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Abstract Although there are a lot of studies on real-
ization of electrical coupling in HR neuron model,
the investigation of chemical coupling with hardware
implementations is limited because of implementa-
tion complexities. In this paper, it is aimed to present
alternative analog and digital hardware solutions for
investigating the chemical coupling in the HR neuron
model. In order to implement the chemical coupled HR
neuronal system on a reconfigurable digital platform,
chemical coupling function is modified, and the sta-
bility control of the new modified chemical coupling
function is checked by using the standard deviation
method. Simple artificial network structure using two
chemical coupled HR neurons reminds of the small
part of the stomatogastric ganglion central pattern gen-
erator (CPG) circuit of a lobster. Thus, a simple CPG
structure is also realized electronically and asynchro-
nous behaviors between the chemical coupled neurons
in this CPG are emulated successfully by using these
programmable analog and digital devices.
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1 Introduction

Synchronization of the nonlinear oscillators is an
often-studied issue by many researchers interested
in dynamical system theory, and the synchroniza-
tion of the neurons has been also a trend topic
in this area in order to play an important role in
information processing of the brain recently [1–7].
Neurons can produce own inherent electrical poten-
tials via the ion flows through the surface of mem-
brane, and these inherent membrane oscillations are
modeled with the several biological neuron models
such as Hodgkin–Huxley (HH), FitzHugh–Nagumo
(FHN), Wilson–Cowan (WC), Morris–Lecar (ML),
Hindmarsh–Rose(HR) and Izhikevich (IZ) like a non-
linear oscillator [8–13]. There are advantages and dis-
advantages of each of these biological neuron mod-
els. For example, HH neuron model discusses the ionic
mechanism and electrical current on membrane sur-
face comprehensively, but this model is not preferred
in some applications because of the calculation com-
plexities [8]. FHN neuron model is the simplified type
of the HH neuron model in terms of the calculation
easiness, but bursting behaviors of the neurons cannot
be obtained with this model [9]. On the other hand, HR
neuron model is derived from the FHN neuron model
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and a lot of dynamical behaviors of the neurons can be
observed via this model [12].

In addition to model the dynamical individual
behaviors of the neurons, the synchronization situations
of the collective neurons are also obtained physically
via the biological neuron models. Since it is very diffi-
cult to identify the interaction of the collective neurons
in the living body, the interactions between the neu-
rons can be modeled by coupling the biological neu-
ron models. In the literature, the studies examining the
neuronal synchronization are generally performed by
the HR neuron model due to its definition and calcu-
lation simplicity. In these synchronization studies per-
formed using the HR neuron model, a few issues are
handled like that: Coupling type: synaptic connections
of the neurons are either chemical or electrical, and
they are defined by the mathematical functions sepa-
rately [14]. These coupling types are adapted to the HR
neuron model, and the studies examined the effects
on the synchronization status of coupling types are
reported in the literature [15–18]. Control of the syn-
chronization: synchronization refers to the closeness
of the frequency or phase of two systems that generate
periodic or chaotic oscillations. The synchronization
status of the coupled HR neurons can be controlled in
various ways such as nonlinear feedback control, back-
stepping control, active control, H∞ variable universe
adaptive fuzzy control, and adaptive sliding mode con-
trol [19–28]. Stability control approaches in synchro-
nization: in the literature, after the dynamical nonlinear
systems are synchronized using the control methods,
various stability control approaches such as master sta-
bility function method, the connection graph stability
method, the linear matrix inequality approach, matrix
measure approach, the eigenvalue approach, and stan-
dard deviation method are used to check the achieve-
ment of the synchronization process [29–46].Adapting
the data from a real neuron to biological model: after
the processing the obtained data from living cells, it
is tried to adapt these results to the biological neu-
ron model in some studies. In contrast to this type
study, the response of a real nerve is sometimes con-
trolled by utilizing the simulation results of the biolog-
ical neuron model [47–50]. The usage of the neuron
models in the practical applications: biological neu-
ronmodels are implementedwith the several electronic
devices for some applications that require real-time sig-
nals and artificial neurons are obtained electronically
[51–58].

In the literature, although there are a lot of studies on
realizing a single neuronwith several electronic devices
[51–58], the number of the studies coupled artificial
neurons electronically or electronic applications of syn-
chronization studies are limited because of implemen-
tation complexities [53,59–65]. However, electrical
coupling is usually preferred in these available hard-
ware implementation studies because of mathematical
description simplicity. In our previous study, the exper-
imental realizations ofHRneuronmodelwith program-
mable hardware and synchronization applications via
electrical coupling have been investigated [61]. On the
other hand, several CMOS or analog realization stud-
ies utilizing the characteristics of analog devices are
offered [51–64]. Other neuron models, which cannot
model the electrical and chemical coupling separately,
are used as an example of chemical coupling applica-
tion [63,65].However, no study about the digital imple-
mentation of chemical coupling defined by a complex
nonlinear function in HR neurons is reported in the lit-
erature to the best of our knowledge.

