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Abstract This paper investigates the effects of a
smooth nonlinear energy sink (NES) on the vibration
suppression of a fixed-fixed pipe conveying fluid under
excitation of an external harmonic load. Pipe is mod-
eled using the Euler–Bernoulli beam theory, and the
NES has an essentially nonlinear stiffness and a lin-
ear damping. The required conditions that allow for
saddle-node bifurcation, Hopf bifurcation and strongly
modulated responses (SMRs) in the system are stud-
ied. The SMR phenomenon in the system response is
considered as the most efficient regime of response for
vibrationmitigation. In addition, the effects of damping
value of theNES, location of theNES on the pipe, mag-
nitude of the external force and the fluid velocity on the
dynamical behavior of the system are investigated. The
Runge–Kutta and complexification-averagingmethods
are employed for numerical and analytical solutions,
respectively. Finally, the efficiency of an optimal NES
in the energy reduction of the primary system is com-
pared to that of an optimal linear absorber. It can be seen
that reducing the distance between the NES and the
pipe supports decreases the probability of occurrence
of the SMR and weak modulated response; moreover,
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it provides suitable conditions for occurrence of the
saddle-node bifurcation. Furthermore, increasing the
fluid velocity decreases the amplitude of steady-state
response of the system and extends the unstable region
of the response. The results show that the middle of
the pipe is the best position for connecting the NES to
a fixed-fixed pipe conveying fluid under the external
periodic excitation.
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1 Introduction

Mathematical modeling and vibration mitigation of a
pipe conveying fluid have been the subject of a great
number of scientific investigations over years. Indeed,
the results of the conducted researches can be applied
to a wide range of engineering fields, such as oil trans-
portation facilities, municipal water supply systems,
risers, nuclear steam supply systems and heat exchang-
ers. Starting with the linear equations of motion for
pipes [1], several refined models have been presented
leading to highly nonlinearmodels of pipes [2]. In order
to get a broad overview, one can consider [3–5]. Gener-
ally, the principal reason for a pipe vibration that causes
instability of the dynamic response and large deforma-
tions is interactions of pipe conveying fluid with exter-
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nal excitation. Extensive researches have been carried
out in the literature to address this subject [6,7]. The
majority of researches proposed the active vibration
control of pipe conveying fluid for vibration suppres-
sion and preventing system failure due to fatigue. The
active controllers make a closed loop system and detect
the variations of parameters employing different sen-
sors [8,9].

Passive vibration control of pipe conveying fluid has
not been well studied, although it may yield interesting
results. It should be noted that active controllers need
sensors, equipment and external energy supplies. Thus,
it is clear that these methodologies are more complex
than passive ones. Moreover, the passive strategies are
simple to be designed and inherently stable. Therefore,
they are more suitable for usage in the field of engi-
neering, especially for pipe conveying oil and gas at the
bottom of the oceans. The results of employing passive
vibration control techniques to reduce the vibration of
pipes in engineering fields reveal that variations in the
frequency of the excitation force can adversely affect
the effectiveness of these techniques. As a result, their
efficiency would be a narrow band such as the classical
linear tuned mass dampers (TMDs) [10,11].

In recent years, nonlinear energy sinks have been
widely taken into consideration instead of TMDs or
weakly nonlinear absorbers to mitigate the transient
and steady-state vibrations of discrete and continuous
systems based on numerical and analytical approaches
[12–14].

Ahmadabadi and Khadem [15] investigated the
attenuation of a drill string self-excited oscillations
using a nonlinear energy sink. They studied various
positions of the drill string and different types of
NESs for vibration mitigation. Xiong et al. [16] stud-
ied vibration reduction of a nonlinear mechanical sys-
tem coupled to a NES under the impact of the nar-
row band stochastic excitations. They compared the
NES efficiency to that of a linear absorber based on
the complexification-averagingmethod and integration
method; moreover, the results were verified using a
numerical approach. Kani et al. [17] surveyed design
and efficiency of a nonlinear energy sink attached to
a beam with different support conditions. Starosvetsky
and Gendelman [18] analyzed the vibration suppres-
sion of a two-degree-of-freedom linear system using a
nonlinear energy sink. Moreover, they compared the
efficiency of the NES to that of a best-tuned linear
absorber. Ahmadabadi and Khadem [19] investigated

annihilation of high-amplitude periodic responses of a
forced two-degree-of-freedomoscillatory systemusing
a nonlinear energy sink. Kani et al. [20] investigated
vibration control of a nonlinear beam employing a
nonlinear energy sink. The NES parameters were opti-
mized based on maximizing the targeted energy trans-
fer (TET) from nonlinear continuous system to NES.
Bab et al. [21] investigated the performance of a num-
ber of smooth nonlinear energy sinks on the vibration
attenuation of a rotor system under excitation of a mass
eccentricity force. They used multiple-scale harmonic
balance method to show that when the external force
reaches its medium magnitude, the range of happen-
ing of SMR in the area of the system parameters is
extended. Ahmadabadi and Khadem [22] investigated
a coupled nonlinear energy sink and a piezoelectric-
based vibration energy harvester positioned on a free-
free beam under a shock excitation. The efficiency of
the NES and the harvester for two configurations was
studied; then, the optimal parameters of the system for
the maximum dissipated energy in the NES and the
highest harvested energy by the piezoelectric element
were extracted. Luongo and Zulli [23] investigated the
use of a nonlinear energy sink to control vibrations of a
nonlinear structure under the effects of a bi-frequency
harmonic excitation. Yang et al. [24] analyzed the tar-
geted energy transfer in pipe conveying fluidwithNES.
They showed that the NES could robustly absorb and
dissipate a major portion of the vibrational energy of
the pipe. Bab et al. [25] investigated the efficiency of
a number of smooth NESs on the vibration attenuation
of a rotor system under excitation of a mass eccentric-
ity force. They showed that when the external force
reaches its medium magnitude, the area of the occur-
rence of the SMR in the domain of the system para-
meters would be larger and the collection of the NESs
performs impressively. Ahmadabadi and Khadem [26]
reviewed the influence of grounded and ungrounded
NESs attached to a cantilever beam on the energy mit-
igation of the coupled system under excitation of an
external shock. They investigated the effects of the non-
linear normal modes of the system on the occurrence of
the one-way irreversible energy pumping. Gendelman
[27] investigated TET in a two-degree-of-freedom sys-
tem consisting of a primary linear oscillator and NES
with non-polynomial potential. Bab et al. [28] analyzed
the performance of a smooth nonlinear energy sink to
mitigate vibrations of a rotating beam under an external
force. They showed that the best range for the parame-
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Fig. 1 A schematic view of
the fluid transfer system
with nonlinear energy sink
under harmonic external
load

ters of the NES is the one in which SMR and WMR
occur simultaneously.

According to the above-mentioned researches, in
order to simulate the oil transmission systems under the
ocean, one may investigate the effects of the smooth
NES on vibration control of a pipe conveying fluid
under external harmonic load. In the current paper the
Euler–Bernoulli beam theory is used for modeling the
pipe conveying fluid. It is assumed that a distributed
external periodic load is applied to the entire pipe. In
this context, a small mass NES is used to reduce the
pipe vibrations. Also, the damping and the stiffness
of the NES is assumed linear and nonlinear, respec-
tively. In order to detect the maximum efficiency of
the absorber, various points of the pipe are examined
for the attachment of the NES. Furthermore, the exis-
tence of the saddle-node, WMR and SMR in the space
of magnitude of external force, the damping of NES
and the position of NES on the pipe are investigated.
In addition, the frequency response curves and phase
portraits of the system are depicted.

2 Mathematical model of the considered system

In this paper, theHamiltonian approach is used to derive
the equations of motion. A cylindrical pipe with fixed-
fixed ends (two fixed supports), density ρp, length L ,
diameter D [in oil transmission systems used in oceans
the ratio of pipes length to their diameter is assumed
to be large (L/D � 1)] with thickness t , conveying
fluid is considered (see Fig. 1). X and Z are the spatial
coordinates, and w(x, t) is transverse displacement of
the pipe at position x . Let us denote time with t, deriv-
atives with respect to the spatial variable with (x )and
derivatives with respect to time with (t ). Ep Ip is the
flexural rigidity of the pipe; cp is damping of pipe, and
A f and Ap are the cross-sectional areas of the pipe

and flow, respectively, and they are all assumed to be
constant. Fluid velocity U f is constant, and ρ f is fluid
density. Fluid transfer system is under the excitation of
a sinusoidal force f (t) = F0sin(�t), where F0 and �

are themagnitude and angular frequency of the external
force, respectively. For vibration reduction, a nonlinear
energy sink is used with nonlinear cubic spring, K θ3,
damping, C θ̇ , and mass m. Absolute displacement of
the NES is u and d is the distance of connecting point
of the NES to the pipe, measured from the left pipe
support (as shown in Fig. 1).

The fluid velocity in the reference coordinates sys-
tem can be obtained using the Euler–Bernoulli beam
theory as [3]:

vfl = U f
∧
i +
[
∂w(x, t)

∂t
+U f

∂w(x, t)

∂s

] ∧
k (1)

In the above equation, s is a curvilinear coordinate
s ∈ [0, L]. Total kinetic energy of the system (Ttot) is
the sum of the kinetic energy of the pipe (Tp), the fluid
(Tfl) and the NES (TNES) as shown in Eqs. (2)–(5):

Ttot = TP + Tfl + TNES (2)

TP = 1

2
ρp Ap

∫ L

0
(w2

t (x, t))dx (3)

Tfl = 1

2
ρflAf

∫ L

0
[(wt (x, t)

+U f wx (x, t))
2 +U 2

f ]dx (4)

TNES = 1

2
mNESu

2
t (t) (5)

The potential energy of the system (Vtot) is sum
of the elastic potential energy of the pipe (Vp) and
NES (VNES) relative to the equilibrium position of the
system. The corresponding equations can be written
according to Eqs. (6)–(8):
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Vtot = VP + VNES (6)

Vp = 1

2
ρp Ap

[∫ L

0
Ep Ipw

2
xx (x, t))

2dx

]
(7)

VNES = 1

4
K [u(t) − w(x, t) × δ(x − d)]4 (8)

where δ(x) is the Dirac delta function.
Total work done by non-conservative forces (Wnc)

because of the external harmonic load, damping ofNES
and damping of pipe is given by:

Wnc = F0 cos(�t) × w(x, t) − 1

2
C×[ut (t)−wt (x, t)

× δ(x − d)]2 − 1

2
cp × w2

t (x, t)
2 (9)

Based on the Hamilton principle, one has:

∫ t2

t1
(δTtot − δVtot + δWnc)dt = 0 (10)

Substituting Eqs. (2)–(9) in Eq. (10) and applying
the variational techniques, the governing partial differ-
ential equation can be derived as:

Ep Ipwxxxx (x, t) + cpwt (x, t) + ρ f A f [U 2
f wxx (x, t)

+ 2U f wt x (x, t)] + [ρ f A f + ρp Ap]wt t (x, t)

+
{
K [w(x, t) × δ(x − d) − u(t)]3

+C[wt (x, t) × δ(x − d) − ut (t)]} = F0 sin(�t)

mutt (t) + C[wt (x, t)

× δ(x − d) − ut (t)] + K [w(x, t)

× δ(x − d) − u(t)]3 = 0 (11)

In the above equations, the first one is the partial dif-
ferential equation of the pipe and the second one is the
ordinary differential equation of the nonlinear energy
sink. In Eq. (11), Ep Ipwxxxx and cpwt present the flex-
ural restoring force and the damping force of the pipe,
respectively. The expression ρ f A f [U 2

f wxx (x, t) +
2U f wt x (x, t)] represents the flow-related centrifu-
gal force (associated with pipe curvature) and flow-
related Coriolis force [1,3]. The expression [ρ f A f +
ρp Ap]wt t is acting force on the pipe because of the
inertia of the pipe and the fluid that flows through it. The
term
{
K [w × δ(x−d)−u]3 + C[wt × δ(x−d)−ut ]

}
represents the force component acting on the pipe at
(x = d) that comes from nonlinear energy sink stiff-

ness and damping. Finally, F0 sin(�t) represents the
external harmonic load that excites the system.

The shape functions of a fixed-fixed beam are con-
sidered for pipe conveying fluid according to Eq. (8) to
apply the Galerkin method. Thus, one has [29]:

φi (x) = cosh(λi x) − cos(λi x) − sin(λi l ′) + sinh(λi l ′)
cos(λi l ′) + cosh(λi l ′)

.

{sinh(λi x) − sin(λi x)} (12)

The values of λ j l ′ for different modes are λ1l ′ =
4.73, λ2l ′ = 7.53, λ3l ′ = 10.99, . . . which are obtai-
ned by solving frequency equation of the fixed-fixed
beam (cosh(x) cos(x) = 1) [29].

