtained symmetries.
Wewill identify six interesting reductions. Two of them
will be nontrivial. One of such nontrivial reduction cor-
responds with the celebrated Korteweg de Vries equa-
tion (KdV equation) [10,19,23]. The second reduction
found will be submitted to a second CLS calculation.
So, Sect. 4 shall be devoted to the classical symmetry
computation of the aforementioned second nontrivial
reduction in 1+1 dimensions. A list of four reductions
to ODEswill be displayed, considering different values
for the constants of integration appearing in the sym-
metry computation. To conclude, we shall enclose a
summary of the most relevant results found through-
out the “iterative symmetry search and reduction”
procedure.

2 The classical symmetry approach

A priori, we propose the most general Lie point sym-
metry transformation in which the coefficients of the
infinitesimal generator can depend on any dependent
or independent variable
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Symmetry computation and reduction of a wave model 15

x → x + εξ1(x, y, t, u, ω) + O(ε2),

y → y + εξ2(x, y, t, u, ω) + O(ε2),

t → t + εξ3(x, y, t, u, ω) + O(ε2),

u → u + εηu(x, y, t, u, ω) + O(ε2),

ω → ω + εηω(x, y, t, u, ω) + O(ε2). (5)

If we search for general Lie point transformation of the
Lax pair too, the spectral functionsmust be transformed
accordingly with

ψ → ψ + εηψ(x, y, t, u, ω,ψ, χ) + O(ε2),

χ → χ + εηχ (x, y, t, u, ω,ψ, χ) + O(ε2). (6)

Associated with this transformation, there exists an
infinitesimal generator

X = ξ1
∂

∂x
+ ξ2

∂

∂y
+ ξ3

∂

∂t
+ ηu

∂

∂u
+ ηω

∂

∂ω

+ ηψ

∂

∂ψ
+ ηχ

∂

∂χ
, (7)

where the subscripts in ηp have been added accord-
ing to the field “p” to which each η is associated. This
transformation must leave (2), (3) and (4), invariant.
From now, since Eqs. (2) and (3) are equivalent, we
shall exclude (3) from our calculus as a matter of sim-
plification. Our results obtained for ψ can be similarly
extrapolated for χ .

To proceed with CLS, we follow the next steps

1. Introduce the infinitesimal transformation (5) and
its further derivatives in Eqs. (2) and (4).

2. Select the linear terms in ε and set them equal to
zero. The zero order in ε retrieves the original equa-
tions.

3. Substitute the values of ψxx , ψt , uxt , uy from (2)
and (4), correspondingly. Higher-order derivatives
in these termsmust be introduced according to these
expressions.

4. From the steps above, we obtain an overdetermined
system of differential equations for ξ1, ξ2, ξ3, ηu,

ηω, ηψ by setting equal to zero terms in different
orders of the derivatives of the fields, if we pursue
Lie point symmetries.

Steps 1–5 are nontrivial, leading to cumbersome equa-
tionswhich have beenmanipulatedwith a symbolic cal-
culus package. In our case, we make use ofMAPLE c©.

We extend transformation (5) to first-, second- and
higher-order derivatives appearing in Eq. (4),

ux → ux + εη[x]
u + O(ε2),

uy → uy + εη
[y]
u + O(ε2),

ωx → ωx + εη[x]
ω + O(ε2),

ωy → ωy + εη[y]
ω + O(ε2),

uxx → uxx + εη[xx]
u + O(ε2),

uxy → uxy + εη
[xy]
u + O(ε2),

uxt → uxt + εη[xt]
u + O(ε2),

ωyy → ωyy + εη[yy]
ω + O(ε2),

uxxxy → uxxxy + εη
[xxxy]
u + O(ε2). (8)

And derivatives appearing in the Lax pair (2)

ψx → ψx + εη
[x]
ψ + O(ε2),

ψy → ψy + εη
[y]
ψ + O(ε2),

ψt → ψt + εη
[t]
ψ + O(ε2),

ψxx → ψxx + εη
[xx]
ψ + O(ε2),

ψyy → ψyy + εη
[yy]
ψ + O(ε2). (9)