In this study, after two HR neurons are connected
with the chemical coupling function, this chemical
coupled simple artificial network is implemented with
reconfigurable analog and digital devices. For the dig-
ital implementation easiness, chemical coupling func-
tion is modified, and the stability control of the new
modified chemical coupling function is checked by
using the standard deviation method. Furthermore, this
HR neuron model based and chemical coupled simple
artificial network structure reminds of the small part of
the stomatogastric ganglion central pattern generator
(CPG) circuit of a lobster because synaptic connections
between pyloric dilator (PD) and lateral pyloric (LP)
neurons are chemical and unidirectional [66]. These
two neurons exhibit asynchronous behaviors. Here, PD
and LP neurons in this CPG circuit are represented by
two HR neurons and synaptic connections are mod-
eled via newmodified chemical coupling and asynchro-
nous behaviors can be obtained by adjusting synaptic
weights in the chemical coupling functions. The results
of the standard derivative method are used to adjust the
synaptic weights, so asynchronous behaviors between
two neurons are obtained easily. As results of these
studies, not only chemical coupling function in HR
neurons is implementedwith digital devices for the first
time but also a simple CPG structure is realized elec-
tronically by using programmable analog and digital
devices.
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Neuron coupling types, HR neuron model, coupling
of the HR neurons, and the stomatogastric ganglion
central pattern generator (CPG) circuit of a lobster are
briefly handled in Sect. 2. In this section, after the mod-
ified chemical coupling function is introduced, numer-
ical simulation results and the results of standard devi-
ation methods for original and modified chemical cou-
pling are also given together to see the closeness of the
nonlinear function characteristics and to examine the
synchronization situations of the chemical coupled HR
neurons. The details of programmable analog and digi-
tal devices-based realizations of chemical coupled HR
neurons, namely simple CPG circuit applications, are
given in Sect. 3. Some concluding remarks and com-
parisons are presented in the last section.

2 Chemical coupling of HR neurons

The co-ordination between neurons occurs via their
synaptic connections. There are two type synaptic con-
nections including electrical and chemical [14–18]. An
electrical coupling is amechanical and electrically con-
ductive link between two neurons. It is formed at a nar-
row gap between the pre- and postsynaptic cells known
as a gap junction. If the voltage of one neuron changes,
ions may move through from one cell to the next, so
the ions of two neurons flow in direct proportion to the
difference between the membrane potential of the neu-
rons. Since electrical coupling can cause either neuron
to influence the other, these are bidirectional synapses.
On the other hand, there is a gap junction between
two neurons in the chemical coupling and the space
between the chemical couplings is much larger than
an electrical ones. Thus, electrical coupling is faster
than the chemical one. In the chemical coupling, the
presynaptic neuron releases a chemical (a neurotrans-
mitter) which rapidly crosses the small space across
the synapse and binds to a receptor on the postsy-
naptic neuron. After the neurotransmitter enzymes are
released between twoneurons, action potential forms in
the postsynaptic neuron. If the realized enzyme facili-
tates the action potential generation, this type chemical
coupling is named excitatory coupling; else inhibitory
coupling occurs between the two neurons. The differ-
ence between an electrical and chemical coupling is the
conductionmethods between the neurons, but one is not
more important than another. They serve different pur-
poses. The one of the most successful neuron models is

HRneuronmodel reflecting these properties of the neu-
rons and synaptic connections. Electrical and chemical
coupling can be modeled separately by using HR neu-
ron model, and this is the most important advantage of
the coupled HR neurons. FHN and HR neuron models
are the simplified type of the Hodgkin–Huxley neu-
ron model. While FHN neuron model does not exhibit
some neuron dynamics such as bursting behavior, sev-
eral dynamic behaviors of a real neuron can be observed
with HR neuron model derived from the FHN neuron
models. HR neuron model is defined by the following
differential equations [12]:

ẋ = fx (x, y, z) = y − x3 + bx2 + I − z

ẏ = fy(x, y, z) = 1 − 5x2 − y

ż = fz(x, y, z) = μ(s(x − xrest) − z) (1)

where I represents the membrane input current, b con-
trols the transition betweenbursting and spiking,μ con-
trols the spiking frequency and the number of spikes
per burst in the case of spiking and bursting respec-
tively, s adjusts adaptation, xrest is the resting potential.
After the parameters μ = 0.01, s = 4, xrest = −1.6
are fixed, several different dynamical behaviors of HR
neuron model can be obtained by adjusting the b and I
parameters. While b = 2.96, I = 5 are set to observe
the spiking behavior as shown in Fig. 1a, the bursting
behavior in Fig. 1b is obtained for the parameter values
of b = 2.6, I = 2.22.

Several studies on synchronization and coupling of
the twoHRneurons have been reported in the literature.
The two coupled HR neurons can be defined by the
following equations [46]:

ẋ1 = fx (x1, y1, z1) − gsδ(x1)
�
c12γ (x1, x2)

ẏ1 = fy(x1, y1, z1)

ż1 = fz(x1, y1, z1)

ẋ2 = fx (x2, y2, z2) − gsδ(x2)
�
c21γ (x2, x1)

ẏ2 = fy(x2, y2, z2)

ż2 = fz(x2, y2, z2) (2)

where
�
c12 = �

c21 = 1. The parameter (gs) in Eq. 2
is known as the strength of coupling. In case of the
chemical coupling, for the first neuron γ (x1, x2) =
γc(x2) = (1/(1 + e−k(x2−θs))), δ(x1) = −(x1 − Vs)
and for the second neuron, γ (x2, x1) = γc(x1) =
(1/(1 + e−k(x1−θs))), δ(x2) = −(x2 − Vs). Two neu-
rons with chemical coupling were simulated according
to k = 10, Vs = −2, θs = −0.28 by using a simulation
model in Eq. 2 where no control method is applied. The
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Fig. 1 HR neuron dynamics for a spiking mode, b bursting mode

synchronization situation of the neurons is impressed
by the value of (gs) parameter both in electrical and
chemical coupling. As mentioned before, various sta-
bility control approaches have been proposed to control
the synchronal situations between the neurons and one
of them is standard deviationmethod described byEq. 3
[31]:

