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Abstract This paper investigates the event-driven
observer-based output control of networked control
systems. By introducing a tuning parameter and a
weighting matrix, an extended event-driven thresh-
old is proposed. To obtain the controller and observer
gains in a convex manner, a constructive strategy is
employed to extract the controller matrix coupled with
Lyapunov variables and system matrices. Based on
these approaches, a sufficient condition for the closed-
loop system to be the global uniform ultimate bound-
edness is ensured in terms of linear matrix inequalities.
The validity of the proposed method is illustrated via a
numerical example.

Keywords Networked control systems · Observer ·
Event-driven control · Transmission delay

S. Yan · M. Shen (B) · G. Zhang (B)
College of Electrical Engineering and Control Science,
Nanjing Technology University, Nanjing 211816, China
e-mail: mouquanshen@gmail.com

S. Yan
e-mail: yanshenzdh@163.com

G. Zhang
e-mail: zgmchina@163.com

M. Shen
Key Laboratory of Measurement and Control of Complex
Systems of Engineering, Ministry of Education, Southeast
University, Nanjing 210096, China

1 Introduction

Control systems utilizing a real-time network to
exchange information among system components (sen-
sors, actuators, controllers, etc.) are known as net-
worked control systems (NCSs) [1,2]. Owing to the
advantages of quick and easy maintenance and low
power consumption, NCSs have been applied wide-
spread in manufacture plants, vehicles, aircraft, and
so on [2–5]. Thus, numerous research results about
NCSs are given in [6–12]. Regarding the data sam-
pling method, it is noted that the time-driven mecha-
nism is adopted in most of these works. In this para-
digm, the sampled data are transmittedwith a fixed rate,
which is simplified for system analysis and implemen-
tation. However, once the adjacent transmission signals
change marginally, it could lead to over-occupation of
limited network bandwidth. To release the overloaded
bandwidth, event-driven control has gained more and
more attention and interests [13].

In event-driven communication mechanism, the sig-
nal transmission is determined by a predesigned-driven
condition (also called event) instead of time. Con-
sequently, this mechanism could mitigate the unnec-
essary data. As such, fruitful results based on dif-
ferent event-driven schemes are made in [5,14–19].
Concretely speaking, in [14], a continuous triggered
scheme is defined by calculating the error between the
latest triggered state and the current state continuously.
This manner is also used in output feedback systems
[15,16]. Nevertheless, this scheme needs a specialized
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hardware with a very high frequency to measure the
system information. To cope with this deficiency, a dis-
crete event-driven mechanism is developed in [5,17].
With this mechanism, the system data are sampled
periodically and the triggered condition is tested only
at each sampling instant. Alternatively, by using the
current system information to predict the next trig-
gered time, the self-triggered scheme is proposed in
[18,19]. Based on the aforementioned mechanisms,
most of them are focused on stability analysis and
synthesis [15,17,20,21], network-induced time delay
and packet dropout [17,22,23], and network quanti-
zation [14,24,25]. Noticeably, a common hypothesis
is that all system states are accessible. Unfortunately,
this hypothesis is hard to realize since only system out-
puts or part of system states are accessible. Stimulated
by this point, event-driven-based output feedback con-
trol has been a fascinated topic [15,26–28]. For given
dynamic output feedback controller, depending on the
provided decentralized triggered mechanism, condi-
tions for stability analysis andL∞ performance are dis-
cussed in [26]. [27] develops a framework of dynamic-
output-based event-driven control for uncertain NCSs
with quantization. Event-triggered static output feed-
back H∞ control with time-varying sampling is stud-
ied in [28]. The issue of event-triggered observer-based
output feedback control of continuous-time linear sys-
tems is delivered in [15]. It is to note that the methods
for controller synthesis in these results are nonconvex.
Moreover, the driven threshold in some of them still
has room for further improvement.

Inspired by the above discussions, the event-
triggered observer-based output feedback control of
NCSs is further investigated in this paper.Motivated by
[15], an extended event-driven threshold is exploited
firstly. The extended triggered threshold is regulated
by a tuning parameter and a weighting matrix. Due to
the weighting matrix, it is feasible to do the co-design
of the event-driven scheme and observer-based output
controller. Then the event-driven closed-loop system
is expressed by a delay approach. To derive the event-
driven controllers and observers via a convex way, a
constructive approach [29] is employed to separate the
coupling of control matrix and other variables. With
the help of these strategies, a sufficient condition for
the resulted closed-loop system to be the global uni-
form ultimate boundedness is established in the frame-
work of linear matrix inequalities. Based on the estab-
lished condition, some special cases are also discussed.