Starosvetsky and Gendelman studied the efficiency
of a nonlinear energy sink in vibration reduction of a
two-degree-of-freedom system [18]. They proved that
in the system under the periodic or narrow band exci-
tation, when the frequencies of the primary system are
well separated, it can be considered as a two-degree-
of-freedom system, which includes the desired mode
of the primary system and NES. In this case, separated
values of λ j l ′ show that the system frequencies are
sufficiently separated. Thus, the coupled pipe and NES
system can be considered as a two-degree-of-freedom
system, which includes the first (and the most impor-
tant) vibration mode of the pipe and NES.With the aim
of transforming the above equations to dimensionless
ones, the following variables are considered:

w̄ = w

L
, x̄ = x

L
, ū = u

L
, t̄ = t

a
, d̄ = d

L
,

Ū f =
√

ρ f (ρ f A f + ρp Ap)A f L3

λ41mEp Ip
U f , γ̄ = ρ f A f L

m

β = K L6(ρ f A f + ρp Ap)

λ41mEp Ip
,

ᾱ = CL2
√

(ρ f A f + ρp Ap)

λ21m
√
Ep Ip

,

a = L2

λ21

√
ρ f A f + ρp Ap

Ep Ip
, �̄ = �a

F̄ = F0L4(ρ f A f + ρp Ap)

λ41mEp Ip
,

c̄p = cpL3
√

(ρ f A f + ρp Ap)

mλ21
√
Ep Ip

,

ε = m

(ρ f A f + ρp Ap)L
(13)
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Considering dimensionless parameters in Eq. (13),
the corresponding dimensionless equations are obtai-
ned as follows:

w̄x̄ x̄ x̄ x̄ (x̄, t̄) + εc̄pw̄t̄ (x̄, t̄) + εŪ 2
f w̄x̄ x̄ (x̄, t̄)

+ 2ε
√

γ̄ Ū f w̄t̄ x̄ (x̄, t̄) + w̄t̄ t̄ (x̄, t̄)

+ ε
{
β̄[w̄(x̄, t̄) × δ(x̄ − d̄) − ū(t̄)]3

+ ᾱ[w̄t̄ (x̄, t̄) × δ(x̄ − d̄) − ūt̄ (t̄)]
} = ε F̄ cos(�̄t̄)

εūt t (t̄) + εᾱ × [ūt (t̄) − w̄t (x̄, t̄) × δ(x̄ − d̄)]
+ εβ̄[ū(t̄) × δ(x̄ − d̄) − w̄(x̄, t̄)]3 = 0 (14)

The coupled partial differential equations of the
system are transformed to ordinary differential equa-
tions using the Galerkin method. For this purpose, it is
assumed that the response of the pipe is as follows:

w̄(x̄, t̄) =
n∑

i=1

φi (x̄)qi (t̄) (15)

With regard to the properties of Dirac delta function
and the first mode of the pipe and using the Galerkin
method, the equations governing the pipe and NES are
obtained as coupledordinarydifferential equations, and
integrating over the domain [0, 1] yields:

m11(q1(t̄))t t + k11q1(t̄) + εμq1(t̄) + εξ(q1(t̄))t

+εᾱφ1(d̄){φ1(d̄)(q1(t̄))t − (ū(t̄))t }
+ εβ̄φ1(d̄){φ1(d̄)q1(t̄) − ū(t̄)}3 = ε F̄ cos(�̄t̄)

εū(t̄)t t + εα[(ū(t̄))t − φ1(d̄)(q1(t̄))t ]
+ εβ[ū(t̄) − φ1(d̄)q1(t̄)]3 = 0 (16)

The coefficients of this equation are presented in
“Appendix 1.” In Eq. (16), asymmetry of the coupled
equations causes complexity. Therefore, for obtaining
symmetric equations, a new coordinate transformation
is used. For this purpose, q1(t̄) and q ′

1(t̄) are considered
as the first mode displacement and the displacement of
the pipe at the location of the NES. In addition, consid-
ering q ′

1(t̄) = φ1(d̄)×q1(t̄), Eq. (16) can be written as
Eq. (17):

m11

φ2
1d

(q ′
1(t̄))t t + k11

φ2
1d

q ′
1(t̄) + ε

μ

φ1d
q ′
1(t̄)

+ ε
ξ

φ1d
(q ′

1(t̄))t + εα{(q ′
1(t̄))t − (ū(t̄))t }

+εβ{q ′
1(t̄) − ū(t̄)}3 = ε

F̄

φ1d
cos(�̄t̄ + φ)

εū(t̄)t t + εα[(ū(t̄))t − (q ′
1(t̄))t ]

+ εβ[ū(t̄) − q ′
1(t̄)]3 = 0 (17)

Considering m′
11 = m11/φ

2
1d

, k′
11 = k11/φ2

1d
,

φ1(d̄) = φ1d , Eq. (17) can be written as follows:

m′
11(q

′
1(t̄))t t + k′

11q
′
1(t̄) + ε

μ

φ1d
q ′
1(t̄) + ε

ξ

φ1d
(q ′

1(t̄))t

+ εα{(q ′
1(t̄))t − (ū(t̄))t } + εβ{q ′

1(t̄) − ū(t̄)}3

= ε
F̄

φ1d
cos(�̄t̄ + φ)

εūt t (t̄) + εα[(ū(t̄))t − (q ′
1(t̄))t ]

+ εβ[ū(t̄) − q ′
1(t̄)]3 = 0 (18)

For the sake of simplicity, the parameters are given
without index and bar in the following sections.

3 Analytical treatments

3.1 Complexification-averaging method and stability
analysis

The complexification-averaging method is used to
achieve the steady-state response of the coupled sys-
tems of pipe and absorber Eq. (18). This method was
developed by Manevitch for extraction of the transient
and steady-state response of systems with NES [30].
Both the slow-varying and the fast-varying parts of
the motion can be separated using this method. Fast
and slow parts are related to natural frequency and
the amplitude of vibration, respectively. Considering
the fact that the system behavior is investigated around
the first natural frequency, a detuning parameter σ is
defined that represents the nearness of the excitation
frequency to the natural frequency of the main system
[31]. It can be formulated as k11 = m11(�

2 + εσ ).
Finally, assuming q1(t̄) = x1(t) and ū(t̄) = x2(t), Eq.
(18) will be:

m11(x1(t))t t + m11(�
2 + εσ )x1(t)

+ ε
ζ

φ1d
(x1(t))t + ε

μ

φ1d
x1(t)

+ εα{(x1(t))t − (x2(t))t } + εβ{x1(t) − x2(t)}3

= ε
F

φ1d
cos(�t)
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ε(x2(t))t t + εα[(x2(t))t − (x1(t))t ]
+ εβ[x2(t) − x1(t)]3 = 0 (19)

In Eq. (19), the ξ is the non-dimensional damping of
the system;μ is the non-dimensional fluid velocity, and
α andβ are stiffness and damping ofNES, respectively.

As well, it is common in the literature that ratio of
nonlinear energy sink mass to the main system (pipe)
mass is assumed to be small; moreover, it is assumed
that the stiffness of the nonlinear energy sink is nonlin-
ear. The coordinate transformation of Eq. (20) transfers
(x1) and (x2) to the coordinates of themass center (v(t))
and relative displacement (w(t)). This transformation
is employed to investigate the efficiency of NES. The
relative displacement is important, and this transforma-
tion indicates a better transmission of energy from the
pipe to the NES and ultimately the energy dissipation:

v(t) = x1(t) + εx2(t)

w(t) = x1(t) − x2(t) (20)

In the complexification-averaging method, the res-
ponse of the system is obtained using the sum of
the responses of dominant frequencies. Here, for the
pipe and absorber movements, it can be assumed
that the system has a dominant frequency; thus, it
can be written as v(t) = v1(t), w(t) = w1(t).
In complexification-averaging method, the following
parameters are defined with complex parameters (i =√−1):

ψ1(t) = (v1(t)) + i�v1(t) (21)

ψ2(t) = (w1(t)) + i�w1(t) (22)

The displacements of the system components using
the defined complex parameters are as follows:

v1(t) = 1

2i�

(
ψ1(t) − ψ∗

1 (t)
)
,

w1(t) = 1

2i�

(
ψ2(t) − ψ∗

2 (t)
)

(v1(t))t = 1

2
(ψ1(t) + ψ∗

1 (t)),

(w1(t))t = 1

2
(ψ2(t) + ψ∗

2 (t))

(v1(t))t t = (ψ1(t))t − i�

2

(
ψ1(t) + ψ∗

1 (t)
)
,

(w1(t))t t = (ψ2(t))t − i�

2

(
ψ2(t) + ψ∗

2 (t)
)

(23)

In Eq. (23), star indicates conjugate of the cor-
responding parameters. Defining the following equa-
tions, the fast and slow vibration behavior of the system
can be separated as:

ψ1(t) = φ1(t)e
i�t , ψ∗

1 (t) = φ∗
1
(t)e−i�t

ψ2(t) = φ2(t)e
i�t , ψ∗

2 (t) = φ∗
2
(t)e−i�t (24)

In this relation, (ei�t ) is related to fast-varying part
of motion and the natural frequency of the system;
φ1 (t) andφ2 (t) indicate the complex amplitudemodu-
lations of center ofmass and themotion of the pipe rela-
tive to the NES (the vibration amplitudes). Substituting
Eqs. (20)–(24) in (19), the equations governing behav-
ior of the slow-varying part of the system is obtained
as follows (keeping only terms containing ei�t yields
the following slow modulated system):

d

dt
φ1 (t) − ε

8�3 (1 + ε)
{4iφ1dφ1 (t) μ�2

− 4φ1dφ2 (t) εξ�3 − 3iφ2 (t) |φ2 (t)|2 β

− 4φ1dφ1 (t) ξ�3 + 3iφ2 (t) |φ2 (t)|2 βεφ2
1d

− 4φ2 (t) αε�3φ2
1d + 4Fφ1d�

3 + 4i�4φ2 (t)

− 4φ2 (t) α�3φ2
1d + 4iφ1 (t) σ�2 + 4φ2 (t) αε�3

+ 4Fφ1dε�
3 − 3iφ2 (t) |φ2 (t)|2 βε

+ 3iφ2 (t) |φ2 (t)|2 βφ2
1d + 4iφ2 (t) εσ�2

+ 4iφ1dφ2 (t) εμ�2 − 4i�4φ1 (t)

+ 4φ2 (t) α�3} = 0
d

dt
φ2 (t) − 1

8�(1 + ε)
{4iφ1dφ2 (t) ε2μ�2

− 4φ1dφ2 (t) ε2ξω3
0 + 4φ1d Fε2�3

+ 3iφ2 (t) |φ2 (t)|2 β − 4i�4φ2 (t) − 4φ2 (t) α�3

− 4φ1dφ1 (t) εξ�3 + 3iφ2 (t) |φ2 (t)|2 βεφ2
1d

− 4φ2 (t) αε2�3φ2
1d + 4Fφ1dεy�

3

− 4φ2 (t) αε�3φ2
1d + 4i�4φ1 (t)

+ 3iφ2 (t) |φ2 (t)|2 βε + 4iφ2 (t) ε2σ y�2

+ 3iφ2 (t) |φ2 (t)|2 βε2φ2
1d + 4iφ1d yφ1 (t) εμ�2

+ 4iφ1 (t) εσ�2 − 4φ2 (t) αyε�3} = 0 (25)

To commence, the stationary points of the equation are
obtained. This analysis is physically important because
it represent the steady oscillatory motion of the system
according to Eq. (19). To obtain the stationary points
of Eq. (25), all time derivatives are set equal to zero
and by performing some manipulations (extracting φ1
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from the first relation of Eq. (25), and substituting it in
the second relation), a simpler equation is obtained as:

[9β2
(
φ4
1d�

4 − 2φ3
1dμ�2 + φ2

1dξ
2�2 − 2φ2

1dσ�2

+φ2
1dμ

2 + 2φ1dμσ + σ 2
)
] ∣∣φ2 f

∣∣6
+[24β�4

(
φ3
1dμ�2 − φ2

1dξ
2�2 + φ2

1dσ�2

−φ2
1dμ

2 − 2φ1dμσ − σ 2
)
] ∣∣ϕ2 f

∣∣4
+[16�6(φ4

1dα
2�4 + 2φ3

1dαξ�4

− 2φ3
1dα

2μ�2 + φ2
1dα

2ξ2�2 + φ2
1dξ

2�4

− 2φ2
1dα

2σ�2 + φ2
1dα

2μ2

+φ2
1dμ

2�2 + 2φ1dα
2μσ + 2φ1dμσ�2

+α2σ 2 + σ 2�2)] ∣∣ϕ2 f
∣∣2 − 16φ2

1d F
2�10 = 0 (26)

In Eq. (26), ϕ1 f and ϕ2 f are the steady-state magni-
tude of functionsφ1 (t) andφ2 (t). Also,ϕ2 f is a proper
approximation of w(t).The absorption efficiency is
evaluated by considering changes in

∣∣ϕ2 f
∣∣. The higher

and lower values of
∣∣ϕ2 f
∣∣ and ∣∣ϕ1 f

∣∣, respectively,

would improve the absorbent performance. Assuming

S = ∣∣ϕ2 f
∣∣2, Eq. (26) is simplified to:

α3S
3 + α2S

2 + α1S + α4 = 0 (27)

The coefficients of Eq. (27) are presented in “Appen-
dix 2.” Equation (27) can have one or three responses
depending on different magnitude of parameters in the
system. For this reason and continuity of response, var-
ious bifurcation points such as saddle node are prob-
able in the system response. In order to determine the
saddle-node bifurcation points, in addition to establish-
ing Eq. (27), derivative of this relation should be equal
to zero [32]:

3α3S
2 + 2α2S + α1 = 0 (28)

Equation (28) is a necessary condition for occur-
rence of the saddle-node bifurcations. The boundary of
occurrence of the saddle-node bifurcations as a func-
tion of the system parameters can be obtained by elim-
inating S from Eqs. (27) and (28).