σ = [〈σ(k)〉]

σ(k) =

√
√
√
√
√

[

1
N

∑N
i=1 x

2
i (k) −

[
1
N

∑N
i=1 xi (k)

]2
]

(N − 1)
(3)

where σ (k) is the kth value in the time series of the kth
neuron, 〈∗〉 denotes the average value of σ (k) over
the evolution time, and [*] denotes the value of σ .
This method means that for the synchronal two HR
neurons: As the dynamical behaviors of two HR neu-
rons get close to each other, the results of the stan-
dard deviation function converges to zero. According
to the standard deviation graph calculated for chemical
coupled two HR neurons in Fig. 2a, chemical coupled
two HR neurons exhibit asynchronous, partially syn-
chronous and synchronous behaviors for gs = −2,
gs = 0.6, gs = 5, respectively. The phase portrait
illustrations of the chemical coupled two HR neurons
with these synaptic weights are given, respectively, in
Fig. 2b–d. In these figures, x1 and x2 represent
the membrane potentials of the first and second
neurons. The numerical simulation results in these
figures verify the results of the standard deviation
methods.

Exponential function in chemical coupling descrip-
tion is hard to implement with the digital platforms, so
this description must be predisposed to digital realiza-
tions. A new approximate function in Eq. 4 is proposed
for implementation easiness:

γ (x) = 1

1 + e−2kx
∼= 1

2
+ 1

2
tanh(kx)

tanh(kx) ∼= kx√
1 + kx2

∼= kx

1 + |kx |
γ (x) = 1

1 + e−2kx
∼= 1

2
+ 1

2

(
kx

1 + |kx |
)

(4)

where k = 10. Figure 3 shows the closeness between
original and modified chemical coupling functions. In
this figure, while the continuous line is the original
chemical function characteristic, the nonlinear charac-
teristic of the modified function in Eq. 4 is given with
the dotted line.

Using of the similarity of these two nonlinear func-
tions, two HR neurons are coupled with modified cou-
pling function. For the purpose of identifying the syn-
chronous statuses of these two HR neurons, standard
deviation calculation is repeated for modified chemical
coupled HR neurons and the results of this calculation
are given in the Fig. 4a. Two results in Figs. 2a and
4a are very similar each other. The numerical simu-
lation results for asynchronous, partially synchronous
and synchronous behaviors of the modified chemical
coupled twoHRneurons are given in Fig. 4b–d, respec-
tively, and the modified chemical coupling weights are
adjusted to gs = −2, gs = 0.6, gs = 5 in these numeri-
cal simulations. In whole numerical simulations, Euler
discretization methods has been used by taking the
discretization constant as �h = 0.01 and the ini-
tial conditions as (x1(0), y1(0), z1(0)) = (1, 0, 0) and
(x2(0), y2(0), z2(0)) = (2, 0, 0), respectively. Addi-
tionally, the model parameter values of HR neurons in
the chemical and modified chemical coupled structures
are adjusted to same values with the bursting behavior
of HR neuron model in Fig 1b, namely, μ = 0.01,
s = 4, xrest = −1.6, b = 2.6, I = 2.22.

In order to investigate the coupling types and syn-
chronization situations between neurons, the central
pattern generators (CPGs) networks are the suitable
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(a)

(b) (c) (d)

Fig. 2 a Standard deviation graph of the chemical coupled two
HR neurons for the synchronization stability. Time series and
phase portrait illustrations of the chemical coupled two HR neu-

rons for b = 2.6, I = 2.22, b asynchronous behaviors for
gs = −2, c partially synchronous behaviors for gs = 0.6, d
synchronous behaviors for gs = 5

Fig. 3 Nonlinear
characteristics of the
original and modified
chemical coupling functions

structures. Central pattern generators are the specific
neural networks which can produce a coordinated
rhythmic activity pattern without any rhythmic intro-

duction from the high control centers or sensor feed-
back in the living body [67]. The neurons in these net-
works communicate with each other through electri-
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(a)

(b) (c) (d)

Fig. 4 a Standard deviation graph of the modified chemical
coupled two HR neurons for the synchronization stability. Time
series and phase portrait illustrations of the chemical coupled two

HR neurons for b = 2.6, I = 2.22, b asynchronous behaviors
for gs = −2, c partially synchronous behaviors for gs = 0.6, d
synchronous behaviors for gs = 5

cal coupling and chemical coupling, and CPG network
structures can bemodeled with biological neuronmod-
els. In aCPG structure, a rhythmicmotor pattern is gen-
erated by a pacemaker neuron that can serve as a source
of the rhythm.The phase relationships and frequency of
the rhythms are based on the network interactions and
sensory and central modulation. The pyloric rhythm of
a lobster is one of the best understoodCPG circuits, and
this CPG circuit is given in Fig. 5a. The pyloric rhythm
consists of a five-phase rhythm as seen in Fig. 5b. The
core of the rhythm is a repeating cycle of activity in
which the lateral pyloric (LP), pyloric (PY) and pyloric
dilator (PD) neurons fire sequentially. The inferior car-