Finally, a numerical example is presented to show the
validity of the proposed method.

The structure of this paper is as follows: The prob-
lem statement and somepreliminaries are formulated in
Sect. 2. The event-driven observer-based output control
is elaborated in Sect. 3. Section 4 provides a numerical
example to illustrate the effectiveness of the proposed
approach. Lastly, Sect. 5 concludes the paper.

Notation Throughout the paper, the notation M>0
(<0) is used to represent that M is symmetric and posi-
tive (negative) definite.Rn is the n-dimensional Euclid-
ean space, andRn×m is the set of all n×m realmatrices.
The transpose of M is denoted by MT. ∗ stands for the
entries of matrices implied by symmetry. The symbol
‖ • ‖ represents the Euclidean norm. Then, (M + MT)

is denoted by He(M). In and 0n×m mean the identity
block matrix and zero block matrix with appropriate
dimensions, respectively. What is more, matrices, if
not explicitly stated, are assumed to have compatible
dimensions.

2 Problem statement and preliminaries

Consider the following linear system{
ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(1)

where x(t)∈R
n is the state vector, u(t)∈R

m is control
input, y(t)∈R

q is the system output, and A, B, and
C are system matrices with appropriate dimensions.
Assume that system (1) is controlled over a network.

Due to the fact that only partial system state is acces-
sible in practical engineering, a state observer is used to
estimate the system state x(t)with themeasured output
y(t) modeled as below

˙̂x(t) = Ax̂(t) + Bu(t) + L(y(ikh) − Cx̂(ikh)),

t ∈ [tkh + τtk , tkh + τtk+1) (2)

where x̂(t)∈R
n means the observer state, L is the

observer gain to be designed, and τtk is the commu-
nication delay.

Thus, taking the limited capacity of the communica-
tion channels into account, an event-driven transmitter
based on the estimated state, as depicted in Fig. 1, is
constructed as

tk+1h = tkh + min
l

{lh|eT (ikh)�e(ikh) � γ 2(t)} (3)
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Fig. 1 Framework of an event-triggered NCS

where e(ikh)= x̂(ikh) − x̂(tkh) denotes the error
between the observer state at the current sampling
time ikh = tkh + lh(l ∈N) and the observer state at
the latest triggered time tkh;� is a symmetric positive-
definite weighting matrix; γ (t)=√βε−αt + ε0 is the
error thresholdwith ε > 1,β > 0, 0� α < 1, ε0 � 0; and
h denotes the sampling period.

Remark 1 The proposed event-driven mechanism (3)
is an extended version of the scheme in [15]. On the
one hand, a tuning parameter β related to α is added to
the exponent term as coefficient. The benefit could be
obvious once α is small. On the other hand, a weighting
matrix � is introduced to enable the co-design of the
triggered mechanism and the desired controllers.

Then, an event-driven observer-based state feedback
control law is formed as

u(t) = K x̂(tkh), t ∈ � (4)

where K is the control gain matrix to be designed later.
Until the novel triggered signal arrives at the actu-

ator, the control input is generated by a zero-order
holder (ZOH)with the holding time interval�= [tkh+
τtk , tkh + τtk+1). The following section provides a
detailed statement of the holding time� ofZOH,which
is divided into subsets�l = [ikh+τik , ikh+h+τik+1),
i.e.,�= ∪ �l , where ikh = tkh+lh, l = 0, . . . , tk+1−
tk − 1 represents sampling time from the current trig-
gered time tkh to the next triggered time tk+1h. For
l = tk+1− tk −1, then τik+1 = τtk+1 , otherwise τik = τtk .
Define τ(t)� t − ikh and τ̇ (t)= 1, t ∈�l . Note that
0< τ(t)< h + τ̄ � τm , where τ̄ means the maximum
allowable upper transmission delay bound.