The prolongations needed for Eq. (4) are η
[xxxy]
u , η[xt]

u ,
η

[xy]
u , η[xx]

u , η[yy]
ω , η[x]

u , η[y]
u , η[x]

ω , η[y]
ω and for the Lax

pair (2), the prolongations are η
[yy]
ψ , η

[xx]
ψ , η

[t]
ψ , η

[y]
ψ ,

η
[x]
ψ . These prolongations can be calculated according

to the Lie method explained in textbooks [31]. From
the original equations, we make use of

ωyy = uxt + uxxxy + 8uxuxy + 4uxxuy,

uyy = ωxy, (10)

and the original the Lax pair
ψxx = −iψy − 2uxψ,

ψt = 2iψyy − 4uyψx + (2uxy + 2iωy)ψ. (11)

Also, their further derivatives must be computed using
the given expressions.

Introducing such relations we arrive at the classical
Lie symmetries

ξ1 = Ȧ3(t)

4
x + A1(t),

ξ2 = Ȧ3(t)

2
y + A2(t),

ξ3 = A3(t),
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16 P. G. Estévez et al.

Table 1 Reductions for 2 + 1-BKP

Case I: A3(t) �= 0 Case II: A3(t) = 0

1. A1(t) �= 0 A2(t) �= 0 1. A1(t) �= 0 A2(t) �= 0

2. A1(t) �= 0 A2(t) = 0 2. A1(t) �= 0 A2(t) = 0

3. A1(t) = 0 A2(t) �= 0 3. A1(t) = 0 A2(t) �= 0

ηu = − Ȧ3(t)

4
u + Ȧ2(t)

8
x + Ä3(t)

16
xy

+ Ȧ1(t)y

4
+ B1(t),

ηω = − Ȧ3(t)

2
w + Ȧ1(t)

4
x + Ä3(t)

32
x2

+ B3(t)y + Ä2(t)

16
y2+,

+
...
A3(t)

96
y3 + B2(t),

ηψ =
[
−2λ − Ȧ3(t)

8
+ i

(
Ȧ2(t)

4
y

+ Ä3(t)

16
y2 + 2

∫
B3(t)dt

)]
ψ. (12)

These symmetries depend on a constant λ and six arbi-
trary functions of time, A1(t), A2(t), A3(t) and B1(t),
B2(t), B3(t), which shall serve us as a way to classify
the possible reductions. Indeed, we have the possible
reductions attending to (Table 1).

3 Reduction to 1+ 1 dimensions

To reduce the problem, we have to solve the Lagrange-
Charpit system by the method of characteristics, that is
integration of the characteristic system [28,31]

dx

ξ1
= dy

ξ2
= dt

ξ3
= du

ηu
= dω

ηω

= dψ

ηψ

. (13)

We shall use the next notation for the reduced vari-
ables

x, y, t → x1, x2 (14)

and for the reduced fields

ω(x, y, t) → �(x1, x2),

u(x, y, t) → U (x1, x2),

ψ(x, y, t) → �(x1, x2). (15)

As a matter of simplification, we shall drop the depen-
dency on (x1, x2) of certain fields in the forthcoming
expressions.

– Case I.1. A3(t) �= 0, A1 �= 0, A2 �= 0

– Reduced variables

x1 = x

A3(t)1/4
−

∫
A1(t)

A3(t)5/4
dt,

x2 = y

A3(t)1/2
−

∫
A2(t)

A3(t)3/2
dt .