diac (IC) fires in LP time, and the ventricular dilator
(VD) often fires in PY time. The AB neuron is the
one interneuron of this CPG network and fires in time
with the PD neurons. Additionally, PD and LP neurons
exhibit asynchronous behavior as seen in Fig. 5b [66].
Here, the asynchronous behaviors of PD and LP neu-
rons are focused. Thus, phase differences between the
neurons have been considered rather than the dynami-
cal behaviors of neurons. PD and LP neurons in this
CPG network are represented by two HR neurons.
Synaptic connections are modeled via new modified
chemical coupling, and asynchronous behaviors can be
obtained by adjusting the chemical coupling weight to
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Fig. 5 a Pyloric stomatogastric CPG network of a lobster (cou-
pled PD and LP neurons), b the dynamical behaviors of the neu-
rons in the pyloric stomatogastric CPGnetwork [66], c numerical

simulation results of modified chemical coupled twoHR neurons
for gs = −2

gs = −2 according to the results of the standard devia-
tion calculation in Fig. 4. Numerical simulation results
in Fig. 5c of modified chemical coupled two HR neu-
rons for gs = −2 illustrate this asynchronous behav-
iors. As it is seen from these results, the neurons and
synaptic connections in aCPGnetwork can bemodeled
with HR biological neuron model successfully.

3 Hardware implementations of the chemical
coupled two HR neurons

Biological neuron models, coupled artificial neurons
and CPG networks, can be implemented with various
devices for the some applications required real-time
signals. Here, the design processes of programmable
analog device- and digital device-based the chemical
coupled two HR neurons are presented in detail. Since
this chemical coupled simple network reminds of the
small part of the stomatogastric ganglion CPG circuit
of a lobster, asynchronous behaviors of chemical cou-
pled HR neurons are presented as the results of the
experimental realizations. Namely, the programmable
analog device- and digital device-based implementa-
tions of the chemical coupledPDandLPneuronswhich
are modeled by HR neuron model are presented in this
section.

3.1 Programmable analog device-based
implementation

Several studies about analog devices-based realizations
of HR neuron model and the coupled HR neurons have

been reported in the literature [51–60], and the exper-
imental realizations of a HR neuron and the electri-
cal coupled HR neurons with programmable analog
device are also presented in literature by us [61]. How-
ever, any realization example of the chemical coupled
HR neurons with a programmable and reconfigurable
platform has not been recommended yet. To emulate
the interaction of the collective neurons faultlessly and
to operate bio-inspired structures precisely, this short-
coming about realization with programmable analog
device must be addressed as well. Thus, the realiza-
tion details of the chemical coupled HR neurons with
FPAA (field programmable analog array) are given in
this part.

FPAA (field programmable analog array) is a very
useful experimental platform with its high stability,
accuracy and rapid prototyping specialties to investi-
gate neuronal structures. This programmable analog
device is based on the switched-capacitor technology,
and it has some limitations such as capacity and a spe-
cific saturation level, (±2V). However, FPAA boards
can be combined with each other in order to cope
with the capacity problem and the saturation problem
is resolved with a rescaling operation. The predefined
configurable analog modules (CAMs) in the software
tool Anadigm Designer2 are used to implement ana-
log functions such as multiplication, addition, filtering,
rectification, etc. In this study, AN231E04 type FPAA
boards was used and comprehensive descriptions of the
CAMs are available on this software tool [68].

As seen from Fig. 6, four FPAA boards are used to
implement two chemical coupled HR neurons. These
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Fig. 6 a Schematic block
diagram for FPAA-based
implementation of chemical
coupled two HR neurons

Fig. 7 FPAA implementation scheme of the chemical coupled HR neurons
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Fig. 8 FPAA-based experimental results of the chemical cou-
pled two HR neurons for implementation easiness: x1, x2 time
domain illustrations, x, 200mV/div; y, 200mV/div; time/div,
10ms. b x-y phase portrait illustration of x1 and x2, x,
200mV/div; y, 200mV/div for asynchronous behavior

two HR neurons can be assumed PD and LP neurons
in the stomatogastric CPG. While PD neuron is con-
tracted with FPAA1&2 boards, LP neuron is embedded
FPAA3&4.