Combing the state observer (2), control law (4), and
ZOH, the resulted closed-loop system is described as

⎧⎨
⎩
ẋ(t) = Ax(t) + BK x(t − τ(t))

−BK x̃(t − τ(t)) − BKe(ikh)
˙̃x(t) = Ax̃(t) − LCx̃(t − τ(t)), t ∈ �l

(5)

where x̃(t)= x(t) − x̂(t) is the estimation error.
Defining ξ T (t)= [

xT (t) x̃ T (t)
]T
, an augmented

closed-loop system is obtained

ξ̇ (t) = Ā1ξ(t) + Ā2ξ(t − τ(t)) + B̄e(ikh), t ∈ �l

(6)

where Ā1 =
[
A 0
0 A

]
, Ā2 =

[
BK −BK
0 −LC

]
, and B̄ =[−BK

0

]
.

This study aims at designing an event-driven
observer-based controller (4) such that the system (6)
is global uniform ultimate boundedness. To this end,
some technical lemmas are presented as follows.

Lemma 1 [30] For given positive integers p, q, a
scalar δ in the interval (0, 1), a given positive matrix
R in Rp, two matrices M1 and M2 in Rp×q , define, for
all vector ϑ in Rq , the function �(δ, R) given by:

�(δ, R) = 1

δ
ϑT MT

1 RM1ϑ+ 1

1 − δ
ϑT MT

2 RM2ϑ. (7)

Then, if there exists a matrix U in R
p×p such that[

R UT

∗ R

]
> 0, the following inequality holds

min
δ∈(0,1)

�(δ, R) �
[
M1ϑ

M2ϑ

]T [
R UT

∗ R

] [
M1ϑ

M2ϑ

]
. (8)

Lemma 2 [31] Given matrices D, E(t), and F of
appropriate dimensionswith E(t) satisfying ET (t)E(t)
� I , for any ε > 0 the following inequality holds

DE(t)F + FT ET (t)DT � εDDT + ε−1FT F. (9)

Lemma 3 [32] The following two inequalities are
equivalent:

(a) There exists a symmetric and positive-definite
matrix P satisfying

[−P AT

A −P−1

]
< 0; (10)
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(b) There exists a symmetric and positive-definite
matrix P and matrix Y satisfying

[−P (Y A)T

Y A He(−Y ) + P

]
< 0. (11)

3 Main results

In Sect. 3, a sufficient condition for the closed-loop
system (6) is established to guarantee the considered
NCSs to be global uniform ultimate boundedness in the
framework of linear matrix inequalities firstly. Based
on the obtained main result, some special cases are
presented subsequently.

Theorem 1 Consider the closed-loop system (6) under
the driven scheme (3) with ε, α, β, τm > 0. For given
decay rate σ , if there exist matrices P1 > 0, P2 > 0,
�> 0, R1 > 0,� > 0, J andUi (i = 1, 2, 3, 4), matri-
ces Z, N , Q with appropriate dimensions such that
⎡
⎢⎢⎣

�11 + J �12 0 0
∗ �22 �23 0
∗ ∗ He(−BT BZ) �34

∗ ∗ ∗ −J

⎤
⎥⎥⎦ < 0, (12)

where

�11 =

⎡
⎢⎢⎢⎢⎢⎣

�̄11 0 UT
1 UT

3
√

τm(R1A)T 0
∗ �̄22 UT

2 UT
4 0

√
τm(P2A)T

∗ ∗ −ϕR1 0 0 0
∗ ∗ ∗ −ϕP2 0 0
∗ ∗ ∗ ∗ −R1 0
∗ ∗ ∗ ∗ ∗ −P2

⎤
⎥⎥⎥⎥⎥⎦

,

ϕ = e−στm

τm
,

�̄11 = He(P1A) − ϕR1 + σ P1,

�̄22 = He(P2A) − ϕP2 + σ P2,

�12 =

⎡
⎢⎢⎢⎢⎢⎣

−BN BN −UT
1 + ϕR1 −BN −UT

3
0 −UT

2 −QC −UT
4 + ϕP2

0 ϕR1 −U1 −U2
0 −U3 ϕP2 −U4

−√
τm BN

√
τm BN −√

τm BN
0 0 −√

τmQC

⎤
⎥⎥⎥⎥⎥⎦

,

�22 =
⎡
⎣−� 0 0

∗ −2ϕR1 + He(U1) U2 +UT
3∗ ∗ −2ϕP2 + He(U4)