Furthermore, in order to determine Hopf bifurca-
tion, around the stationary points, onemay define small
complex perturbations δ1(t) and δ2(t). Reintroducing
the slow-varying modulations as [14,33,34]:

φ1(t) = φ1 f + δ1(t), φ2(t) = φ2 f + δ2(t) (29)

Substituting Eq. (29) in (25) and ignoring the non-
linear perturbation terms and keeping only linear terms
with respect to δi (i = 1 . . . 2), four coupled ordinary
differential equations governing thebehavior of the sys-
tem around the equilibrium points are obtained as fol-
lows:

δ̇1 = δ1ε
(−φ1dξ� + iφ1dμ − i�2 + iσ

)
2�(1 + ε)

+ 3iδ∗
2

(
φ2
1d − 1

)
βεφ2

2 f

8�3 + εiδ2
4 (1 + ε)�3 {2εμφ1d�

2

− 2i�3α + 3φ2
1d

∣∣φ2 f
∣∣2 βε + 2iφ1d�

3εξ + 2iφ2
1d�

3αε + 3φ2
1d

∣∣φ2 f
∣∣2 β + 2iφ2

1d�
3α − 3

∣∣φ2 f
∣∣2 βε + 2�4

+2εσ�2 − 2i�3αε − 3
∣∣φ2 f
∣∣2 β}

δ̇2 = iδ1
(
φ1dεμ + iφ1dεξ� + εσ + �2

)
2�(1 + ε)

+ 3iδ∗
2

(
εφ2

1d + 1
)
βφ2

2 f

8�3

+ δ2

{
i
(
iφ1dε

2ξ� + iφ2
1dαε2� + ε2μφ1d + iφ2

1dαε� + iα�(ε + 1) + ε2σ − �2
)

2�(1 + ε)
+ 3i
(
εφ2

1d + 1
)
β
∣∣φ2 f
∣∣2

4�3

}

(30)

The characteristic polynomial equation of the above
coupled equations is obtained as [33]:

μ4 + η1μ
3 + η2μ

2 + η3μ + η4 = 0 (31)

The coefficients of Eq. (31) are presented in “Appen-
dix 3.” Hopf bifurcation is a region that slow-varying
part of the system behavior is transferred from a static
state to a dynamic one. Hopf bifurcation occurs when
Eq. (31) has a pair of pure complex-conjugate roots as
μ = ± jωH [33].

In fact, ωH is the characteristic frequency of peri-
odic orbits in the system and is generated from the
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bifurcation of the fixed points (in Hopf bifurcations,
fixed points are transformed into orbits in state space
of parameters). If one of the roots of Eq. (31) has a
positive real part, the fixed point will be unstable. On
the other hand, if all roots of Eq. (31) have negative real
parts, the system will be stable. Separating the real and
imaginary parts of Eq. (31), can obtain the following
relations:

η23 − η2η3η1 + η4η
2
1 = 0 (32)

ω2
H = η3

η1
⇒ ωH = ±

{
ε

64�6(φ2
1dαε + φ1dεξ + α)

× (16φ3
1dα

2εξ�6 + 16φ2
1dαεξ2�6

+ 27φ3
1dβ

2εξφ2 f
4 + 16φ2

1dα�8 + 16φ2
1dαεμ2�4

+ 16φ1dα
2ξ�6 + 16φ1dξ�8 + 32φ1dαεμσ�4

− 48φ1dβξ�4φ2 f
2 + 27φ1dβ

2ξφ2 f
4

+ 16αεσ 2�4)
} 1

2
(33)

Equation (32) is the condition of existence of Hopf
bifurcation, and Eq. (33) is the natural frequency of the
periodic vibration generated by the Hopf bifurcation.
Simplifying Eq. (32) and assuming that S = ∣∣ϕ2 f

∣∣2, it
can be rewritten to a fourth-order equation in terms of
the S that may have even four roots Eq. (35).

v1S
4 + v2S

3 + v3S
2 + v4S + v5 = 0 (34)

The coefficients of this equation are presented in
“Appendix 4.” Solving and eliminating S from two cou-
pled Eqs. (27) and (34), conditions of Hopf bifurcation
occurrence can be obtained as a function of the system
parameters.

3.2 Analysis of the SMR (relaxation oscillations of
the averaged flow)

One of the important notes in the analytical solution of
nonlinear systems is that the system response is depen-
dent on initial conditions. If the initial conditions are
close enough to a stationary point of the system (steady-
state response), they will be absorbed in them; other-
wise, they may be absorbed in other dynamic regimes
that exist in the system. Therefore, it can be said that
the analysis of the previous section is local; hence, they
are established where the initial conditions of the sys-
tem are close to these steady-state responses. The SMR

phenomenon was analyzed in [33]. In general, the exis-
tence of strong modulated responses demonstrates the
efficiency of NES under excitation of a harmonic force
[35]. For strong modulated response analysis, one may
use the first-order coupled equation of (25) related to
slow-varying part of the motion. For this purpose, one
obtains φ1 (t) in terms of φ2 (t) and its time deriva-
tives by performing an algebraic on the second relation.
Then, substituting it in the first relation, a second-order
differential equation in terms of φ2 (t) is obtained that
shows vibration behavior of the system, where its final
form is as follows:

d2ϕ2

dt2
− 3iβ(εφ2

1d + 1)

8�3

d

dt
{ϕ2 |ϕ2|2}

+
{
3iεζβφ1d

16�3 − 3εμβ

16�4 − 3εσβ

16�4 + 3φ1dεβ

16�2

}

ϕ2 |ϕ2|2

+
{

α(εφ2
1d + 1)

2
− iε(σ + φ1dμ)

2�

+ ζεφ1d

2
+ i�

2

}
dϕ2

dt

+
{
i�εαφ2

1d

4
− iεσα

4�
− iεφ1dμα

4�

+ i�εζφ1d

4
+ φ1dεζα

4
+ εσ

4
+ εμφ1d

4

}
ϕ2

− i�εφ1d F

4
= 0 (35)

The method of multiple scales is used to analyze
Eq. (35). With this aim, the following time scales are
introduced τ j = ε j t, j = 0, 1, . . .. The first scale τ0
is a fast-order time scale and τ1 is a slow one defined
using a small parameter (ε). In this case, the relations
of derivatives of these time scales are:

ϕ j = ϕ j (τ0, τ1, . . .)

d

dt
= ∂

∂τ0
+ ε

∂

∂τ1
+ · · · = D0 + εD1

d2

dt2
= ∂2

∂τ 20
+ 2ε

∂2

∂τ0∂τ1
+ · · · = D2

0

+2εD0D1 + · · · (36)

Substituting Eqs. (36) in (35) and considering the
terms with the same power of ε, different time scales
are obtained as follows:
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O(ε0) : ∂2ϕ2

∂τ 20
+
[
i� + α

2

]
∂ϕ2

∂τ0
− 3iβ

8�3

∂

∂τ0[
ϕ2 |ϕ2|2

] = 0

O(ε1) : 2 ∂2ϕ2

∂τ0∂τ1
−
[
i(φ1dμ + σ)

2�
− φ1d(αφ1d + ζ )

2

]

∂ϕ2

∂τ0
− 3i

8�3

∂

∂τ0

[
ϕ2 |ϕ2|2

]− 3iβφ2
1d

8�3

∂

∂τ1

[
ϕ2 |ϕ2|2

]

+
[
i�

2
+ α

2

]
∂ϕ2

∂τ1
+
[
i�φ1d(ζ + αφ1d)

4
+ φ1dαζ

4

− i(σ + φ1dμ)α

4�
+ (σ + φ1dμ)

4

]
ϕ2

+
[
3βφ1d

16�2 − 3(σ + ζ�φ1d + μ)β

16�4

]

ϕ2 |ϕ2|2 − i�φ1d F

4
= 0

O(ε2) : . . . (37)

The first relation of Eq. (37), taking the limit ε → 0
in Eq. (36), is related to the fastest time scale. This
expression can be integrated and presented in the fol-
lowing form:

D0ϕ2 +
{
i� + α

2

}
ϕ2 − 3iβ

8�3 ϕ2 |ϕ2|2

= C(τ1, τ2, . . .) (38)

By limiting the system responses to the time scale τ0
and τ1, when τ0 → ∞, parameters in τ0 order remains
invariant, and ϕ2 reaches an asymptotic equilibrium
where ϕ2 = ϕ2(τ1) and (τ0 → ∞ : ∂ϕ2

∂τ∂
= 0). Accord-

ingly, the equilibrium response (38) is calculated as
follows:

{
i� + α

2

}
ϕ(τ1) − 3iβ

8�3 ϕ(τ1) |ϕ(τ1)|2 = C(τ1) (39)

Rewriting the above equation in a polar form
(ϕ(τ1) = N (τ1)eiθ(τ1)), it is obtained as follows:

αN (τ1)

2
eiθ(τ1) +

[
�N (τ1)

2
− 3βN (τ1)

3

8�3

]
ieiθ(τ1)

= |C(τ1)| ei arg(C(τ1)) (40)

The parameter magnitudes are obtained using the
above equation as:

[
αN (τ1)

2

]2
+
[
�N (τ1)

2
− 3βN (τ1)

3

8�3

]2
= |C(τ1)|2

(41)

Assuming S(τ1) = N 2(τ1) Eq. (41) is obtained as
follows:

[α
2

]2
S(τ1) +

[
�

2
− 3βS(τ1)

8�3

]2
S(τ1) = |C(τ1)|2

(42)

From Eq. (40), the relation between the angles is
obtained from the following equation:

θ(τ1) = arg(|C(τ1)|) + tan−1
(
3βS(τ1) − 4�4

4α�3

)

(43)

The number of roots of Eq. (42) depends on the
magnitudes of |C(τ1)|, �, β and α. The homogeneous
Eq. (42), in accordance with the properties of cubic
functions, is strictly a monotonic function (ascending
or descending) or a non-monotonic function (with the
maximum andminimum). In the monotonic case, inde-
pendent of |C(τ1)|, the equation has only one root, but
in the non-monotonic case, depending on the magni-
tude of |C(τ1)|, it has one or three roots, and parameter
variations lead to generation of the saddle-node bifur-
cation; as a result, a set of stable and unstable branches
are created. If the derivative of homogeneous part of Eq.
(42) has real solution, non-monotonic case will occur;
otherwise, system is strictly monotonic. The extrema
of Eq. (42) can be obtained as follows:

d

dS

{[α
2

]2
S(τ1) +

[
�

2
− 3βS(τ1)

8�3

]2
S(τ1)

}
= 0

⇒ N1,2 = √S1,2 =
√√√√4�3

3β

[
2�

3
±

√
�2 − 3α2

3

]

(44)

Equation (44) demonstrates that for α < �
√
3 (rela-

tively low damping) system has a pair of roots and the
saddle-node bifurcations occur. Also, for α > �

√
3 it

has a root, and saddle-node bifurcations do not occur
at all [36]. At order τ0, if the system has a root, it will
be stable, but if there are three roots, two of them will
be stable and the other one will be unstable. In addi-
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Fig. 2 Slow invariant
manifold diagram of the
system (the jump
phenomenon and the
saddle-node bifurcations)
for � = 1, β = 1, α = 0.4

tion, the system ultimately is absorbed in one of the
nodes at this order of time. Slow invariant manifold
diagram of the system for parameters � = 1, β = 1
and α = 0.4 is shown in Fig. 2. This concept was used
based on [14,37,38]. This figure shows that there is a
possibility for jump phenomenon between the regions
because there are two stable response regions. This phe-
nomenon causes relaxation oscillation on the behavior
of the system [33]. This event occurs if the dynamic
behavior of the system is absorbed in one of these stable
branches; otherwise, it is possible that system absorbed
in other regimes.