– Reduced fields

u(x, y, t) = U (x1, x2) + ∫
F1(t)dt

A3(t)1/4

+ Ȧ3(t)xy + 2A2(t)x + 4A1(t)y

16A3(t)
,

ω(x, y, t) = �(x1, x2) + ∫
F2(t)dt

A3(t)1/2

+ 2A3(t) Ä3(t) − Ȧ3(t)2

192A3(t)2
y3

+ 2A3(t) Ȧ2(t) − A2(t) Ȧ3(t)

32A3(t)2
y2

+
(∫

B3(t)dt

A3(t)
− A2(t)2

16A3(t)2

)
y

+ Ȧ3(t)

32A3(t)
x2 + A1(t)

4A3(t)
x,

where we have used the definitions

F1(t) = B1(t)

A3(t)3/4
− 3A1(t)A2(t)

8A3(t)7/4
,

F2(t) = B2(t)

A3(t)1/2
− A2(t)

∫
B3(t)dt

A3(t)3/2

+ A2(t)3

16A3(t)5/2
− A1(t)2

4A3(t)3/2
.

– Reduced equation

Ux2x2 − �x1x2 = 0,

�x2x2 = Ux1x1x1x2 + 8Ux1x2Ux1 + 4Ux1x1Ux2 .

(16)

These two equations can be summarized as

Ux2x1x1x1x1 + 4
(
(Ux1Ux2 )x1+Ux1Ux1x2

)

x1
−Ux2x2x2 = 0,

(17)
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Symmetry computation and reduction of a wave model 17

which appears in [32,33] and has multiple soli-
ton solutions [39].

– Reduced eigenfunction

ψ(x, y, t) = �(x1, x2)

A3(t)1/8

× exp

[
i

(
Ȧ3(t)y2+4A2(t)y

16A3(t)

)

+ i
∫

F3(t)dt

]
.

where

F3(t) = 2
∫
B3(t)dt

A3(t)
+ 2iλ

A3(t)
− A2(t)2

4A3(t)2
.

– Reduced Lax pair

�x1x1 + i�x2 + 2Ux1� = 0,

i�x2x2 − 2Ux2�x1+
(
Ux1x2+i�x2 +λ

)
�= 0.

(18)

Notice that “λ” plays the role of the spectral
parameter in 1 + 1 dimensions.

– Cases I.2. and I.3. will be omitted for being equiv-
alent to I.1.

– Case II.1. A3(t) = 0, A1(t) �= 0, A2(t) �= 0

– Reduced variables

x1 = A2(t)x − A1(t)y

A2(t)3/2
−

∫
F1(t)dt

x2 =
∫

A1(t)

A2(t)5/2
dt

– Reduced fields

u(x, y, t) =
U (x1, x2)+

(∫
B3(t)dt− A1(t)2

8A2(t)

)
x1√

A2(t)

+
(
B1(t)

A2(t)
+ Ȧ2(t)

8A2(t)
x

)
y

+
(
2
Ȧ1(t)

A2(t)
− A1(t) Ȧ2(t)

A2(t)2

)
y2

16

w(x, y, t) = − A1(t)
�(x1, x2)

A2(t)3/2
+ Ȧ2(t)

16
x21

+ Ä2(t)

48A2(t)
y3

+
(
4
B3(t)

A2(t)
− A1(t) Ȧ1(t)

A2(t)2

)
y2

8

+ B2(t)

A2(t)
y + Ȧ1(t)

4A2(t)
xy

with

F1(t) = 5

2

A1(t)3

A2(t)7/2
+ 4

B1(t)

A2(t)3/2

− 12
A1(t)

A2(t)5/2

∫
B3(t)dt

– Reduced equation

Ux1x1 − �x1x1 = 0 ⇒ �x1 = Ux1 + G(x2)

Ux1x1x1x1 + 12Ux1x1Ux1 −Ux1x2 = 0.

where G(x2) is an arbitary function of x2. The
above system can be equivalently rewritten as

Ux1x1x1x1x1 + 12U 2
x1x1

+12Ux1Ux1x1x1 −Ux1x1x2 = 0. (19)

This reduced equation corresponds with the
potential KdV equation in 1 + 1 dimensions
[11]. Therefore, we can conclude that the (2 +
1)-BKP equation is a generalization of the
potential KdV equation to 2 + 1 dimensions.