⎤
⎦ ,

�23 =
⎡
⎣−(BT BN )T

(BT BN )T

−(BT BN )T

⎤
⎦ , � =

⎡
⎢⎢⎣
R1 0 UT

1 UT
3∗ P2 UT

2 UT
4∗ ∗ R1 0

∗ ∗ ∗ P2

⎤
⎥⎥⎦ ,

�34 = [
(P1B − BZ)T 0 0 0

√
τm(R1B − BZ)T 0

]
,

then the closed-loop system (6) is global uniform
ultimate bounded and exponentially converges to the
bounded region

Bd(ε0) =
⎧⎨
⎩ξ(t)|‖ξ(t)‖ �

√
ε0

σλmin(P1)

⎫⎬
⎭ . (13)

Moreover, the state feedback controller gain is K =
Z−1N and the observer gain is L = P−1

2 Q.

Proof Choose a Lyapunov function as

V (t) = ξ T (t)Pξ(t)

+ (τm − τ(t))
∫ t

t−τm

eσ(s−t)ξ̇ T (s)Rξ̇ (s)ds

(14)

where P =
[
P1 0
0 P2

]
, R =

[
R1 0
0 P2

]
.

Taking the time derivative of (14) with τ̇ (t)= 1
yields

V̇ (t) = 2ξ T (t)P ξ̇ (t) −
∫ t

t−τm

eσ(s−t)ξ̇ T (s)Rξ̇ (s)ds

+ (τm − τ(t))ξ̇ T (t)Rξ̇ (t)

− (τm − τ(t))e−στm ξ̇ T (t − τm)Rξ̇ (t − τm)

− σ(τm − τ(t))
∫ t

t−τm

eσ(s−t)ξ̇ T (s)Rξ̇ (s)ds

+ eT (ikh)�e(ikh) − eT (ikh)�e(ikh). (15)

Based on (3), it leads to

V̇ (t) + σV (t) � 2ξ T (t)P ξ̇ (t)

−
∫ t

t−τm

eσ(s−t)ξ̇ T (s)Rξ̇ (s)ds

+ (τm − τ(t))ξ̇ T (t)Rξ̇ (t)

− (τm − τ(t))e−στm ξ̇ T (t − τm)Rξ̇ (t − τm)

+ σξ T (t)Pξ(t) − eT (ikh)�e(ikh) + γ 2(t)

� 2ξ T (t)P ξ̇ (t) − e−στm

∫ t

t−τm

ξ̇ T (s)Rξ̇ (s)ds

+ τm ξ̇ T (t)Rξ̇ (t)

+ σξ T (t)Pξ(t) − eT (ikh)�e(ikh) + γ 2(t).

(16)

The following step separates the integral term
−e−στm

∫ t
t−τm

ξ̇ T (s)Rξ̇ (s)ds into two parts taken over
the intervals [t−τ(t), t] and [t−τm, t−τ(t)]. Utilizing
Jensen’s inequality [33], one has
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−e−στm

∫ t

t−τm

ξ̇ T (s)Rξ̇ (s)ds

� − e−στm

τm − τ(t)
ηT (t)eT1 Re1η(t)

− e−στm

τ(t)
ηT (t)eT2 Re2η(t) (17)

where

ηT (t) = [
ξ T (t) ξ T (t − τm) ξ T (t − τ(t))

]
,

e1 = [
0 −I I

]
, e2 = [

I 0 −I
]
.

For a matrix U =
[
U1 U2

U3 U4

]
satisfying � > 0,

Lemma 1 guarantees that

−e−στm

∫ t

t−τm

ξ̇ T (s)Rξ̇ (s)ds

� −ηT (t)

⎡
⎣−ϕR UT ϕR −UT

∗ −ϕR ϕR −U
∗ ∗ −2ϕR + He(U )

⎤
⎦ η(t)

(18)

where ϕ = e−στm

τm
.