With the aim of investigating the occurrence of jump
phenomenon, the behavior of the system around the
stable slow invariant manifold, in the time order τ1
when τ0 → ∞, should be studied. When τ0 → ∞
it can be said that the parameters in τ0 order do not
change at this time order, and if A is a temporal para-
meters in the system, one will have ∂A

∂τ0
= 0; how-

ever, these parameters still vary the order of τ1 because
time τ1 is slower than τ0. Consequently, assuming
�(τ1) = limτ0→∞ ϕ2(τ0, τ1), the order ε1 of Eq. (37)
becomes:

[
i�

2
+ α

2

]
∂�

∂τ1
− 3iβ

8�3

∂

∂τ1

[
� |�|2

]

+
[
3βφ1d

16�2 − 3(σ + ζ�φ1d + μ)β

16�4

]
� |�|2

+
[
i�φ1d(ζ + αφ1d)

4
+ φ1dαζ

4
− i(σ + φ1dμ)α

4�

+ (σ + φ1dμ)

4

]
� − i�φ1d F

4
= 0 (45)

Using complex numbers, one has:

[
i� + α

2
− 3iβ

4�3
|�|2
]

∂�

∂τ1
− 3iβ |�|2

8�3

∂�∗

∂τ1
=G →

G = −
[
i�φ1d(ζ + αφ1d)

4
+ φ1dαζ

4

− i(σ + φ1dμ)α

4�
+ (σ + φ1dμ)

4

]
�

+
[
3βφ1d

16�2 − 3(σ + ζ�φ1d + μ)β

16�4

]
� |�|2

+ i�φ1d F

4
(46)

In order to obtain the expression of
(

∂�
∂τ1

)
, which

indicates variation of slow dynamics of the system
around the slow invariant manifold, and performing an
algebraic manipulation, it is obtained as follows:

∂�

∂τ1

= 8�3[[4α�3 − 4i�4 + 6iβ |�|2]G + 3iβ�2G∗]
16α2�6 + 16�8 − 48�4β |�|2 + 27β2 |�|4

(47)
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Assuming (�(τ1) = N (τ1)eiθ(τ1)) and substituting
in Eq. (46), one may obtain [14]:

[
i� + α

2
− 3iβ

4�3 N (τ1)
2
] [(

∂N (τ1)

∂τ1

+i N (τ1)
∂θ (τ1)

∂τ1

)
eiθ(τ1)

]
− 3iβN (τ1)

2

8�3[(
∂N (τ1)

∂τ1
− i N (τ1)

∂θ (τ1)

∂τ1

)
e−iθ(τ1)

]

=
[
3βφ1d

16�2 − 3 (σ + ζ�φ1d + μ) β

16�4

]
N (τ1)

3 eiθ(τ1)

−
[
i�φ1d (ζ + αφ1d)

4
+ φ1dαζ

4

− i (σ + φ1dμ) α

4�
+ (σ + φ1dμ)

4

]
N (τ1) e

iθ(τ1)

+ i�φ1d F

4
(48)

Each of the real and imaginary parts of this complex
algebraic equation is an ordinary first-order equation.
∂N (τ1)

∂τ1
and ∂θ(τ1)

∂τ1
can be obtained by solving these cou-

pled differential equations as follows [14]:

∂N (τ1)

∂τ1
= −φ1d

[
16φ1d N (τ1) α�8 − 16F cos (θ) �8

− 16F sin (θ) α�7 + 16N (τ1) α2ξ�6

+ 16N (τ1) ξ�8 + 9N (τ1)
5 β2ξ

+12F cos (θ) N (τ1)
2 β�4 − 24N (τ1)

3 βξ�4
]

/{32α2�6 + 32�8 − 96N (τ1)
2 β�4 + 54N (τ1)

4 β2}
∂θ (τ1)

∂τ1
= −
[
16φ1d F sin (θ)�9 − 16N (τ1) σ�8

− 27N (τ1)
5 β2σ − 36φ1d F sin (θ) N (τ )2 β�5

− 16φ1d F cos (θ) α�8 + 48N (τ1)
3 βσ�4

− 16φ1d N (τ1) α2μ�6 + 48φ1d N (τ1)
3 βμ�4

+ 16φ2
1d N (τ1) α2�8 − 16φ1d N (τ1) μ�8

− 12φ2
1d N (τ1)

3 β�6 + 27φ2
1d N (τ1)

5 β2�2

− 27φ1d N (τ1)
5 β2μ − 16N (τ1) α2σ�6

+24φ1d N (τ1)
3 αβξ�4

]
/{

2N (τ1) �
(
16α2�6 + 16�8 − 48N (τ1)

2 β�4

+27N (τ1)
4 β2
)}

(49)

The possibility of occurrence of relaxation oscilla-
tion phenomenon can be investigated by plotting the

phase plane of Eq. (49). These coupled equations give
information about dynamics of the system at slow time
scale. Equilibrium points are those which give numer-
ators = 0 and denominator �= 0. On the other hand,
fold singularities which can generate SMR are those
which satisfy both numerators = 0 and denominator =
0. In addition, denominator = 0 generates, fold lines in
the system [14,39,40]. If the system is not under exter-
nal load, it is clear that the amplitude of the system
will be close to zero due to damping. In fact, in Fig.
2 jump from the high amplitude to the low amplitudes
of stable slow invariant manifold is evident, but the
system should be able to jump from low amplitudes
to high amplitudes for occurrence of the SMR. This
phenomenon occurs when the saddle-node bifurcation
takes place in the phase plane N (τ1) − θ(τ1) at the
low critical amplitudes equivalent to the amplitude of
the system SN1 in Fig. 2. This means that in the lower
branch direction, dynamic flows are changed upward
in the lower branch and the probability of occurrence
of the jump phenomenon from the low stable manifold
to the high one and the SMR would exist. To calculate
the magnitude of the external critical force (necessary
condition of relaxation oscillation phenomenon) that
occurs in the amplitude SN1 (saddle-node bifurcation
occurs), the numerator of Eq. (47) should be equal to
zero [14,30,35]:

27i� |�|4 β2φ2
1d�

2 + 24i� |�|2 αβξφ1d�
4

− 12i� |�|2 βφ2
1d�

6 − 16iα2�σ�6

+ 48i� |�|2 βμφ1d�
4 − 27i� |�|4 β2μφ1d

+ 16�9φ2
1dα� − 27i� |�|4 β2σ

+ 16φ1dα
2�ξ�7 + 16�9φ1d�ξ − 16�9φ1d F

− 16i�σ�8 − 24� |�|2 βφ1dξ�5

− 16iφ1d Fα�8 + 48i� |�|2 βσ�4

+ 24φ1d F |�|2 β�5 − 12φ1d Fβ�2�5

− 16iφ1dμ��8 + 9φ1d� |�|4 β2ξ�

+ 16iφ2
1dα

2��8 − 16iφ1dα
2μ��6 = 0 (50)

Assuming polar relation (� = N (τ1)eiθ(τ1)) and
trigonometric simplification, complex Eq. (50) is sep-
arated into two real equations:

12FN (τ )2 β�5 cos (θ) − 16 cos (θ)�9F

− 16 sin (θ) Fαω8
0 + 16�9φ1dαN (τ )

+ 16α2N (τ ) ξ�7 + 16�9N (τ ) ξ
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− 24N (τ )3 βξ�5 + 9N (τ )5 β2ξω0 = 0

16φ1d F sin (θ) �9 − 16N (τ ) σ�8

− 27N (τ )5 β2σ − 36φ1d F sin (θ) N (τ )2 β�5

− 16φ1d F cos (θ) α�8 + 48N (τ )3 βσ�4

− 16φ1d N (τ ) α2μ�6 + 48φ1d N (τ )3 βμ�4

+16φ2
1d
N (τ ) α2�8 − 12φ2

1d
N (τ )3 β�6

0

− 16φ1d N (τ ) μ�8 + 27φ2
1d
N (τ )5 β2�2

− 27φ1d N (τ )5 β2μ − 16N (τ ) α2σ�6

+ 24φ1d N (τ )3 αβξ�4 = 0 (51)

Two unknowns sin(θ(τ )) and cos(θ(τ )) are calculated
by solving these equations as follows [39]:

cos(θ(τ )) =
(
4αφ2

1d
�4 + 4ζφ1d�

4 − 3φ2
1d
N (τ )2 βζ − 4αφ2

1d
μ�2 − 4ασ�2

)
N (τ )

4φ1d F�4

sin (θ(τ )) =
(
4αζφ1d�

4 + 3φ2
1d
N (τ )2 β�2 + 4μφ1d�

4 + 4σ�4 − 3φ1d N (τ )2 βμ − 3N (τ )2 βσ
)
N (τ )

4φ1d F�5
(52)

Finally, the angle θ can be obtained as:

θ[i] = sin−1

⎛
⎝ 4α�3√

16α2�6 + 16�8 − 24N[i](τ )2β�4 + 9N[i] (τ )4 β2

⎞
⎠

± cos−1

⎛
⎝N[i](τ )φ1d

(
16φ1dα

2ζ�6 + 16�8α + 16�8ζ − 24N[i](τ )2βζ�4 + 9N[i](τ )4β2ζ
)

4�4φ1d F
√(

16α2�6 + 16�8 − 24N[i](τ )2β�4 + 9N[i](τ )4β2
)

⎞
⎠ (53)

Substituting each of the two critical amplitudes N1 and
N2 in Eq. (44), into the above equation, gives angles
at which saddle-node bifurcations occur in the low and
high critical amplitudes, respectively. The critical mag-
nitude of the external forces Fcritical[i](i = 1 . . . 2) for
occurrence of the saddle-node bifurcations is obtained
from Eq. (53), when the absolute value of the argument
of cos−1 is equal to unity:

Fcritical[i]

= Ni
(
16φ1dα�8 + 16α2ξ�6 + 16ξ�8 − 24N 2

i βξ�4 + 9N 4
i β2ξ
)

4�4
√
16α2�6 + 16�8 − 24N 2

i β�4 + 9N 4
i β2

(54)

When the magnitude of external load is smaller than
the first critical amplitude, all trajectories are finally
attracted to fixed points which are below the unstable
region (as shown in Figs. 11, 23). If the magnitude
of the external force is greater than the first critical
amplitude and smaller than the second critical ampli-
tude (Fcritical[2] > F > Fcritical[1]), the saddle-node
bifurcations will occur in the lower critical amplitude,
and the node will disappear in lower stable regions (as
shown in Fig. 12). If themagnitude of the external force
is greater than the second critical amplitude, the saddle-
node bifurcation will occur in the upper critical ampli-
tude, and the node will appear in high amplitudes (as
shown in Fig. 21). Consequently, it can be inferred that
the necessary condition for the occurrence of the SMR

in the system and jumping from the low amplitude to
the high amplitude, is that the magnitude of the exter-
nal excitation should be greater than the first critical
amplitude (F > Fcritical[1]).

To check that whether the system jumps repetitively
from the high amplitude to the low one and vice versa
along with the slow invariant manifold of system and
the SMR occurrence, a map is considered. This map
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illustrates that whether a dynamic flow that starts from
a point with lower critical amplitude N1 and angle
between θ1 and θ2, after a double jump (rapid flow
dynamics) and a double slow dynamic flow where a
closed loop is formed, finally returns to this region or
not (according to Figs. 13, 20). These four parts of the
motion can be seen in the closed loop in Fig. 14. This
is achieved by examining the dynamic flow angle θ(τ )

over time. If the dynamic flow returns to the first region
(between θ1 and θ2), the SMR will occur in the system
surely [33]. In other words, it is the sufficient condi-
tion for the existence of the SMR behavior. This map
is called the sustained jumping map. After periods of
time, may be the system be absorbed in other regimes
in the system response, where no relaxation oscilla-
tion phenomenon can be seen. For example, it may be
attracted to a node, which represents a simple oscilla-
tory response with a constant amplitude and frequency
(as shown in Fig. 29).

Since jump phenomenon occurs rapidly, it can be
said that the energy |C | in the system remains constant
during its occurrence; moreover, according to Eq. (41),
when the system jumps from a point with amplitude
N1 to a point with amplitude Nu (see Fig. 2), one has
from the balance of energy [14]:

[α
2

]2
S1(τ1) +

[
�

2
− 3βS1(τ1)

8�3

]2
S1(τ1)
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2

]2
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+
[

�

2
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8�3

]2
Su(τ1) ⇒

[α
2

]2
Su +

[
�

2
− 3βSu

8�3

]2
Su

= 2�3(
√

�2 − 3α2 − 2�)(3α2 + �3 + �
√

�2 − 3α2)

81β

⇒ Su = |Nu |2 = 8�3

9β

[
� +
√
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(55)

Similarly, from the balance of energy between the
points, the end of the jump with lower amplitude (Nd)

and the point with the amplitude (N2), the amplitude
(Nd) value can be obtained by some mathematical
manipulations as follows [14]:

Sd = |Nd |2 = 8�3

9β
[� −

√
�2 − 3α2] (56)

To determine the changes of angle value in the jump,
it can be noticed that the magnitude of C(τ1) [which
is actually a sign of energy in the system, Eq. (39)] is
constant. Using ϕ(τ1) = N (τ1)eiθ(τ1), it will be:
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The equality of magnitudes was expressed in Eq.
(55). Based on the equality of angles in Eq. (57), one
can write:

θ1 + tan−1

(
4�4 − 3N 2

1β

4α�3

)
= θu

+ tan−1
(
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uβ
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(58)

Using trigonometric relations, it will be:

θu = θ1 + tan−1

(
9α

√
�2 − 3α2

15α2 − �
√

�2 − 3α2 − �2

)

(59)

Change of the angle between two points with the
amplitude N2 and Nd in the second jump which is sim-
ilar to the above can be obtained as follows:

θd = θ2 − tan−1

(
9α

√
�2 − 3α2

15α2 + �
√

�2 − 3α2 − �2

)

(60)
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Fig. 3 Existence of the
saddle-node bifurcations in
the parameter space of F, α

and d for σ = 1, μ = −1

4 Numerical methods

The coupled equations of the pipe conveying fluid and
nonlinear energy sink, Eq. (19), are transferred into the
state-space equations using the Galerkin method for n
modes of pipe. The equations are solved numerically
using Ode45 in MATLAB.

d

dt
q j = q j+1

d

dt
q j+1 =

[
ε

F

φ1d
cos(�t) − m j j (�
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d

dt
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}
− β {qn+1

−
n∑
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φi qi

}3
(61)

5 Results of analytical and numerical solutions

In this section, the numerical examples are illustrated.
To check the method of solution, the case of a straight
clamped-clamped pipe conveying fluid with circular
cross section is investigated. The geometrical parame-
ters of the system are defined as D = 1m, L = 10m,
t = 0.02.