PDandLPneurons represented byHRneuronmodel
are implemented with FPAA as in Ref [61], and same
parameter values in Ref [61] are also used in this
study to implement HR neurons with FPAA. How-
ever, the realization of the chemical coupling is inte-
grated to this study. The chemical coupling function
for the first neuron is defined by γ (x1, x2) = γc(x2) =
(1/(1 + e−k(x2−θs))), σ(x1) = −(x1 − Vs) functions.
In the chemical coupling, γc(x j ) functions are imple-
mented by using TRANSFER FUNCTION blocks in
the FPAA2&4 as seen in Fig. 7. σ(xi ) function consists
of a difference expression and this function is realized
with a SUMDIFF block. Vs parameter in this difference
expression is a constant value, and it is implemented
with a VOLTAGE CAM block. Finally, the MULTI-
PLIER block is used for performing the multiplica-
tion operation in this synaptic connection. Synchro-
nous situations between the chemical coupled HR neu-
rons change depending on the (gs) parameter, and this
parameter can be adjusted with the gain of the MULTI-
PLIER block and it is adjusted to−0.5 after the rescal-
ing process for asynchronous behavior. The experimen-
tal results of the asynchronous behavior between chem-
ical coupled PD and LP neuron are given in Fig. 8 for
the FPAA-based realization. The CABusage capacities
and power consumptions of chemical coupling imple-
mentations are given in Table 1. The performance of
the electrical and chemical coupling can be considered
both together and separately in themodeling and imple-
mentation studies. It is useful to present the differences Ta
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and similarities between the electrical and chemical
coupling studies. In this context, the results of the elec-
trical coupled implementation studies in Ref. [61] are
given with the results of chemical ones comparatively
in the both FPAA- and FPGA-based implementations.
To compare the FPAA-based implementation results
of electrical and chemical coupling in terms of area
usage, power consumption and implementation advan-
tages, the electrical coupling results coupling in Ref
[61] are also given in Table 1. Since chemical coupling
functions are constructed on the FPAA2 and FPAA4
boards, CABusage capacities and power consumptions
of these boards increase just a little according to these
results. However, the nonlinear expression in the chem-
ical coupling canbe embeddedonly oneCABblock and
chemical coupling function is implemented easily with
FPAA as the electrical coupling.

These experimental results match the numerical
simulation result in Fig. 2. By changing the parame-
ter (gs), another synchronization status or realization
studies can be implemented easily in this experimen-
tal platform without time consumption and another
studies about neuron synchronization can be proved
rapidly with this analog programmable and reconfig-
urable device.

3.2 Programmable digital device-based
implementation

In the digital experimental realization studied, themod-
els included electrical coupling function and simple
descriptions are preferred for implementation easiness.
No study about the digital implementation of the chem-
ical coupling defined by a complex nonlinear function
is reported in the literature. In this study, to overcome
this implementation difficulty, exponential expression
in the chemical coupling function are converted to an
approximate nonlinear function which is more suit-
able for digital hardware implementation as mentioned
in previous section. Here, the programmable digital
device-based implementation of the chemical coupled
two HR neurons is made by utilizing the approximate
function in Eq. 4 and modified chemical coupled two
HR neurons are implemented with FPGA (field pro-
grammable gate array) as an example of digital real-
ization for the first time in literature.

In this FPGA-based implementation, it is handled
using Cyclone III IC which has 15408 digital blocks

and 112 embedded multipliers [69]. Since FPGA is a
digital platform, implementation process requires dis-
cretization of differential equations in Eq. 1. Euler
method is preferred for the discretization because of
its simplicity, and the discretization constant is chosen
as �h = 0.01. Resulting discrete equations are seen in
Eq. 5.

xn+1 = xn + �h(yn − x3n + bx2n + I − zn)

yn+1 = yn + �h(1 − 5x2n − yn)

zn+1 = zn + �h(μ(s(xn − xrest) − zn)) (5)

The equation of the modified chemical coupling in
Eq. (4) is used to couple two discretized neurons with
the initial conditions: (x1(0), y1(0), z1(0)) = (1, 0, 0)
and (x2(0), y2(0), z2(0)) = (2, 0, 0), respectively.
Also, themodel parameter values of modified chemical
coupled HR neurons are adjusted to μ = 0.01, s = 4,
xrest = −1.6, b = 2.6, I = 2.22 values. A block dia-
gram of the FPGA-based implementation for chemical
coupled two HR neurons is shown in Fig. 9a. These
neurons and their synaptic coupling are defined using
VHDL language as in Fig. 9b, and 24-bit fixed point
arithmetic (Q7.16) is used in arithmetic operations. (xn)
values of each neuron are truncated into 8 bits in order
to see their outputs using 8-bit D/A converters. Since
the PD and LP neurons represented by HR neurons
are handled in this study, the FPGA-based realization
results of modified coupled HR neurons are given for
asynchronous behavior for gs = −2 in Fig. 10. How-
ever, the synchronization statuses ofmodified chemical
coupled HR neurons are adjusted by depending on the
values of (gs).

The synthesis results of FPGA-based realization are
given in Table 2, and they are compared with the elec-
trical coupled HR neurons implementation in Ref. [61]
in order to see trade-off of the FPGA-based implemen-
tations of the coupling methods in terms of area and
multiplier usage and maximum frequency range. As it
is seen, there is a drastic decrease in themaximumoper-
ating frequency when the synaptic coupling is used in
implementation. Also, the area consumption is almost
doubled. Themain culprit behind this costly and slower
result is the division operation which is required in
the chemical coupling (Eq. 4). As the number of bits
increases, digital implementation of a divider becomes
costly and the operation becomes slower. Therefore,
while digital implementation deficiency problem of the
chemical coupledHRneurons is alleviated byusing this
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Fig. 9 a Schematic block diagram for FPGA-based implementation of chemical coupled two HR neurons, b VHDL design schemes
on Quartus II software of the chemical coupled HR neurons

modified function, electrical coupling is a better choice
for digital devices-based implementations.

4 Conclusions

In this study, versatile implementations of the chemi-
cal coupled two HR neurons are performed with pro-
grammable analog anddigital devices successfully. The
interactions of the collective neurons are emulated with
analog programmable device precisely. Since nonlin-

ear chemical coupling function is hard to realize with
digital devices, it has been concentrated on the digi-
tal implementation of this function. The digital device-
based implementation difficulty problem of the nonlin-
ear chemical coupling function is solved by modifying
this coupling function.