Substituting (18) into (16) yields

V̇ (x(t)) + σV (x(t)) � ζ T (t)(� + ϒT R−1ϒ)ζ(t)

+γ 2(t) (19)

where

ζ T (t) = [
ηT (t) eT (ikh)

]
,

� =

⎡
⎢⎢⎣

�11 UT �13 P B̄
∗ −ϕR ϕR −U 0
∗ ∗ −2ϕR + He(U ) 0
∗ ∗ ∗ −�

⎤
⎥⎥⎦ ,

�11 = He(P Ā1) − ϕR + σ P,

�13 = P Ā2 + ϕR −UT ,

ϒ = [√
τm R Ā1 0

√
τm R Ā2

√
τm RB̄

]
.

On the other hand, applying Schur complement to
(12) leads to⎡
⎣�11 + J �12 0

∗ �22 �23

∗ ∗ He(−BT BZ) + �34 J−1�T
34

⎤
⎦ < 0.

(20)

In terms of Lemma 3, (20) can be rewritten as⎡
⎣�11 + J �12 0

∗ �22 �23

∗ ∗ − (�34 J−1�T
34

)−1

⎤
⎦ < 0 (21)

where �23 = [−Z−1N Z−1N −Z−1N
]T

.

Using Schur complement to (21) once more time,
one can get[

�11 + J �12

∗ �22

]
+
[

0
�23

]
�34 J

−1�T
34

[
0 �T

23

]
< 0

(22)

which is also equivalent to
[

�11 �12

∗ �22

]
+
[

I6
03×6

]
J

[
I6

03×6

]T

+
[

0
�23

]
�34 J

−1�T
34

[
0 �T

23

]
< 0. (23)

Based on Lemma 2, the following inequality holds
[

I6
03×6

]
J

[
I6

03×6

]T
+
[
06×1

�23

]
�34 J

−1�T
34

[
01×6 �T

23

]

� He

⎛
⎜⎜⎜⎜⎜⎜⎝

[
I6

03×6

]
⎡
⎢⎢⎢⎢⎢⎢⎣

P1B − BZ
0
0
0√

τm(R1B − BZ)

0

⎤
⎥⎥⎥⎥⎥⎥⎦
Z−1N

[
01×6 −I I −I

]

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(24)

From the above fact and L = P−1
2 Q, (23) is reformed

as
⎡
⎢⎢⎢⎢⎣

�11 UT √
τm(R Ā1)

T P B̄ �13
∗ −ϕR 0 0 ϕR −U
∗ ∗ −R

√
τm(RB̄)

√
τm(R Ā2)

∗ ∗ ∗ −� 0
∗ ∗ ∗ ∗ −2ϕR + He(U )

⎤
⎥⎥⎥⎥⎦ < 0.

(25)

Left- and right-multiplying (25) with� and�T , one
has

⎡
⎢⎢⎢⎢⎣

�11 UT �13 P B̄
√

τm(R Ā1)
T

∗ −ϕR ϕR −U 0 0
∗ ∗ −2ϕR + He(U ) 0

√
τm(R Ā2)

T

∗ ∗ ∗ −�
√

τm(RB̄)T

∗ ∗ ∗ ∗ −R

⎤
⎥⎥⎥⎥⎦ < 0

(26)

where

� =

⎡
⎢⎢⎢⎢⎣

I 0 0 0 0
0 I 0 0 0
0 0 0 0 I
0 0 0 I 0
0 0 I 0 0

⎤
⎥⎥⎥⎥⎦ .
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Thus, (26) implies that ζ T (t)(�+ϒT R−1ϒ)ζ(t)< 0
holds for any nonzero ζ(t), which combined with (19)
gives that

V̇ (t) + σV (t) � γ 2(t). (27)

Applying comparison lemma [34] to (27) leads to

V (t) � e−σ t V (0) +
∫ t

0
e−σ(t−s)γ 2(s)ds. (28)

Noting that γ 2(t)= βε−αt + ε0 = βe−(α ln ε)t + ε0,
(28) is rewritten as

V (t) � e−σ t V (0) + e−σ t
∫ t

0
e(σ−α ln ε)tds

+ ε0

∫ t

0
e−σ(t−s)ds

= e−σ t

(
V (0) − ε0

σ

)
+ ε0

σ

+βe−σ t
∫ t

0
e(σ−α ln ε)tds.

The following three cases will be taken into account.
If σ − α ln ε = 0, one has

V (t) � e−σ t

(
V (0) − ε0

σ
+ βt

)
+ ε0

σ
.