– Reduced Eigenfunction


(x, y, t) = �(x1, x2)

A2(t)1/4

× exp

[
i

(
A1(t)

2A2(t)1/2
x1 +

∫
F2(t)dt

)]

× exp

[

i

(
Ȧ2(t)

8A2(t)
y2 + 2

(∫
B3(t)dt + iλ

)

A2(t)
y

)]

where

F2(t) = 2B2(t)

A2(t)
+ A1(t)4

2A2(t)4

+2
A1(t)2

A2(t)3
(G(x2(t)) + 4iλ)

+ Ȧ1(t)

2A2(t)1/2

∫
F1(t)dt−8

(∫
B3(t)dt+iλ

A2(t)

)2

– Reduced Lax pair

�x1x1 − 2(iλ −Ux1)� = 0 (20)

�x2 − 4(2iλ +Ux1)�x1 + 2Ux1x1� = 0 (21)
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18 P. G. Estévez et al.

which is the Lax pair corresponding with the
KdV equation.
Again, “λ” plays the role of the spectral para-
meter.

– Case II.2. A3(t) = 0, A1(t) �= 0, A2(t) = 0

– Reduced variables

x1 = y, x2 = t.

– Reduced fields

u(x, y, t) = i A1(t)U (x1, x2)

8
(∫

B3(t)dt + iλ
) + B3(t)

2A1(t)
x21

+
(
B1(t)

A1(t)
+ Ȧ1(t)

4A1(t)
y

)
x

w(x, y, t) = i
�(x1, x2)

2
+ Ȧ1(t)

8A1(t)
x2

+
(
B2(t)

A1(t)
+ B3(t)

A1(t)
y

)
x

+ Ȧ1(t)2 + A1(t) Ä1(t)

24A1(t)2
x31

+ B1(t) Ȧ1(t) + A1(t)Ḃ1(t)

2A1(t)2
x21

These reduced fields lead to a trivial reduction
of the equations.

– Reduced equation

Ux1x1 = 0,

�x1x1 = 0

– Reduced eigenfunction


(x, y, t) = �(x1, x2)√
A1(t)

× exp

[

i

(
2

(∫
B3(t)dt + iλ

)

A1(t)
x−8

∫
F1(t)dt

)]

× exp

[

i

(
Ȧ1(t)

4A1(t)
x21

+ 2
A1(t)B1(t) − 2

(∫
B3(t)dt + iλ

)2

A1(t)2
x1

)]

F1(t) =
[

− B1(t)

A1(t)
+ 2

(∫
B3(t)dt + iλ

A1(t)

)2
]2

– Reduced Lax pair

�x1 = 0,

�x2 − (
Ux1 − �x1

)
� = 0 (22)

– Case II.3. A3(t) = 0, A1(t) = 0, A2(t) �= 0

– Reduced variables

x1 = x√
A2(t)

− 4
∫

B1(t)

A2(t)3/2
dt x2 = t,

– Reduced fields

u(x, y, t) = U (x1, x2) + x1
∫
B3(t)dt√

A2(t)

+
(
B1(t)

A2(t)
+ Ȧ2(t)

8A2(t)
x

)
y

w(x, y, t) = �(x1, x2) + A2(t)

16
x21 + Ä2(t)

48A2(t)
y3

+ B3(t)

2A2(t)
y2 + B2(t)

A2(t)
y

These reduced fields lead to trivial a reduction
of the equation.

– Reduced equation

Ux1x2 = 0 (23)

– Reduced eigenfunction


(x, y, t) = �(x1, x2)

A2(t)1/4

exp

[
i

(
Ȧ2(t)

8A2(t)
y2 + 2

∫
B3(t)dt + iλ

A2(t)
y

+
∫

F3(t)dt

)]

F3(t) = 2B2(t)

A2(t)
− 8

(∫
B3(t)dt + iλ

A2(t)

)2

– Reduced Lax pair

�x2 = 0

�x1x1 + 2
(
Ux1 − iλ

)
� = 0

3.1 Reduction of a Lax pair in 1 + 1 dimensions

Let us now study the nontrivial reduction I.1. obtained
in the past section. We consider this reduction of inter-
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Symmetry computation and reduction of a wave model 19

est from a possible physical viewpoint. In this way, we
aim to perform another symmetry search on the equa-
tion and its corresponding Lax pair in 1+1 dimensions.