After the rescaling and the CAM blocks selec-
tion process, construction of the required connec-
tions between the CAM blocks are done by using
the FPAA interface tool to build analog program-
mable devices-based HR neurons. Thus, program-
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Fig. 10 FPGA-based experimental results of the chemical cou-
pled two HR neurons a x1, x2 time domain illustrations, x,
500mV/div; y, 500mV/div; time/div, 10ms. b x-y phase por-
trait illustration of x1 and x2 x, 500mV/div; y, 500mV/div for
asynchronous behavior

mable analog device-based realization of the chem-
ical coupled HR neurons is reported in this study
on the crest of a wave. Although CAB usage capac-
ities and power consumptions increase just a little,
four FPAA boards are used for the realization of the
chemical coupled HR neurons like as the electrical
one.

In the programmable digital device-based imple-
mentation process of the chemical coupled HR neu-
rons, firstly, the chemical coupling function is trans-
formed to an approximate nonlinear function in order
to overcome the digital device implementation diffi-
culty. Then, the stability control of the new modi-
fied chemical coupling function is checked by using
the standard deviation method and the synchroniza-
tion statuses of modified chemical coupled HR neurons
are adjusted by utilizing the result of standard devi-
ation method. Therefore, the modified chemical cou-
pled two HR neurons are implemented with FPGA as
an example of digital realization for the first time in
literature. When the synthesis results of FPGA-based
realizations of the electrically and chemically coupled
HR neurons are compared with each other, the max-
imum operating frequency, the area consumption and
the number of the used bit of the chemical coupled
HR neurons become worse. However, digital imple-
mentation deficiency problem of the chemical coupled

HR neurons is alleviated by using this modified func-
tion.

According to these results, both of the program-
mable and reconfigurable devices have been used effec-
tively in the experimental realization of the chemi-
cal coupled HR neurons. However, there are several
advantages of each of these analog and digital recon-
figurable devices in terms of the design methodolo-
gies. While one FPGA board was sufficient for FPGA
implementations in terms of capacity usage, four FPAA
boards were required for FPAA implementations. The
power consumption of FPAA is more than the FPGA,
because of the usage multiple boards in the FPAA-
based implementation. On the other hand, the out-
puts of the FPGA were obtained through DACs and
the performance of the FPGA remained dependent
on the bit resolution of the DAC in use. In contrast,
there was no requirement for an external device to
observe the neural dynamics for FPAA.While the non-
linear expression in the chemical coupling function
is implemented with FPAA without the need for any
extra process, an approximate nonlinear function is
used in the digital reconfigurable device implementa-
tion. Additionally, although devices performances of
the FPGA become worse, digital platform implemen-
tation presented closer behaviors to simulation results.
Despite of these shortcomings of the reconfigurable
platforms, the neuronal realization studies in here may
lead to other CPG circuit implementations. It is seen
that hardware solutions depending on analog and digi-
tal programmable devices play effective roles in various
CPG circuit applications. By using design techniques
presented here, prototypes of other neuronal applica-
tions can be constructed rapidly and the testing and
verifying process can be executed on these program-
mable platforms. After the realization of the chemical
coupling functionwith these useful reconfigurable ana-
log and digital platforms in this study, a whole CPG
network structure can be constructed with these exper-
imental platforms consummately in the future work
studies.

Table 2 Synthesis results and estimated power consumptions of the FPGA-based implementation

Area usage Embedded Maximum Bit
(logic elements) (%) multiplier usage (%) frequency (MHz) length

Electrical coupling [61] 4851 (31) 104 (93) 14.19 32

Chemical coupling 8925 (58) 96 (86) 3.54 24

123



The investigation of chemical coupling 1853

References

1. Pecora, L.M., Carroll, T.L.: Synchronization in chaotic sys-
tems. Phys. Rev. Lett. 64, 821–824 (1990)

2. Kocarev, L., Parlitz, U.: General approach for chaotic syn-
chronization with applications to communication. Phys.
Rev. Lett. 74, 5028–5031 (1995)

3. Terry, J.R., Thornburg, K.S., De Shazer, D.J., VanWiggeren,
G.D., Zhu, S.Q., Ashwin, P., Roy, R.: Synchronization of
chaos in an array of three lasers. Phys. Rev. E 59, 4036–
4043 (1999)

4. Yang, X.S., Cao, J.D.: Finite-time stochastic synchroniza-
tion of complex networks. Appl. Math. Model. 34, 3631–
3641 (2010)

5. Gray, C.M., König, P., Engel, A.K., Singer, W.: Oscillatory
responses in cat visual cortex exhibit inter-columnar syn-
chronization with reflects global stimulus properties. Nature
338, 334–337 (1989)

6. Kreiter, A.K., Singer, W.: Stimulus-dependent synchroniza-
tion of neuronal responses in the visual cortex of the awake
macaque monkey. J. Neurosci. 16, 2381–2396 (1996)

7. Roelfsema, P.R., Engel, A.K., König, P., Singer, W.: Visuo-
motor integration is associated with zero time-lag synchro-
nization among cortical areas. Nature 385, 157–161 (1997)

8. Hodgkin,A., Huxley,A.: A quantitative description ofmem-
brane current and its application to conduction and excitation
in nerve. J. Phisiol. (Lond) 117, 500–544 (1952)