If σ − α ln ε > 0, one can get

V (t) � e−σ t

(
V (0) − ε0

σ

)

+ βe−σ t

σ − α ln ε

(
e(σ−α ln ε)t − 1

)

= e−σ t

(
V (0) − ε0

σ
− β

σ − α ln ε

)

+ ε0

σ
+ βε−αt

σ − α ln ε
.

If σ − α ln ε < 0, thus, e(σ−α ln ε)t < 1, we have

V (t) � e−σ t

(
V (0) − ε0

σ
− β

σ − α ln ε

)

+ ε0

σ
+ βε−αt

α ln ε − σ
.

Summarizing the above three cases, one can see that
the global uniform ultimate boundedness of the closed-
loop system (6) is satisfied and the states exponentially
converge to the bounded region (13). 	


Remark 2 Compared with [15], this paper utilizes not
only ξ(t − τ(t)) but also ξ(t − τm) to get the obtained
result more effective. Further, the upper bound of trans-
mission delay in [15] is defined as the sampling period
h, but it could be optimized without the constraint of h
in the proposed method.

Remark 3 To get the closed-loop system (6) to be
global uniformultimate bounded, in [15], the state feed-
back controller gain and the observer gain are required
to be given in advance. Therefore, they are independent
on thedriven scheme.Nevertheless,with the introduced
weighting matrix, a co-design of the event-triggered
mechanism and observer-based controller is given in
Theorem 1 by a convex method.

Once system states are available, the event-driven
scheme and the resulting closed-loop system are refor-
mulated, respectively, as

tk+1h = tkh + min
l

{lh|eT (ikh)�e(ikh)

≥ γ 2(t)}, e(ikh) = x(ikh) − x(tkh); (29)

ẋ(t) = Ax(t) + BK x(t − τ(t)) − BKe(ikh),

t ∈ �l . (30)

Based on the obtained result given in Theorem 1, the
corresponding result is given below.

Corollary 1 Consider the closed-loop system (30)
under the trigger scheme (29) with ε, α, β, τm > 0.
For given decay rate σ , if there exist matrices P1 > 0,

� > 0, R1 > 0,

[
R1 U1

UT
1 R1

]
> 0, J1 and U1, matrices

Z, N with appropriate dimensions such that⎡
⎢⎢⎣

�11 + J1 �12 0 0
∗ �22 �23 0
∗ ∗ He(−BT BZ) �34

∗ ∗ ∗ −J1

⎤
⎥⎥⎦ < 0, (31)

where

�11 =
⎡
⎣ He(P1A) − ϕR1 + σ P1 UT

1
√

τm(R1A)T

∗ −ϕR1 0
∗ ∗ −R1

⎤
⎦,

�12 =
⎡
⎣ −BN BN −UT

1 + ϕR1

0 ϕR1 −U1

−√
τm BN

√
τm BN

⎤
⎦ ,

�22 =
[−� 0,

∗ −2ϕR1 + He(U1)

]
,

�23 =
[−(BT BN )T

(BT BN )T

]
,

�34 = [
(P1B − BZ)T 0

√
τm(R1B − BZ)T

]
,
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then the solutions of system (30) with the state feedback
gain K = Z−1N are globally uniformly ultimately
bounded and exponentially converge to the region

Bd(ε0) =
⎧⎨
⎩x(t)|‖x(t)‖ �

√
ε0

σλmin(P1)

⎫⎬
⎭ . (32)

Assuming that all system states are known, the
event-triggered level is chosen as

tk+1h = tkh + min
l

{lh|eT (ikh)�e(ikh)

≥ δxT (ikh)�x(ikh)}, δ ∈ [0, 1) (33)

which can be obtained by replacing γ 2(t) in (29) with
δxT (ikh)�x(ikh). In this scenario, the driven level is
the same as that of [21]. Adopting the similar deriva-
tion, a sufficient condition for the system (30) to be
asymptotically stable is derived in the following corol-
lary.