We reconsider the equation given in (17)

Ux2x2 = �x1x2 ,

Ux1x1x1x2 + 8Ux1x2Ux1 + 4Ux1x1Ux2 − �x2x2 = 0,
(24)

which is integrable in the Painlevé sense and possesses
an associated linear spectral problem or Lax pair (18),
which takes the form

�x1x1 + i�x2 + 2Ux1� = 0,

i�x2x2 − 2Ux2�x1 + (
Ux1x2 + i�x2 + λ

)
� = 0.

(25)

whose compatibility condition (�x1x1x2x2 = �x2x2x2x1)

recovers (24). This Lax pair presents a constant para-
meter “λ” that plays the role of the spectral parameter.

Weaimat studying its classical Lie point symmetries
and further reduction under the action of the symme-
tries.

We propose a general transformation in which the
infinitesimal generator depends on any independent
and dependent variables as

x1 → x1 + εξ1(x1, x2,U,�) + O(ε2),

x2 → x2 + εξ2(x1, x2,U,�) + O(ε2),

λ → λ + εηλ(x1, x2, λ,�) + O(ε2),

U → U + εηU (x1, x2,U,�) + O(ε2),

� → � + εη�(x1, x2,U,�) + O(ε2). (26)

Here, we can see that we have considered λ as an inde-
pendent variable in order to make the reductions prop-
erly. If we want to achieve symmetries of equation (24)
and those of the correspondingLaxpair (25) at the same
time, we must include the transformed eigenfunctions

� → � + εη�(x1, x2,U,�, λ,�) + O(ε2),

where we have only specified the transformation for
one of the eigenfunctions, since the complex conjugate
version was not considered in the former reductions.
Similar results can be obtained for the complex conju-
gate by extension of previous results.

By definition of symmetry, transformation (26)must
leave invariant equation (24) and its associated Lax
pair (25). The associated symmetry vector field has the
expression

X = ξ1
∂

∂x1
+ ξ2

∂

∂x2
+ ηλ

∂

∂λ
+ ηU

∂

∂U

+ η�

∂

∂�
+ η�

∂

∂�
. (27)

From the terms in ε = 0 we retrieve the original
equations,

Ux2x2 = �x1x2 ,

Ux1x1x1x2 = �x2x2 − 8Ux1x2Ux1 − 4Ux1x1Ux2 ,

�x1x1 = −i�x2 − 2Ux1�,

i�x2x2 = 2Ux2�x1 − (
Ux1x2 − i�x2 − λ

)
� (28)

that shall be used in the forthcoming steps.
First introduce transformation (26) into the system

of differential equations in (24), (25) and set the lin-
ear term in ε equal to zero. Introduce the needed pro-
longations for Eq. (24), that are η

[x1x1x1x2]
U , η

[x1x2]
U ,

η
[x1x1]
U , η

[x2x2]
U , η

[x1]
U , η

[x2]
U , η

[x2x2]
� , η

[x1x2]
� , η

[x2]
� , and

the prolongations neeeded for the Lax pair (25), that are
η

[x1x1]
� , η

[x2x2]
� , η

[x1]
� , η

[x2]
� , calculated following Lie’s

formula [31] and Ux2x2 , Ux1x1x1x2 , �x1x1 , �x2x2 from
(28).

We come up with the classical Lie point symmetries

ξ1(x1, x2,U,�) = 1

2
k1x1 + k2,

ξ2(x1, x2,U,�) = k1x2 + k3,

ηλ = −2k1λ + k4,

ηu(x1, x2,U,�) = −1

2
k1U + k5,

η�(x1, x2,U,�) = −k1� + ik4x2 + k6(x1),

η�(x1, x2, λ,U,�,�, λ) = B(λ)�. (29)

These symmetries depend on 5 arbitrary constants of
integration k1, k2, k3, k4, k5 and two arbitrary functions
k6(x1) and B(λ) (Table 2).