The material properties and working conditions
are chosen for steel and oil; thus, ρp = 140kg/m,
Ep = 207Gpa, ρ f =680kg/m, cp = 30Nsm−2,
U f = 5m/s. From Eqs. (13) and (16) the resonant
frequency of the first mode of primary system would
be ω1 = √

k11/m11 = 1. After performing some alge-
braic calculations, one gets the following dimension-
less quantities ζ = 0.01, μ = −1.

In order to investigate optimal parameters for NES
on pipe, onemay study the saddle-node andHopf bifur-
cations and magnitude of external force for occurrence
of the relaxation oscillation phenomenon. Diagram of
saddle-node bifurcations for σ = 1, ξ = 0.01,μ = −1
is shown in Fig. 3.

This graph is in the parameter space of F , α and d
which are the non-dimensional damping of the NES,
non-dimensional amplitude of the external load and
non-dimensional distance of the NES location from
the pipe supports, respectively. It can be seen that, in
this space, the saddle-node bifurcations would occur
for 0 < d < 0.2, 0.8 < d < 1 and a small region
for 0.3 < d < 0.7. This means that locating the

123



Vibration control of a pipe conveying fluid 1775

Fig. 4 Existence of the
saddle-node bifurcations in
the parameter space of F , α
and d for σ = 1, μ = −2

NES close to the middle of the pipe leads to occur-
rence of the saddle-node bifurcations only for small
regions. In addition, the amplitudes of the external
force inwhich the saddle-node bifurcations happenwill
decrease. On the other hand, the saddle-node bifurca-
tions will occur for large regions by locating the NES
close to the pipe supports.Also, the amplitudes of exter-
nal force in which the saddle-node bifurcations happen
will increase by approaching the location of NES to
the pipe supports. It is obvious because the vibration
amplitude is smaller where the NES is close to the pipe
supports; hence, greater forces are needed for excita-
tion.

Also, the saddle node occurs for smaller NES damp-
ing values close to the pipe supports. The saddle-node
bifurcations are heavily dependent on the detuning
parameter. For example, for σ = 3, the saddle-node
bifurcations occur in the whole length of the pipe. Also
occurrence of the saddle-node bifurcations is depen-
dent on the fluid velocity and damping of the pipe. The
probability of occurrence of saddle-node bifurcation
increases slightly, i.e., instability increases, by increas-
ing the fluid velocity and decreasing the system damp-
ing (see Fig. 4).

In additional projection of the solutions of Eqs. (27)
and (28), the three-dimensional space of parameters
(F , α, σ ) and the saddle-node bifurcations boundary
for various positive and negative detuning values σ are
presented in Fig. 5.

Hopf bifurcation diagram in parameter space (F , α,
σ ) is depicted in Fig. 6. For σ = 1, with the instal-
lation of NES, in the entire length of the pipe, Hopf
bifurcation occurs (0 < d < 1). Similar to the saddle-
node bifurcation diagram, the amplitudes of the exter-
nal load decrease by increasing distance of NES from
the pipe supports. Studies have shown that unlike the
saddle-node bifurcations, Hopf bifurcation occurrence
is not highly dependent on changes of detuning para-
meter (σ ). In addition, it can be inferred that if the
fluid velocity increases (increasing μ), surface of Fig.
6 will be shifted upward slightly (increasing critical
force amplitude).

Figure 7 shows the magnitude of critical external
force for the occurrence of SMR in the parameter space
of F , α and d. Studies show that these critical values
are not dependent on the detuning parameter value (σ ).
Unlike the saddle-node and Hopf bifurcations, in this
case, amplitude of critical external force increases by
approaching the NES location at themiddle of the pipe.
In addition, it can be seen that changing the position of
the NES does not affect the range of NES damping in
which the SMR occurs. This range would be 0 < α <

�/
√
3 that can be obtained fromEq. (44). Furthermore,

amplitude of critical external force has a direct relation
with the value of pipe damping and is not sensitive to
the fluid velocity changes.

The above discussions show that the dynamic behav-
ior of the coupled pipe conveying fluid and the NES
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Fig. 5 Space of the
saddle-node bifurcations for
positive and negative values
of detuning parameter
(μ = −1, d = 0.2)

Fig. 6 Existence of the
Hopf bifurcations in the
parameter space of F , α and
d for σ = 1, μ = −1

performance are quietly dependent on the location of
the NES on the pipe (d). For this reason and symme-
try in boundary conditions of the pipe, four sections on
the pipe (d = 0.5, d = 0.35, d = 0.19 and d = 0.1)
are selected to investigate the optimal parameters of
NES. The system can show various dynamic behaviors,
depending on the parameters of the system located at
each zone of the F-α space [33]. The first selected sec-
tion for NES position is at the middle of the pipe.When
the NES is positioned on the middle of the pipe, spa-
tial parameter of the system is φ1d = 1.5581; hence,

the required calculations are performed for σ = 1. For
this case, Fig. 8 shows Hopf and saddle-node bifurca-
tion diagrams and critical amplitudes of external force
(necessary condition for the occurrence of SMR phe-
nomenon) for σ = 1. If NES is in the middle of the
pipe, the saddle-node bifurcation region will be very
small. Therefore, the dynamic behavior of the system
in three points 1, 2 and 3 in Fig. 8 is studied. For these
points, the phase plane of slow motion Eq. (49), the
sustained jumping map and the frequency response
curve are analyzed for different parameters. Accord-
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Fig. 7 Amplitudes of the
external force for
occurrence of the SMR in
the parameter space of F , α
and d

Fig. 8 Occurrence of Hopf
and saddle-node
bifurcations and critical
amplitudes of external force
for d = 0.5, σ = 1, μ = −1

ing to Figs. 4, 6 and 7, if the fluid velocity increases
(increasing μ), Fig. 8 will change slightly. Hopf bifur-
cation area will be extended and will be shifted upward
slightly. Also, the saddle-node regions will be extended
slightly and critical force borders will not move.
Generally, there is no basic change in the nature of
Fig. 8.

To understand what was said about the bifurcation
analyses, a single plot of Fig. 9 is presented where the
amplitude of the steady-state periodic solution

∣∣ϕ2 f
∣∣ is

depicted as a function of the amplitude of the exter-
nal harmonic load for (σ = 1, μ = −1, α = 0.4).
In Fig. 8 for α = 0.4, increasing the external force
value leads to cutting the boundaries of Hopf bifurca-
tion in two points H1 and H2, and the instability will
appear between these two points. Due to motion in this
path, one does not cut the saddle-node bifurcation bor-
ders; therefore, there is no jump phenomenon in Fig.
9. Boundary of instability in Fig. 8 is consistent with
Fig. 9.
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Fig. 9 Force response
diagram of the system for
d = 0.5, α = 0.4, σ = 1,
μ = −1

Fig. 10 Force response
diagram of the system for
d = 0.5, α = 0.4, σ = 1,
μ = −3

 

Also, as expected, the amplitude of steady state of
relative displacement of the pipe and NES increases
smoothly by increasing the external excitation value.
Furthermore, the schematic of Fig. 9 with formation
of a turning point changes slowly to the schematic of
Fig. 10 by increasing the fluid velocity. As a result,
amplitude of the steady-state response decreases slowly
and the required force magnitude for occurrence of the
WMR increases. Also, the unstable region (Hopf bifur-
cation) is extended slightly.

In Fig. 11, the phase plane of the slow motion of
point 1 is illustrated (d = 0.5, α = 0.4, σ = 1,
μ = −1, F = 0.3). As shown in Fig. 11, there is
only one node in the phase plane of this point because
the excitation force magnitude of point 1 is smaller
than the critical value. As it was shown, all trajectories
in this diagram approach a node with amplitude value
of 0.3 which represents a periodic motion of the sys-
tem based on the complexification-averaging method.
In this case the external force on the system is smaller
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Fig. 11 Phase plane of the
slow motion of the system
for d = 0.5, α = 0.4,
F = 0.3, σ = 1, μ = −1
(point 1 in Fig. 8)

Fig. 12 Phase plane of the
slow motion of the system
for d = 0.5, α = 0.4,
F = 1.2, σ = 1, μ = −1
(point 2 in Fig. 8)

than the critical value (F < Fcritical[1]); thus, it does
not satisfy the necessary condition of the SMR; hence,
there is no need to check the sufficient condition of the
SMR (sustained jumping map).

Amplitude of excitation force at point 2 is in the
region of Hopf bifurcation and above the critical force
(regarding the necessary condition for the SMR). This
phenomenon is a probable reason for the SMR occur-
rence; therefore, the necessary condition for jumping
between the lower and upper amplitudes will be met
in this position. The phase plane of this case is drawn

in Fig. 12 which shows that the node has been dis-
appeared. Also, it can be seen that jumping from the
low amplitude to the high amplitude can happen due
to the bifurcation in the lower amplitudes. In order to
determine when the SMR definitely occurs, one should
check sufficient conditions for existence and continu-
ation of the jump phenomenon. The expected diagram
is shown in Fig. 13 (sustained jumping map).

As it can be seen, after a high number of oscillations
(each oscillation includes two jumps and two slowparts
of the slow-varying response), all of the closed paths,
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Fig. 13 Sustained jumping
map (occurrence of the
SMR) for d = 0.5, α = 0.4,
F = 1.2, σ = 1, μ = −1
(point 2 in Fig. 8)

Fig. 14 Trajectory of the
slow motion of the system in
the phase plane for d = 0.5,
α = 0.4, F = 1.2, σ = 1,
μ = −1 (point 2 in Fig. 8)

which indicate that the presence of the SMR, would
reach to a unit angle (θ = −0.12 radian). This fact
proves that if the dynamic flow starts from all points of
the region between the angles θ1 and θ2 on the ampli-
tudeN1, itwill reach thefirst region (between the angles
θ1 − θ2).

In order to show this issue schematically, the trajec-
tory of the system is drawn in Fig. 14, which ultimately
would be attracted to the four-part motion and form a
closed loop.

Considering the motion with the amplitude N1, it
can be seen that the system is transferred with a rapid
move (jump) to a point with the amplitude Nu ; then, the
flow can be transmitted to a point with amplitude N2

via the slow dynamic motion. Here, with a jump back
to the stable region with low amplitude, it turns and
reaches to a point with amplitude Nd . Then, it moves
through a slow flow to a point with amplitude N1. As
it stands from Fig. 14, system is abandoned at position
θ = 1 and N = N1; then, after twice oscillations, it
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Fig. 15 Frequency
response diagram of the
system for d = 0.5,
α = 0.4, F = 1.2, μ = −1
(point 2 in Fig. 8)

Fig. 16 Time history of the
system (the existence of the
SMR) for d = 0.5, α = 0.4,
F = 1.2, σ = −2, μ = −1
(point 2 in Fig. 8)

swings to the left side and forms a stable closed loop,
which is the sign of the occurrence of SMR.

According to Eq. (26), the frequency response curve
with aforesaid system parameters at point 1 is stud-
ied. The system has only one stable response. In this
case, the SMR and WMR (which is due to the general
Hopf bifurcation) do not occur. For the parameters at
point 2, as it can be seen in Fig. 15, the saddle-node
and Hopf bifurcations occur. Also, for some values of
detuning parameter, there are three types of responses.
It should be noted that for −10.1 < σ < 12.8 and

−2.8 < σ < 5.3, the SMR and the WMR occur,
respectively. For 4.2 < σ < 8.1, a high amplitude
periodic motion exists. The frequency response curves
are not highly sensitive to changes of the fluid veloc-
ity. In general, the amplitude of response decreases
and the range of the Hopf bifurcations are extended
slightly by increasing the fluid velocity. Furthermore,
it can be seen that, for σ = 7, the system can have
three different solutions that are high-amplitude peri-
odic motion, low-amplitude periodic motion and SMR.
The numerical results demonstrate that only the low-
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Fig. 17 Poincare map of
the relative displacement
d = 0.5, α = 0.4, F = 1.2,
σ = 1, μ = −1 (point 2 in
Fig. 8)

Fig. 18 Frequency
spectrum for the relative
displacement d = 0.5,
α = 0.4, F = 1.2, μ = −1
(point 2 in Fig. 8) and σ = 0

amplitude periodic motion occurs for σ = 7. Also, for
σ = −2, regarding the analytical results, two different
responses exist that are the WMR and the SMR, but
the numerical results for an arbitrary initial condition
illustrate that only the SMR exists for σ = −2. In this
case, due to the existence of the SMR, the dynamic
behavior of the system does not approach the WMR
(Fig. 16).

In order to evaluate the behavior of the system for
these values of the parameters, time response, Poincare
map and frequency spectrum are obtained using the
numericalmethodsEq. (61).As it is expected, by study-
ing the pipe and NES coupled systems for parameters
of point 2 in Fig. 8, only the SMR occurs for any initial
conditions. In fact, the SMR does not let the behavior
of the system approach WMR
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Fig. 19 Frequency
response curve of the
system for d = 0.5,
α = 0.4, F = 1.9, μ = −1
(point 3 in Fig. 8)

Additionally, the time histories of the system with
one, two and three Galerkin modes are depicted in Fig.
16. It is obvious that the steady-state responsewith one,
two or three Galerkin modes are similar. Indeed, this
figure proves that the higher Galerkin modes are effec-
tive only for the transient behavior. Consequently, as
it was mentioned before, since the system is excited
periodically, Galerkin approximation with the first
mode is sufficient to analyze the steady-state dynamic’
behavior.