Corollary 2 Consider the closed-loop system (30)
under the trigger scheme (33) with δ ∈ [0, 1), τm > 0.
For given decay rate σ , if there exist matrices P1 > 0,

�> 0, R1 > 0,

[
R1 U1

UT
1 R1

]
> 0, J1 and U1, matrices Z,

N with appropriate dimensions such that

⎡
⎢⎢⎣

�11 + J1 �12 0 0
∗ �22 �23 0
∗ ∗ He(−BT BZ) �34

∗ ∗ ∗ −J1

⎤
⎥⎥⎦ < 0 (34)

where

�11 =
⎡
⎣ He(P1A) − ϕR1 + σ P1 UT

1
√

τm(R1A)T

∗ −ϕR1 0
∗ ∗ −R1

⎤
⎦ ,

�12 =
⎡
⎣ −BN BN −UT

1 + ϕR1

0 ϕR1 −U1

−√
τm BN

√
τm BN

⎤
⎦ ,

�22 =
[−� 0,

∗ δ� − 2ϕR1 + He(U1)

]
,

�23 =
[−(BT BN )T

(BT BN )T

]
,

�34 = [
(P1B − BZ)T 0

√
τm(R1B − BZ)T

]
,

then the system (30) with state feedback control gain
K = Z−1N is asymptotically stable.

4 Numerical example

Example 1 Consider system (1) with

A =
[
0.2 0.1
0.2 −0.5

]
, B =

[
1
1

]
, C = [

1 1
]
.

Controller gain K , observer gain L , τm , and weight-
ing matrix � calculated by Theorem 1 are shown in
Table 1. Based on Table 1, one can see that the derived
τm decreases as the given σ increases.

Thus, for given τm = 0.5, σ = 0.2, the controller and
observer gains and weighting matrix are also obtained
as K = [−0.4702 − 0.2108], L = [0.7743 0.2886]T ,
and �=

[
10.3975 1.3896
1.3896 7.9191

]
. Via the obtained para-

meters, the simulation is performed with the initial
state x(0)= [1; −1], ε = e, α = 0.5, β = 1, ε0 = 0.01,
andh = 0.01s.Therefore, the corresponding the closed-
loop system state trajectories, ‖�1/2e(ikh)‖, and trans-

Table 1 Controller gain K ,
observer gain L , τm and
weighting matrix �

σ 0.1 0.2 0.3

K

[−0.3183
0.0047

]T [−0.3937
−0.1661

]T [−0.4290
−0.2873

]T

L

[
0.3759
0.1032

] [
0.4459
0.1226

] [
0.6460
0.1722

]

τm 1.38 1.12 0.72

�

[
105.1673 −0.1968
−0.1968 91.7302

] [
89.7340 1.2917
1.2917 89.2009

] [
433.0198 181.3416
181.3416 297.8894

]
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mission intervals are depicted in Figs. 2, 3, and 4,
respectively. From these figures, it is obvious that the
closed-loop system is global uniform ultimate bounded
and converges to the prescribed threshold. It is also
found that, for a given σ , minor changes of system
states could lead to less triggered transmission.

To show the effectiveness of the proposed triggered
threshold, under the initial state x(0)= [1 − 1]T and
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Fig. 5 State responses of x1(t) for three cases
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Fig. 6 State responses of x2(t) for three cases

the same K , L , � calculated by τm = 0.5, σ = 0.2, and
ε = e, α = 0.06, ε0 = 0.01, three driven levels are con-
sidered by choosing β = 1 and �= I in [15] (Case I)
and β = 0.3 in scheme (3) (Case II) and β = 0.01 in
scheme (3) (Case III). Then, the closed-loop system
state responses, ‖�1/2e(ikh)‖, and transmission inter-
vals of the three cases are shown in Figs. 5, 6, 7, 8.

Figures 5 and 6 show that the smaller the β is, the
better the system performance will be. Figures 7 and 8
demonstrate that the smaller the β, the more the cost
consumed. Therefore, these figures also verify the fact a
trade-off should be made between system performance
and cost. Namely, if the goal is to obtain better perfor-
mance, one just needs to decrease β. If the attention is
paid on saving cost, this goal can be realized by increas-
ing β.
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5 Conclusions

This paper is concernedwith the event-driven observer-
based output control of NCSs. An extended triggered
scheme is proposed, and a sufficient condition for
the closed-loop system to be global uniform ultimate
boundedness is established in the framework of lin-
ear matrix inequalities. The validity of the proposed
method is verified by a numerical example. How to bal-
ance the triggered level and system performance will
be studied in future.
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