We introduce the following notation for the reduced
variables. In this case, λ is an independent variable.

x1, x2, λ → z,� (30)
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Table 2 Reductions for 1 + 1-BKP equation

Case I: k1 �= 0 Case II: k1 = 0

1. k2 �= 0 k3 �= 0 1. k2 �= 0 k3 �= 0

2. k2 �= 0 k3 = 0

3. k2 = 0 k3 �= 0

and the reduced fields and eigenfunctions

U (x1, x2) → V (z),

�(x1, x2) → W (z),

�(x1, x2) → ϕ(z,�). (31)

We find the following reductions

– Case I.1. k1 �= 0

– Reduced variables

z = k1(k1x2 + k3)

(k1x1 + 2k2)2
,

� = k−5
1 (2k1λ − k4)(k1x1 + 2k2)

4.

– Reduced fields

U (x1, x2) = k1
V (z)

(k1x1 + 2k2)
,

�(x1, x2) = ik4
2k31

(k1x1 + 2k2)
2z

− k21
2(k1x1 + 2k2)2

W (z)

z
.

– Reduced Eigenfunction

�(x1, x2, λ) = ϕ(z,�)e
∫ B(λ)

k4−2k1λ
dλ

– Reduced Lax pair

2z2ϕzz + 8i z2Vz(2�ϕ� − zϕz)

+
[
W − z(Wz − 6i zVz)

+ i z2(4zVzz − �)
]
ϕ = 0,

16�2ϕ�� − 16z�ϕz�

+ 4�(3−8i z2Vz)ϕ�+(i+6z + 16i z3Vz)ϕz

− 2
[
W − zWz + V + 2z(1 + 3i z)Vz

+ i z2(4zVzz − �)
]
ϕ = 0.

In this case, a constant “�” appears and plays
the role of a spectral parameter.

– Reduced equations

Wzz = Vzz,

16z6Vzzzz + 144z5Vzzz

+ 8z3(15 − 8V )Vz + 2zWz − 2W

− (1 − 300z2 + 32z2V + 96z3Vz)z
2Vzz

− 176z4V 2
z = 0.

These equations can be integrated as

W = a1z + a2

16z5Vzzz + 80z4Vzz − 48z4V 2
z

+ z3(−32V + 60)Vz

− zVz + 2V + 2a2 − a3z = 0.

where a1, a2, a3 are constants.

– Case II.1. k1 = 0, k2 �= 0, k3 �= 0, k4 �= 0

– Reduced variables

z = k2
k3

(
k2
k3

x2 − x1

)

� = k2
k3

(
k2
k4

λ − x1

)
.

– Reduced fields

U (x1, x2) =k2
k3

V (z) + k5
k2

x1,

�(x1, x2) = − k22
k23

W (z) + i
k4k23
k32

(
z + k2

2k3
x1

)
x1

+ 1

k2

∫
k6(x1)dx1.

– Reduced Eigenfunction

�(x1, x2, λ) = ϕ(z,�)e
1
k4

∫
B(λ)dλ

.

– Reduced Lax pair

ϕ�� + 2ϕz� + ϕzz + iϕz + 2 (C1 − Vz) ϕ = 0,

(−iC2� − Wz + iVzz)ϕ

− 2i (ϕ� + ϕz) Vz + ϕzz = 0. (32)
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In this reduced spectral problem, the constant
“�” plays the role of the spectral parameter.

– Reduced equation

Wzz = Vzz − iC2,

Vzzzz + 4 (2C1 − 3Vz) Vzz − Wzz = 0. (33)

where C1 = k23k5
k32

and C2 = k53k4
k62

The above equations can be integrated as

W = V + a1z + a2,

Pzz − 6P2
z + (8C1 − 1)Pz

+ iC2z + a3 = 0, P = Vz . (34)

This last equation is nothing but the celebrated
Painlevé II equation whose solutions has been
extensively studied [8,11].