As expected, the Poincare map and frequency spec-
trum, related to pipe and NES vibrations for point
2 in Fig. 8, are consistent with the time history dia-
gram. Figure 17 shows the Poincare map of the steady-
state response of the system in the form of a con-
tinuous closed loop constituted by a large number of
points which indicates the existence of a quasi-periodic
motion.

Three peaks at main harmonics �, 3� and 5� are
evidenced in the frequency spectrum of the response
of the system (Fig. 18). The results show that � is the
strongest component in the response, and 3� and 5�
are the other components in the frequency spectrum
of the pipe response. These results are consistent with
those of [41].

The frequency response curve for the system para-
meters at point 3 is drawn in Fig. 19. The system has
stable response with the high amplitude for 4.2 < σ <

9.8. In this case, the SMRoccurs for−13.7 < σ < 2.2,

and the WMR can be seen for −4.5 < σ < −0.9 and
6.2 < σ < 6.9 and saddle node occurs for two ranges
4.2 < σ < 4.7 and 6.2 < σ < 9.8.

In order to examine the SMR occurrence for σ = 5,
at point 2 (Fig. 8), it is required to check sufficient
conditions for existence and ongoing of the jump phe-
nomenon from the high amplitude to the low amplitude
and vice versa (sustained jumpingmap). The investiga-
tion shows that after thousands of oscillations, all the
trajectories reach to an angle θ = −7.3 radian (Fig.
20).

The other difference between the dynamical behav-
ior of point 2 and that of point 3 is the existence of a
node in the slow-motion phase plane of point 3 within
the high-amplitude range. (In other words, one can
say that at point 2, the node is in the unstable region,
between critical amplitudes N1 and N2.) The phase por-
trait of the slow motion of the system for parameters
of point 3 is demonstrated in Fig. 21. For the loads
higher than value of point 3, this node gets away from
the critical amplitude N2 and its absorption region gets
larger.

The next location of the NES position is d = 0.35.
In this case, the spatial parameter of the system is
φ1d = 1.2987. Figure 22 shows the occurrence of Hopf
and saddle-node bifurcations and the amplitudes of the
critical external force for occurrence of SMR in the F-
α space. In this section, for points 4, 5 and 6 in Fig. 22,
the dynamic behaviors of the system are studied.
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Fig. 20 Sustained jumping
map (the absence of the
SMR) for d = 0.5, α = 0.4,
F = 1.2, μ = −1 (point 2
in Fig. 8) and σ = 5

Fig. 21 Phase plane of the
slow motion for d = 0.5,
α = 0.4, F = 2, σ = 1,
μ = −1 (point 5 in Fig. 8)

In this parameter space, the saddle-node bifurcation
region is very small in the system as it was in Fig. 8.
The schematic of variations of the steady-state response
versus excitation force amplitude in Fig. 22 is similar
to Fig. 9.

As discussed in the preceding case, like point 1 in
Fig. 8, since amplitude of excitation force at point 4
in Fig. 22 is under the first critical excitation, F >

Fcritical[1] and below the Hopf bifurcation (see Fig.
23), the phase plane shows only one node which is

closer to the lower critical amplitude N1 in comparison
with the point 1 in Fig. 8. It is worthy to mention that
the absorption area of this node is smaller than that of
the phase plane diagram of point 1 which shows that
the numerical results are in accordance with the ana-
lytical ones, and the system is attracted to a periodic
motion with the amplitude of 0.61 for any arbitrary
initial conditions. This point is under the curve of crit-
ical force; hence, there the necessary condition for the
SMR is not met. In addition, the frequency response
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Fig. 22 Occurrence of
Hopf and saddle-node
bifurcations and critical
magnitude of external force
for d = 0.35, σ = 1,
μ = −1

Fig. 23 Phase plane of the
slow motion of the system
for d = 0.35, α = 0.4,
F = 0.4, σ = 1, μ = −1
(point 4 in Fig. 22)

curve of the system for point 4 is similar to that of
point 1. The dynamical behavior of the system at point
5 is identical to that of point 2; thus, the SMR happens
in this case. The only difference between the dynam-
ical behaviors of point 5 and point 4 is the existence
of the node in the slow-motion phase plane of point 4.
Since, the parameters of the system are located inside
the Hopf bifurcation area at point 5, the node does not
exist in the slow-motion phase plane. The range of exis-
tence of the SMR, WMR and high-amplitude periodic
motion would be −5.2 < σ < 7.7, −1.3 < σ < 3.5
and 3.2 < σ < 5, respectively.

It can be seen that for σ = −1, the low-amplitude
periodic motion and SMR exist in the system. In order
to illustrate this point, one may perform Monte Carlo
simulations of the steady-state dynamics for different
values of randomly picked initial conditions. Figure 24
shows dependency of the types of the system response
to various initial conditions within −1 < q1, q̇1, q2 <

1 and q̇2 = 0. It is shown that both types of motions
occur. In the range of initial conditions, for 80–90%
of cases the SMR occurs, and for 10–20% of them
the low-amplitude motion happens. Obviously, in the
most cases, the SMR occurs in the range of the above-
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Fig. 24 Monte Carlo
simulations of steady-state
attractors of the dynamics
for randomly varying initial
conditions d = 0.35,
α = 0.4, F = 1, σ = 1,
μ = −1 (point 5 in Fig. 22)

Fig. 25 Occurrence of
Hopf and saddle-node
bifurcations and critical
magnitude of external force
for d = 0.19, σ = 1,
μ = −1

mentioned initial conditions. It is clear that the SMR
would be less likely to occur for the lower values of
initial conditions.

Also, for the parameters of point 6, the SMR occurs.
Point 6 is outside the critical external force region,
so there is a node in the slow-motion phase plane for
high-amplitude region. For point 6, the range of exis-
tence of the SMR and WMR, saddle-node region and
high-amplitude periodic motion is −8.2 < σ < 11.2,
−2.3 < σ < 4.4 and 3.1 < σ < 6.1, respec-
tively.

The third location for the NES position is d = 0.19.
In this case, the spatial parameter of the system is
φ1d = 0.5712. Figure 25 shows the occurrence of Hopf
and saddle-node bifurcations and the amplitudes of the
external force for occurrence of SMR in the F − α

space. It can be seen that unlike the previous cases, the
saddle-node bifurcations in this condition occurs for
σ = 1. In this section, for points 7, 8, 9, 10, 11 and
12 of Fig. 25, the dynamic behavior of the system is
studied. In addition, in this figure for α = 0.4 points S1
and S2 are the limits of occurrence of the saddle-node
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Fig. 26 Force response
diagram of the system for
d = 0.19, α = 0.4, σ = 1,
μ = −1

Fig. 27 Frequency
response curve of the
system for d = 0.19,
α = 0.4, F = 0.4, σ = 1,
μ = −1 (point 8 in Fig. 25)

bifurcations, and points H3 and H4 are the limits of
occurrence of Hopf bifurcations.

Figure 26 shows the variations of the steady-state
response of the system versus excitation force ampli-
tude corresponding to Fig. 25. For α = 0.4 (in Fig.
25), increasing the external force magnitude results in
crossing the boundaries of Hopf and saddle-node bifur-
cations at four points H3, H4 and S1, S2,, respectively,
and they are consonantwith homonymouspoints of Fig.
26. It can be inferred that different external force mag-

nitudes lead to different solutions. As it can be seen in
Fig. 26, for 0.25 < F < 0.68 (the saddle-node bifur-
cations occur), there are three solutions, but the sys-
tem has only one non-trivial stable solution outside this
region,which increasesmonotonically as external force
increases. In this region the high- and low-amplitude
periodic motion regions are stable, but the saddle-node
bifurcation and WMR regions (0.51 < F < 0.66) are
unstable. As the external force increases, the ampli-
tude of solution increases along the lower branch to the
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Fig. 28 Phase plane of the
slow motion for d = 0.19,
α = 0.4, F = 0.4, σ = 1,
μ = −1 (point 8 in Fig. 25)

saddle-node bifurcation point S1, and when F increases
further, a sudden jumpoccurs frompoint S1 to the upper
stable branch. By reversing this procedure, the relative
displacement decreases slowly along the upper stable
branch as it reaches the saddle-node bifurcation point
S2, where it experiences a jump down to the lower
stable branch. As indicated in Fig. 26, sweeping the
force leads to the jump phenomenon and hysteresis in
the response. Generally, it can be said that the system
has three periodic solutions in the saddle-node region,
but it has one solution out of this region. Also, bound-
ary of Hopf and saddle-node bifurcations in Fig. 25
is consistent with Fig. 26. Furthermore, it is shown
that the saddle-node bifurcation region gets smaller by
decreasing the fluid velocity; therefore, the schematic
of Fig. 26, after formation of a turning point close to the
point S1, changes slowly to the schematic of Fig. 10 by
decreasing the fluid velocity. As a result, the possibility
of the jump phenomenon decreases.

As previously discussed, excitation forcemagnitude
of point 7 in Fig. 25 is smaller than the critical value
of points 1 and 6. As a result, there is only one node
in the phase plane of this point which represents sys-
tem absorption to a periodic motion with the ampli-
tude value equal to 0.15 for any initial conditions.
The numerical results demonstrate that the transient
response has a longer time in comparison with the pre-
vious case. The possibility of occurrence of SMR is
proved by studying the phase plane of the slow motion
of the system related to points 12 and 13. For point 12,

the WMR does not occur at all and the SMR occurs
for −1 < σ < 0.3. The frequency response curve
of the system for point 8 is depicted in Fig. 27. This
point is above the first critical excitation and below the
Hopf bifurcation area; therefore, the saddle-node bifur-
cations (the high-amplitude region) are very small in
the frequency response curve.

As it is visible in Figs. 15, 19 and 27, increasing the
magnitude of the external force leads to increasing the
input energy of the system; in addition, the occurrence
possibility of a high-amplitude motion increases and
the island-like zone of high amplitudes is extended and
moves closer to the low-amplitude zone. Furthermore,
it can be seen that the SMR and WMR regions shift
slightly to the positive values of detuning parameter by
increasing the fluid velocity.

Since the system parameters corresponding to point
8 are inside the saddle-node bifurcation area and above
thefirst critical external load amplitude, twonodes exist
for lower and higher amplitudes in the slow-motion
phase plane (Fig. 28); therefore, the SMR does not
occur at this point. The trajectory of the slow motion
of point 8 (in Fig. 25) in the phase plane is plotted in
Fig. 29. As it can be seen, the system dynamic trajec-
tory after several motions in the closed loop (indicating
the SMR) is absorbed in a node (indicating the low-
amplitude periodic motion for N = 0.36, θ = 1.65).

The frequency response curve of the system for
points 9 and 10 is similar to Fig. 15. For point 9, sys-
tem has a stable response with high amplitude and sad-
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Fig. 29 Trajectory of the
slow motion in the phase
plane for d = 0.19,
α = 0.4, F = 0.4, σ = 1,
μ = −1 (point 8 in Fig. 25)

dle node (1 < σ < 1.1 and 1 < σ < 1.1). In this
case, the SMR occurs for −1.8 < σ < 1.3, and the
WMR occurs for 0.3 < σ < 0.7. For point 10, sys-
tem has a stable response with high amplitude and sad-
dle node (0.8 < σ < 1.2 and 0.9 < σ < 1.1). In
this case, the SMR occurs for −2 < σ < 1.5, and
the WMR occurs for 0.3 < σ < 0.7. The dynamic
behavior of the system at point 9 is identical to that
of point 10; therefore, the SMR occurs. The frequency
response curve of the system for points 11 and12 is sim-
ilar to Fig. 19, and the island-like zone of high ampli-
tudes joins to the low-amplitude regions. For point 11,
system has a stable response with high amplitude and
saddle node (0.9 < σ < 1.5). In this case, the SMR
occurs for −1.6 < σ < 2.4 and the WMR occurs
for 0 < σ < 1.1. For point 12, system has stable
response with high amplitude for 1 < σ < 1.7. In this
case, the SMR occurs for −0.9 < σ < 0.4 and the
WMR and saddle node occur at two regions (−0.3 <

σ < 0.1 and 1.3 < σ < 1.4) and (1 < σ < 1.1
and 1.3 < σ < 1.7), respectively. The accuracy of
the non-occurrence of SMR is approved by investi-
gating the sustained jumping map for points 11 and
12.

The last position of NES position is d = 0.1, which
is close to the pipe support. In this case, spatial parame-
ter of the system is φ1d = 0.2246. Figure 30 demon-
strates the existence of Hopf and saddle-node bifurca-
tions and amplitudes of the external force for the occur-
rence of the SMR in the F − α space for σ = 1. Also,

the dynamic behavior of the system is evaluated for
parameters of the points 13, 14, 15 and 16 in Fig. 30.

The schematic of variation of the steady-state
response of the system versus excitation amplitude
force corresponding to Fig. 30 is similar to Fig. 26. In
Fig. 30, for α = 0.4, increasing the external force mag-
nitude leads to crossing the boundaries of Hopf and the
saddle-node bifurcations at the same points (S1 − H3,
S2 − H4 in Fig. 29); therefore, the length of Hopf and
the saddle-node bifurcation regions are equal in this
diagram. The system with parameters of point 13 in
Fig. 30 has a periodic motion similar to points 1, 4 and
7. The range of the occurrence of the WMR for point
13 is 0.37 < σ < 0.4. Since this point is under critical
force, the SMR does not happen.