9. FitzHugh, R.: Mathematical models for excitation and prop-
agation in nerve. In: Schawn,H.P. (ed.) Biological Engineer-
ing, vol. 1, pp. 1–85. McGraw-Hill, New York (1969)

10. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory inter-
actions in localized populations of model neurons. Biophys.
J. 12(1), 1–24 (1972)

11. Morris, C., Lecar, H.: Voltage oscillations in the barnacle
giant muscle fiber. Biophys. J. 35, 193–213 (1981)

12. Hindmarsh, J.L., Rose, R.M.: A model of neural bursting
using three couple first order differential equations. Proc. R.
Soc. Lond. Biol. Sci. 221(1222), 87–102 (1984)

13. Izhikevich, E.M.: Simple model of spiking neurons. IEEE
Trans. Neural Netw. 14(6), 1569–1572 (2003)

14. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of
Neural Science, 4th ed. McGraw-Hill, New York. ISBN 0-
8385-7701-6 (2000)

15. Miller, J.P., Selverston,A.I.:Mechanismsunderlying pattern
generation in lobster stomatogastric ganglion as determined
by selective inactivation of identified neurons. II. Oscillatory
properties of pyloric neurons. J. Neurophysiol. 48(6), 1378–
1391 (1982)

16. Li, C.H., Yang, S.Y.: Effects of network structure on the
synchronizability of nonlinearly coupled Hindmarsh-Rose
neurons. Phys. Lett. A 379, 2541–2548 (2015)

17. Hrg, D.: Synchronization of two Hindmarsh–Rose neurons
with unidirectional coupling.NeuralNetw. 40, 73–79 (2013)

18. Jhou, F.J., Juang, J., Liang, Y.H.: Multistate and multistage
synchronization of Hindmarsh–Rose neurons with excita-
tory chemical and electrical synapses. IEEE Trans. Circuits
Syst. I Regul. Pap. 59(6), 1335–1347 (2012)

19. Wei, W.: Synchronization of coupled chaotic Hindmarsh
Rose neurons: an adaptive approach. Chin. Phys. B 24(10),
100503 (2015)

20. Nguyen, L.H., Hong, K.S.: Adaptive synchronization of two
coupled chaoticHindmarsh–Roseneurons by controlling the
membrane potential of a slave neuron. Appl. Math. Model.
37, 2460–2468 (2013)

21. Nguyen, L.H., Hong, K.S.: Synchronization of coupled
chaotic FitzHugh–Nagumo neurons via Lyapunov func-
tions. Math. Comput. Simul. 82, 590–603 (2011)

22. Rehan, M., Hong, K.S., Aqil, M.: Synchronization of multi-
ple chaotic FitzHugh–Nagumo neurons with gap junctions
under external electrical stimulation. Neurocomputing 74,
3296–3304 (2011)

23. Aqil, M., Hong, K.S., Jeong, M.Y.: Synchronization of cou-
pled chaotic FitzHugh–Nagumo systems. Commun. Non-
linear Sci. Numer. Simul. 17, 1615–1627 (2012)

24. Deng, B., Wang, J., Fei, X.: Synchronizing two coupled
chaotic neurons in external electrical stimulation using
backstepping control. Chaos Solitons Fractals 29, 182–189
(2006)

25. Sun, L., Wang, J., Deng, B.: Global synchronization of
two Ghostburster neurons via active control. Chaos Solitons
Fractals 40, 1213–1220 (2009)

26. Wang, J., Chen, L.S., Deng, B.: Synchronization of Ghost-
burster neuron in external electrical stimulation via H-
infinity variable universe fuzzy adaptive control. Chaos Soli-
tons Fractals 39, 2076–2085 (2009)

27. Aguilar-Lópex, R., Martínez-Guerra, R.: Synchronization
of coupled Hodgkin–Huxley neurons via high order sliding-
mode feedback. Chaos Solitons Fractals 37, 539–546 (2008)

28. Che, Y.Q., Wang, J., Tsang, K.M., Chan, W.L.: Unidirec-
tional synchronization for Hindmarsh–Rose neurons via
robust adaptive sliding mode control. Nonlinear Anal. Real
World Appl. 11, 1096–1104 (2010)

29. Dtchetgnia Djeundam, S.R., Yamapi, R., Filatrella, G.,
Kofane, T.C.: Stability of the synchronized network of
Hindmarsh–Rose neuronal models with nearest and global
couplings. Commun. Nonlinear Sci. Numer.Simul. 22, 545–
563 (2015)

30. Wang, C., He, Y., Ma, J., Huang, L.: Parameters estimation,
mixed synchronization, and antisynchronization in chaotic
systems. Complexity 20(1), 64–73 (2014)

31. Zhang, J.Q., Huang, S.F., Pang, S.T., Wang, M.S., Gao,
S.: Synchronization in the uncoupled neuron system. Chin.
Phys. Lett. 32(12), 9–13 (2015)

32. Li, C.H., Yang, S.Y.: Eventual dissipativeness and syn-
chronization of nonlinearly coupled dynamical network of
Hindmarsh–Rose neurons. Appl. Math. Model. 39, 6631–
6644 (2015)

33. Pecora, L.M., Carroll, T.L.: Master stability functions for
synchronized coupled systems. Int. J. Bifurc. Chaos 80,
2109–2112 (1998)

34. Belykh, V., Belykh, I., Hasler, M.: Connection graph stabil-
ity method for synchronized coupled chaotic systems. Phys.
D Nonlinear Phenom. 195, 159–187 (2004)