– Case II.2. k1 = 0, k2 �= 0, k3 = 0, k4 �= 0, k5 �= 0

– Reduced variables

z = k5
k2

x2,

� =
(
k5
k2

)1/2 (
k2
k4

λ − x1

)

– Reduced fields

U (x1, x2) =
(
k5
k2

)1/2

V (z) + k5
k2

x1,

�(x1, x2) = k5
k2

W (z) + i
k4
k2

x2x1

+ 1

k2

∫
k6(x1)dx1.

– Reduced Eigenfunction

ψ(x1, x2) = ϕ(z,�)e
1
k4

∫
B(λ)dλ

.

– Reduced Lax pair

ϕ�� + iϕz + 2ϕ = 0,

ϕzz − 2iVzϕ� + (Wz − �Vzz) ϕ = 0. (35)

– Reduced equation

Vzz = i
k3/22 k4

k5/25

,

Wzz = 0. (36)

– Case II.3. k1 = 0, k2 = 0, k3 �= 0, k4 �= 0, k5 �= 0

– Reduced variables

z =
(
k5
k3

)1/3

x1,

� = k1/33 k2/35

k4

(
λ − k4

k3
x2

)
+ i

(
k5
k3

)2/3 B0

k4

– Reduced fields

U (x1, x2) =
(

k5
2k3

)1/3

V (z) + k5
k3

x2,

�(x1, x2) = W (z) + i
k4
2k3

x22 + B0

k3
x2.

where B0 is a constant.
– Reduced Eigenfunction

ψ(x1, x2) = ϕ(z,�)e
1
k4

∫
B(λ)dλ

.

– Reduced Lax pair

ϕ�� + 2iϕz − 2�Vzzϕ = 0,

ϕzz − iϕ� + Vzϕ = 0.

Here, the constant “�” plays the role of the
spectral paramenter.

– Reduced equation

Vzz = i
k3k4
2k25

,

Wzz = 0. (37)

4 Conclusions and brief comments

Wehave calculated the classical (point) symmetries of a
nonlinear PDE and its corresponding two-component,
nonisospectral Lax pair in 2+1 dimensions. The spec-
tral parameter has been conveniently introduced as
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dependent variable obeying the nonisospectral condi-
tion.Wehave reduced both the equation and its Lax pair
attending to different choices of the arbitrary functions
and constants of integration present in the calculated
symmetries. Of a total of 6 reductions, 2 of them hap-
pen to be knowledgeable equations in the literature.
One is the KdV equation. From this result, we can say
that (2 + 1)-BKP equation is a generalization of the
KdV equation. The nonclassical version when ξ3 �= 0
has also been obtained (although it is not included in
this manuscript), leading to the same set of symme-
tries.

The other interesting reduction is an equation show-
ingmultisoliton solutions. In this equation and its asso-
ciated Lax pair, we have performed a second classical
Lie symmetry analysis. In this case, the spectral para-
meter has been conveniently introduced in the reduc-
tion and it needs to be considered as an independent
variable. Another 4 possible reductions are contem-
plated.

After the computation of the classical Lie symmetry
results, the nonclassical symmetries for the nontrivial
reduction I.1. studied in Sect. 3.1. Equation (24) and
those of its corresponding Lax pair (25) have also been
obtained, provided that ξ2 �= 0, leading us to equiv-
alent results (not listed in this paper). Therefore, the
classical and nonclassical symmetries of Eqs. (24) and
(25) are equivalent. Nonetheless, this is not always the
rule. Indeed, nonclassical symmetries are usually more
general and contain the classical ones as a particular
case.

As a future perspective, it would be desirable to be
able to find ways of solving nonisospectral Lax pairs
in 1 + 1 dimensions, since the methods applicable are
only applicable in the cases of isospectral ones.
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