The amplitude of force excitation for point 14 is
greater than the critical force (F > Fcritical[1]), so, the
jump phenomenon would happen. The trajectory of the
slow motion of the system in the phase plane for para-
meters of point 14 is demonstrated in Fig. 31. It can be
seen that the system ultimately is attracted to the low-
amplitude node. This is the sign of the longer transient
response in this case. It can be explained that when
NES is connected close to the pipe supports, the vibra-
tion amplitude of the pipe is smaller at this position;
therefore, the absorber needs a longer time to transfer
the system to a desired motion regime.

The range of existence of the SMR and WMR for
parameters of point 14 is 0.1 < σ < 0.2 and 0.44 <

σ < 0.5, respectively. For parameters of the points
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Fig. 30 Occurrence of
Hopf and saddle-node
bifurcations and critical
magnitude of external force
for d = 0.1, σ = 1, μ = −1

Fig. 31 Trajectory of the
slow motion of the system
in the phase plane for
d = 0.1, α = 0.4,
F = 0.75, σ = 1, μ = −1
(point 14 in Fig. 30)

15 and 16, the SMR does not occur, at all. It can be
seen that the SMR (sign of the absorber performance)
is limited and often does not occur at this NES location.

Finally, the efficiency of the optimal NES (corre-
sponding to point 2 parameters in Fig. 8) is compared
to that of an optimal linear absorber. The parameters
related to point 4 (Fig. 8), and around it, are selected
as the optimal parameters for the NES on account of
the fact that the range of the existence of the SMR in
detuning parameter region [in the frequency response

curve) is the greatest at this point than that of other
points of the system (−12.3 < σ < 15.9). Den Har-
tog relation [42] is used to obtain the optimal linear
absorber parameters (Eq. (62)).

To compare these two cases in Eqs. (19) and (20),
damping and masses of absorber have the same value.
The absorbers stiffness is obtained based on tuning of
the parameters for optimal absorbersEqs. (63) and (64).
In addition, the values of the external forces for two
cases have the same magnitude.
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Fig. 32 Total system
energy frequency responses
without any absorber, with
the optimal linear absorber
and with NES (with
parameters of point 2
in Fig. 8)

m11 ẍ1(t) + m11(�
2 + εσ )x1(t) + ε

ζ

φ1d
ẋ1(t)

+ ε
μ

φ1d
x1(t)

+ εclin{ẋ1(t) − ẋ2(t)} + εklin{x1(t) − x2(t)}
= ε

F

φ1d
cos(�t)

εẍ2(t) + εα[ẋ2(t) − ẋ1(t)]
+ εβ[x2(t) − x1(t)] = 0 (62)
ωabsorber

ωprimary−mass
= 1

1 + ε
m j j

(63)

εclin
2m j jωn

=
√√√√√ 3 ε

m j j

8
(
1 + ε

m j j

) (64)

With the aim of comparing the efficiency of the linear
absorber to that of the NES in the vibration control of a
pipe conveying fluid, the total energy of system in two
cases (with NES and with linear absorber) for differ-
ent values of the external force, angular frequency and
around the resonance frequency is calculated Eq. (65)

EtotNES = 1

2
m j j

n∑
i=1

φi (x)q̇
2
i (t) + 1

2
εq̇2n+1(t)

+ 1

2
(εμ + k j j )

n∑
i=1

φi (x)q
2
i (t)

+1

2
εβ

{
n∑

i=1

φi (x)qi (t) − qn+1(t)

}4

Etotlinear = 1

2
m11φ1(x)q̇

2
1 (t)

+1

2
εq̇2n+1(t) + 1

2
(εμ + k11)φ1(x)q

2
1 (t)

+1

2
εklin{φ1(x)q1(t) − q3(t)} (65)

Figure 32 shows that the total energy of the pipe
conveying fluid without any absorber, with attached
optimal NES (with one, two and three modes of the
pipe), and the attached optimal linear absorber under
external force for different angular frequencies.

The linear optimal absorber is more efficient than
the NES right on and near the resonance frequency. It
can be seen that the resonance frequency of the sys-
tem is divided into two frequencies around itself which
is in accordance with the classical features of the lin-
ear absorbers. For these frequencies, the pipe has large
amplitude which is the feature of the linear absorbers.
The analytical solution indicates that the SMR takes
place in this region. In general, right on and near the res-
onance frequency, the optimal linear absorber is more
efficient than the NES. However, the NES is more effi-
cient than the optimal linear absorber in a large fre-
quency range around the resonance frequency. When
a system has a variable natural frequency or is under
a variable external excitation frequency, this feature of
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the NES becomes important. For example, a pipe con-
veying fluid in the oceanmay have a variant natural fre-
quency due to the different wave velocity of the ocean,
erosion over time and the lack of precision in manufac-
turing process.

6 Conclusions

The performance of a smooth NES on vibration of a
pipe conveying fluid under harmonic external load has
been investigated in this paper. The Euler–Bernoulli
beam theory has been used to model the pipe. Lin-
ear damping and an essentially nonlinear stiffness
have been considered for nonlinear energy sink. The
required conditions for existence of the Hopf and
saddle-node bifurcations and the occurrence of the
SMR have been discussed. The influences of the loca-
tion of the NES on the pipe, the damping of the NES,
the magnitude of external force and the fluid velocity
on the dynamical behavior of pipe conveying fluid have
been investigated.

The results show that the range of the parameters
in which the SMR and the Hopf bifurcations occur
simultaneously is the best case for vibration control,
and the existence of the saddle-node bifurcation does
not affect the desirable behavior of the system notice-
ably. The system is usually attracted to the SMR that is
an appropriate dynamic regime for the performance of
an NES. Also, when low-amplitude periodic motions,
high-amplitude periodic motions and SMR and WMR
occur simultaneously, the system is usually attracted to
the SMR.

The NES position affects the range of magnitude of
external force that allows for the occurrence of SMR.
This is one of the advantages of using NES in compar-
ison with the linear absorber.

Increasing the fluid velocity leads to decreasing the
amplitude of motion, and extending the unstable region
(saddle-node and Hopf bifurcation). Also, it has been
proved that the occurrence possibility of the SMR and
WMR phenomena increases for positive values of the
detuning parameter by increasing the fluid velocity.

The NES is more desirable in the large frequency
range around the resonance frequency, but the optimal
linear absorber is more efficient than the NES, right on
and near the resonance frequency.

Probability of saddle-node and the SMR occurrence
increases and decreases, respectively, by approaching

the pipe supports. Also, the transient response lasts
longer. When the NES location is near the pipe sup-
ports, for the best parameters of that section, the range
of the existence of SMR in the frequency response
curve is smaller. Also, when the NES is placed at the
middle section of the pipe, the range of the existence
of the SMR in the frequency response curve is greater
and the transient response lasts shorter. Based on these
discussions, the best range of the NES parameters for
achieving an efficient vibration control corresponds to
point 2 in Fig. 8.
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Ū2

f φ1(x̄)

[
d2φ1(x̄)

dx̄2

]
dx̄, k11

=
∫ 1

0
φ1(x̄)

[
d4φ1(x̄)

dx̄4

]
dx̄, ξ =

∫ 1

0
c̄ pφ

2
1(x̄)dx̄, F̄

=
∫ 1

0
F̄φ1(x̄)dx̄

Appendix 2

α1 = 16�6

⎛
⎜⎜⎝

φ4
1dα

2�4 + 2φ3
1dαξ�4 − 2φ3

1dα
2μ�2

+φ2
1dα

2ξ2�2 + φ2
1dξ

2�4 + α2σ 2

−2φ2
1dα

2σ�2 + φ2
1dα

2μ2 + φ2
1dμ

2�2

+2φ1dα
2μσ + 2φ1dμσ�2 + σ 2�2

⎞
⎟⎟⎠

α2 = 24β�4
(
φ3
1dμ�2 − φ2

1dξ
2�2 + φ2

1dσ�2

−φ2
1dμ

2 − 2φ1dμσ − σ 2
)

α3 = 9β2
(
φ4
1d�

4 − 2φ3
1dμ�2 + φ2

1dξ
2�2

− 2φ2
1dσ�2 + φ2

1dμ
2 + 2φ1dμσ + σ 2

)

α4 = −16φ2
1d F

2�10

Appendix 3

η1 = φ2
1dαε + φ1dεξ + α

η2 = 1

64�6 (16φ4
1dα

2ε2�6 + 32φ3
1dαε2ξ�6

+ 27φ4
1dβ

2ε2φ2 f
4 + 16φ2

1dε
2ξ2�6

123



Vibration control of a pipe conveying fluid 1793

+ 48φ3
1dβε2μ�φ2 f

2 + 32φ2
1dα

2ε�6

+ 48φ2
1dβε2σ�2φ2 f

2 + 16φ2
1dε

2μ2�4

+ 64φ1dαεξ�6 + 54φ2
1dβ

2εφ2 f
4

+ 32φ1dε
2μσ�4 + 16α2�6 + 16ε2σ 2�4

+ 16�8 − 48β�4φ2 f
2 + 27β2φ2 f

4)

η3 = ε

64�6 (16φ3
1dα

2εξ�6 + 16φ2
1dαεξ2�6

+ 27φ3
1dβ

2εξφ2 f
4 + 16φ2

1dα�8

+ 16φ2
1dαεμ2�4 + 16φ1dα

2ξ�6 + 16φ1dξ�8

+ 32φ1dαεμσ�4 − 48φ1dβξ�4φ2 f
2

+27φ1dβ
2ξφ2 f

4 + 16αεσ 2�4)

η4 = ε2

256�8 (16φ4
1dα

2�10 + 32φ3
1dαξ�10

+ 27φ4
1dβ

2�4φ2 f
4 − 32φ3

1dα
2μ�8

− 48βσ 2�4φ2 f
2 + 16φ2

1dα
2ξ2�8

+ 16φ2
1dξ

2�10 + 48φ3
1dβμ�6φ2 f

2

− 32φ2
1dα

2σ�8 − 48φ2
1dβξ2�6φ2 f

2

− 54φ3
1dβ

2μ�2φ2 f
4 + 16φ2

1dα
2μ2�6

+ 27φ2
1dβ

2ξ2�2φ2 f
4 + 48φ2

1dβσ�6φ2 f
2

+ 27β2σ 2φ2 f
4 + 16φ2

1dμ
2�8

−54φ2
1dβ

2σ�2φ2 f
4 − 48φ2

1dβμ2�4φ2 f
2

+ 32φ1dα
2μσ�6 + 32φμ

1dσ�8

+ 27φ2
1dβ

2μ2φ2 f
4 − 96φ1dβμσ�4φ2 f

2

+ 16α2σ 2�6 + 16σ 2�8 + 54φ1dβ
2μσφ2 f

4)

Appendix 4

v1 = − 729

4096

εφ1dβ4ξ
(
φ2
1dε + 1

)2 (
φ4
1dαε2 + φ3

1dε2ξ + 2φ2
1dαε + α

)
�12

v2 = −
81εφ1dβ3ξ

(
φ2
1dε + 1

)
256�10

(φ5
1dαε3μ + φ4

1dαε3σ − φ4
1dαε2�2

+φ4
1dε3μξ + φ3

1dε3σξ

−φ3
1dε2ξ�2 + φ3

1dαε2μ + φ2
1dαε2σ

− 3φ2
1dαε�2 − 2α�2)