35. Belykh, I., Belykh, V., Hasler,M.: Synchronization in asym-
metrically coupled networkswith node balance.Chaos Inter-
discip. J. Nonlinear Sci. 16, 015102 (2006)

36. Belykh, I., Belykh, V., Hasler, M.: Generalized connec-
tion graph method for synchronization in asymmetrical net-
works. Phys. D Nonlinear Phenom. 224, 42–51 (2006)

123



1854 N. Korkmaz et al.

37. Chen, T., Zhu, Z.: Exponential synchronization of nonlinear
coupled dynamical networks. Int. J. Bifurc. Chaos 17, 999–
1005 (2007)

38. Liu, X., Chen, T.: Synchronization analysis for nonlinearly-
coupled complex networks with an asymmetrical coupling
matrix. Phys. A Stat. Mech. Appl. 387, 4429–4439 (2008)

39. Lu, W., Chen, T.: New approach to synchronization analysis
of linearly coupled ordinary differential systems. Phys. D
Nonlinear Phenom. 213, 214–230 (2006)

40. Liu, X., Chen, T.: Boundedness and synchronization of y-
coupled Lorenz systems with or without controllers. Phys.
D Nonlinear Phenom. 237, 630–639 (2008)

41. Chen, M.: Synchronization in time-varying networks: a
matrix measure approach. Phys. Rev. E 76, 016104 (2007)

42. Juang, J., Li, C.-L., Liang, Y.-H.: Global synchronization
in lattices of coupled chaotic systems. Chaos Interdiscip. J.
Nonlinear Sci. 17, 033111 (2007)

43. Baptista, M.S., Moukam Kakmeni, F.M., Grebogi, C.:
Combined effect of chemical and electrical synapses in
Hindmarsh–Rose neural networks on synchronization and
the rate of information. Phys. Rev. E 82, 036203 (2010)

44. Li, Z.: Exponential stability of synchronization in asym-
metrically coupled dynamical networks. Chaos Interdiscip.
J. Nonlinear Sci. 18(2), 023124 (2008)

45. Li, Z., Lee, J.: New eigenvalue based approach to synchro-
nization in asymmetrically coupled networks. Chaos Inter-
discip. J. Nonlinear Sci. 17(4), 043117 (2007)

46. Checco, P., Righero, M., Biey, M., Kocerev, L.: Informa-
tion processing in networks of coupled Hindmarsh–Rose
neurons. In: International Symposium on Nonlinear Theory
and its Applications Bologna-Italy, NOLTA, pp. 671–674
(2006)

47. Gu, H., Pan, B., Chen, G., Duan, L.: Biological experimental
demonstration of bifurcations frombursting to spiking pre-
dicted by theoretical models. Nonlinear Dyn. 78, 391–407
(2014)

48. Abarbanel, H.D.I., Rabinovich, M.I., Selverston, A.,
Bazhenov, M.V., Huerta, R., Sushchik, M.M., Rubchinskii,
L.L.: Synchronization in neural networks. Phys. Uspekhi
39(4), 337–362 (1996)

49. Elson, R.C., Selverston, A.I., Huerta, R., Rulkov, N.F., Rabi-
novich, A.I., Abarbanel, H.D.I.: Synchronous behavior of
two coupled biological neurons. Phys. Rev. Lett. 81(25),
5692–5695 (1998)

50. Hizanidis, J., Kanas, V., Bezerianos, A., Bountis, T.:
Chimera states in networks of nonlocally coupled
Hindmarsh–Rose neuronmodels. Int. J. Bifurc.Chaos24(3),
1450030 (2014)

51. Lu, J., Yang, J., Kim, Y.B., Ayers, J., Kim, K.K.: Imple-
mentation of excitatory CMOS neuron oscillator for robot
motion control unit. J. Semiconduct. Technol. Sci. 14(4),
383–390 (2014)

52. Charles, G., Gordon, C., Alexander, W.E.: An implementa-
tion of a biological neural model using analog-digital inte-
grated circuits. In: IEEE International Behavioral Modeling
and Simulation Workshop, BMAS, pp. 78–83 (2008)

53. Pinto, R.D., Varona, P., Volkovskii, A.R., Szücs, A., Abar-
banel, H.D.I., Rabinovich, M.I.: Synchronous behavior of
two coupled electronic neurons. Phys. Rev. E 62(2000),
2644–2656 (2000)

54. Merlat, L., Silvestre, N., Merckle, J.: A Hindmarsh and
Rose-based electronic burster. In: Proceedings of Fifth Inter-
national Conference on Microelectronics for Neural Net-
works, pp. 39-44 (1996)

55. Poggi, T., Sciutto, A., Storace, M.: Piecewise linear imple-
mentation of nonlinear dynamical systems: from theory to
practice. Electron. Lett. 45(19), 966–967 (2009)

56. Gotthans, T., Petrzela, J., Hrubos, Z.: Analysis of
Hindmarsh–Rose neuron model and novel circuitry real-
ization. In: Proceedings of the 18th International Confer-
ence Mixed Design of Integrated Circuits and Systems
(MIXDES), pp. 576–580 (2011)

57. Linaro, D., Poggi, T., Storace, M.: Experimental bifurcation
diagram of a circuit-implemented neuron model. Phys. Lett.
A 374, 4589–4593 (2010)
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