v3 = − 9εφ1dβ2

256�8 {6φ8
1dα3ε4ξ�2 + 15φ7

1dα2ε4ξ2�2

+ 12φ6
1dαε4ξ3�2 + 22αξ�4 + 3φ7

1dα2ε4μ2

+ 24φ6
1dα3ε3ξ�2 + 3φ5

1dε4ξ4�2 + 6φ6
1dα2ε4μσ

+ 6φ6
1dα2ε3μ�2 + 6φ6

1dαε4μ2ξ

+ 6α3ξ�2 − 12φ1dαε2μσξ + 3φ1dα2�4

+ 42φ5
1dα2ε3ξ2�2 + 3φ5

1dα2ε4σ 2

+ 6φ5
1dα2ε3σ�2 + 3φ5

1dα2ε2�4

+ 18φ4
1dαε3ξ3�2 + 6φ5

1dα2ε3μ2

− 6αε2σ 2ξ + 12φ5
1dαε4μσξ − 4φ5

1dαε3μξ�2

+ 3φ5
1dε4μ2ξ2 − 4φ4

1dαε3σξ�2

+ 6φ4
1dαε2ξ�4 + 6φ4

1dε4μσξ2

+ 36φ4
1dα3ε2ξ�2 + 6φ4

1dαε4σ 2ξ

− 10φ4
1dε3μξ2�2 + 12φ4

1dα2ε3μσ

+ 12φ4
1dα2ε2μ�2 + 39φ3

1dα2ε2ξ2�2

+ 3φ3
1dε4σ 2ξ210φ3

1dε3σξ2�2

+ 3φ3
1dε2ξ2�4 + 6φ3

1dα2ε3σ 2

+ 12φ3
1dα2ε2σ�2 + 6φ3

1dα2ε�4

+ 3φ1dα2ε2σ 2

− 4φ3
1dαε2μξ�2 + 6φ2

1dαε2ξ3�2

+ 3φ3
1dα2ε2μ2 + 24φ2

1dα3εξ�2 − 4φ2
1dαε2σξ�2

+ 28φ2
1dαεξ�4 + 6φ2

1dα2εμ�2 − 6φ2
1dαε2μ2ξ

+ 12φ1dα2εξ2�2 + 6φ1dα2εσ�2 + 6φ2
1dα2ε2μσ }

v4 = −3εφ1dαβ

16�6 {φ7
1dα

2ε4μξ�2

+ φ6
1dα

2ε4σξ�2 − φ6
1dα

2ε3ξ�4

+ 2φ6
1dαε4μξ2�2 + 2ε2σ 2ξ�2

− 2φ5
1dαε3ξ2�4 + φ5

1dε
4μξ3�2

+ φ6
1dαε4μ3 + 2φ5

1dα
2ε3μξ�2

+ φ4
1dε

4σξ3�2 − φ4
1dε

3ξ3�4

+ 3φ5
1dαε4μ2σ + φ5

1dαεμ�2

+ φ5
1dε

4μ3ξ + 2φ4
1dα

2ε3σξ�2

− 4φ4
1dα

2ε2ξ�4 + 2φ4
1dαε3μξ2�2

+ 3φ4
1dαε4μσ 2 + 2φ4

1dαε3μσ�2

− φ4
1dαε2μ�4 + 3φ4

1dεε
4μ2σξ

+ φ4
1dε

3μ2ξ�2 + 2φ3
1dαε3σξ2�2

− 6φ3
1dαε2ξ2�4 + φ4

1dαε3μ3

+ φ3
1dα

2ε2μξ�2 + φ3
1dαε4σ 3

+ φ3
1dαε3σ 2�2 − φ3

1dαε2σ�4 − 2ξ�6

− φ3
1dαε�6 + 3φ3

1dε
4μσ 2ξ + 2φ3

1dε
3μσξ�2

− φ3
1dε

2μξ�4 − 2φ2
1dε

2ξ3�4 + 3φ3
1dαε3μ2σ

+ φ3
1dαε2μ2�2 + φ2

1dα
2ε2σξ�2 − 5φ2

1dα
2εξ�4

+ φ2
1dε

4σ 3ξ + φ2
1dε

3σ 2ξ�2 − φ2
1dε

2σξ�4

− φ2
1dεξ�6 + 3φ2

1dαε3μσ 2 + 2φ2
1dαε2μσ�2

− φ2
1dαεμ�4 + 2φ2

1dε
2μ2ξ�2 − 4φ1dαεξ2�4

+ φ1dαε3σ 3 + φ1dαε2σ 2�2 − φ1dαεσ�4

− φ1dα�6 + 4φ1dε
2μσξ�2 − 2α2ξ�4

+ 2φ5
1dαε4σξ2�2}

123



1794 A. E. Mamaghani et al.

v5 = −εφ1dα

16�4 φ4
1dα

2ε2ξ�2 + 2φ3
1dαε2ξ2�2

+ φ2
1dε

2ξ3�2 + φ3
1dαε2μ2 + 2φ2

1dα
2εξ�2

+ 2φ2
1dαε2μσ + 2φ2

1dαεμ�2 + φ2
1dε

2μ2ξ

+ 2φ1dαεξ2�2 + φ1dαε2σ 2

+ 2φ1dαεσ�2 + φ1dα�4 + 2φ1dε
2μσξ

+ α2ξ�2 + ε2σ 2ξ + 2εσξ�2

+ 2φ1dεμξ�2} × {φ4
1dα

2ε2�2 + 2φ3
1dαε2ξ�2

+ φ2
1dε

2ξ2�2 + ε2σ 2 + φ2
1dε

2μ2 + 2φ1dαεξ�2a

+ 2φ1dε
2μσ + 2φ2

1dα
2ε�2 − 2φ1dεμ�2 + α2�2

− 2εσ�2 + ξ�4 + �4}

References

1. Paidoussis, M.P.: Fluid-Structure Interactions: Slender
Structures and Axial Flow, vol. 1. Academic Press, London
(1998)

2. Semler, C., Li, G., Paıdoussis, M.: The non-linear equations
of motion of pipes conveying fluid. J. Sound Vib. 169(5),
577–599 (1994)

3. Paıdoussis, M., Li, G.: Pipes conveying fluid: a model
dynamical problem. J. Fluids Struct. 7(2), 137–204 (1993)

4. Benjamin, T.B.: Dynamics of a system of articulated pipes
conveying fluid. I. Theory. In: Proceedings of the Royal
Society of London A: Mathematical, Physical and Engi-
neering Sciences 1961, vol. 1307, pp. 457–486. The Royal
Society

5. Jensen, J.S.: Fluid transport due to nonlinear fluid-structure
interaction. J. Fluids Struct. 11(3), 327–344 (1997)

6. Zhai, H.-B., Wu, Z.-Y., Liu, Y.-S., Yue, Z-f: Dynamic
response of pipeline conveying fluid to random excitation.
Nucl. Eng. Des. 241(8), 2744–2749 (2011)

7. Liang, F.,Wen,B.: Forced vibrationswith internal resonance
of a pipe conveying fluid under external periodic excitation.
Acta Mech. Solida Sin. 24(6), 477–483 (2011)

8. Doki, H., Hiramoto, K., Skelton, R.: Active control of can-
tilevered pipes conveying fluid with constraints on input
energy. J. Fluids Struct. 12(5), 615–628 (1998)

9. Yau, C.-H., Bajaj, A., Nwokah, O.: Active control of chaotic
vibration in a constrained flexible pipe conveying fluid. J.
Fluids Struct. 9(1), 99–122 (1995)

10. Rinaldi, S., Païdoussis, M.: Dynamics of a cantilevered pipe
dischargingfluid, fittedwith a stabilizing end-piece. J. Fluids
Struct. 26(3), 517–525 (2010)

11. Yu, D., Wen, J., Zhao, H., Liu, Y., Wen, X.: Vibration
reduction by using the idea of phononic crystals in a pipe-
conveying fluid. J. Sound Vib. 318(1), 193–205 (2008)

12. Sigalov, G., Gendelman, O., Al-Shudeifat, M., Manevitch,
L., Vakakis, A., Bergman, L.: Resonance captures and tar-
geted energy transfers in an inertially-coupled rotational
nonlinear energy sink. Nonlinear Dyn. 69(4), 1693–1704
(2012)

13. Grinberg, I., Lanton, V., Gendelman, O.: Response regimes
in linear oscillator with 2DOF nonlinear energy sink under
periodic forcing. Nonlinear Dyn. 69(4), 1889–1902 (2012)

14. Colvin, M.: Energy sinks with nonlinear stiffness and non-
linear damping (2010)

15. Nili Ahmadabadi, Z., Khadem, S.E.: Self-excited oscil-
lations attenuation of drill-string system using nonlinear
energy sink. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng.
Sci. 227, 230–245 (2012)

16. Xiong, H., Kong, X., Yang, Z., Liu, Y.: Response regimes
of narrow-band stochastic excited linear oscillator coupled
to nonlinear energy sink. Chin. J. Aeronaut. 28(2), 457–468
(2015)

17. Kani, M., Khadem, S.E., Pashaei, M.H., Dardel, M.: Design
andperformance analysis of a nonlinear energy sink attached
to a beamwith different support conditions. Proc. Inst.Mech.
Eng. Part C: J. Mech. Eng. Sci. 230, 527–542 (2015)

18. Starosvetsky, Y., Gendelman, O.: Dynamics of a strongly
nonlinear vibration absorber coupled to a harmonically
excited two-degree-of-freedom system. J. Sound Vib.
312(1), 234–256 (2008)

19. Ahmadabadi, Z., Khadem, S.: Annihilation of high-
amplitude periodic responses of a forced two degrees-of-
freedom oscillatory system using nonlinear energy sink. J.
Vib. Control 19, 2401–2412 (2012)

20. Kani, M., Khadem, S., Pashaei, M., Dardel, M.: Vibration
control of a nonlinear beam with a nonlinear energy sink.
Nonlinear Dyn. 83, 1–22 (2015)

21. Bab, S., Khadem, S., Shahgholi,M.:Vibration attenuation of
a rotor supported by journal bearings with nonlinear suspen-
sions under mass eccentricity force using nonlinear energy
sink. Meccanica 50, 2441–2460 (2015)

22. Nili Ahmadabadi, Z., Khadem, S.: Nonlinear vibration con-
trol and energyharvestingof a beamusing anonlinear energy
sink and a piezoelectric device. J. Sound Vib. 333, 4444–
4457 (2014)

23. Zulli, D., Luongo, A.: Control of primary and subharmonic
resonances of aDuffing oscillator via non-linear energy sink.
Int. J. Non-Linear Mech. 80, 170–182 (2016)

24. Yang, T.-Z., Yang, X.-D., Li, Y., Fang, B.: Passive and
adaptive vibration suppression of pipes conveying fluid
with variable velocity. J. Vib. Control 20(9), 1293–1300
(2014)

25. Bab, S., Khadem, S.E., Shahgholi, M.: Lateral vibration
attenuation of a rotor under mass eccentricity force using
non-linear energy sink. Int. J. Non-Linear Mech. 67, 251–
266 (2014)

26. Ahmadabadi, Z.N., Khadem, S.: Nonlinear vibration con-
trol of a cantilever beam by a nonlinear energy sink. Mech.
Mach. Theory 50, 134–149 (2012)

27. Gendelman, O.V.: Targeted energy transfer in systems with
non-polynomial nonlinearity. J. SoundVib. 315(3), 732–745
(2008)

28. Bab, S., Khadem, S.E., Mahdiabadi, M.K., Shahgholi, M.:
Vibration mitigation of a rotating beam under external peri-
odic force using a nonlinear energy sink (NES). J. Vib. Con-
trol 125 (2015)

29. Meirovitch, L.: Analytical Methods in Vibration, vol. 16.
Macmillan, New York (1967)

30. Manevitch, L.: The description of localized normal modes
in a chain of nonlinear coupled oscillators using complex
variables. Nonlinear Dyn. 25(1–3), 95–109 (2001)

31. Abbasi, A., Khadem, S., Bab, S.: Vibration control of a con-
tinuous rotating shaft employing high-static low-dynamic

123



Vibration control of a pipe conveying fluid 1795

stiffness isolators. J. Vib. Control (2016). doi:10.1177/
1077546315587611

32. Nayfeh, A.H., Balachandran, B.: Applied Nonlinear
Dynamics: Analytical, Computational and Experimental
Methods. Wiley, London (2008)

33. Vakakis, A.F., Gendelman, O.V., Bergman, L.A., McFar-
land, D.M., Kerschen, G., Lee, Y.S.: Nonlinear Targeted
Energy Transfer in Mechanical and Structural Systems, vol.
156. Springer, Berlin (2008)

34. Gourc, E., Michon, G., Seguy, S.b., Berlioz, A.: Experi-
mental investigation and theoretical analysis of a nonlin-
ear energy sink under harmonic forcing. In: ASME 2011
International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference
2011, pp. 391–397. American Society of Mechanical Engi-
neers

35. Lee, Y., Vakakis, A., Bergman, L., McFarland, D.M., Ker-
schen, G.: Suppression aeroelastic instability using broad-
band passive targeted energy transfers, part 1: theory. AIAA
J. 45(3), 693–711 (2007)

36. Gendelman, O.V.: Bifurcations of nonlinear normal modes
of linear oscillator with strongly nonlinear damped attach-
ment. Nonlinear Dyn. 37(2), 115–128 (2004)

37. Fenichel, N.: Geometric singular perturbation theory for
ordinary differential equations. J. Differ. Equ. 31(1), 53–98
(1979)

38. Savadkoohi, A.T., Lamarque, C.-H., Dimitrijevic, Z.: Vibra-
tory energy exchange between a linear and a nonsmooth
system in the presence of the gravity. Nonlinear Dyn. 70(2),
1473–1483 (2012)

39. Lamarque, C.-H., Gendelman, O.V., Savadkoohi, A.T.,
Etcheverria, E.: Targeted energy transfer in mechanical sys-
tems by means of non-smooth nonlinear energy sink. Acta
Mech. 221(1–2), 175–200 (2011)

40. Gendelman, O., Starosvetsky, Y., Feldman,M.: Attractors of
harmonically forced linear oscillatorwith attached nonlinear
energy sink I: description of response regimes. Nonlinear
Dyn. 51(1–2), 31–46 (2008)

41. Parseh, M., Dardel, M., Ghasemi, M.H., Pashaei, M.H.:
Steady state dynamics of a non-linear beam coupled to a
non-linear energy sink. Int. J. Non-Linear Mech. 79, 48–65
(2016)

42. Den Hartog, J.P.: Mechanical Vibrations. McGraw-Hill,
New York (1956)

123

http://dx.doi.org/10.1177/1077546315587611
http://dx.doi.org/10.1177/1077546315587611

	Vibration control of a pipe conveying fluid under external periodic excitation using a nonlinear energy sink
	Abstract
	1 Introduction
	2 Mathematical model of the considered system
	3 Analytical treatments
	3.1 Complexification-averaging method and stability analysis
	3.2 Analysis of the SMR (relaxation oscillations of the averaged flow)

	4 Numerical methods
	5 Results of analytical and numerical solutions
	6 Conclusions
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	References




