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Abstract Dynamicmodeling of spatial multi-degree-
of-freedom (multi-DOF) parallel motion system is a
challenging research because of its multi-closed-loop
configuration, in contrast to serial manipulator. This
study readdresses the issue of deriving explicit closed-
form dynamic equations in the actuation space of non-
redundant parallel mechanisms through the Lagrange
modeling approach. Due to the complex relationship
between passive joint variables and active joint vari-
ables, the application of the Lagrangian formulation
for dynamic modeling of parallel mechanisms is con-
sidered nearly impossible. In this paper, the utilization
of the virtual work principle makes the application of
the Lagrangian formulation for parallel mechanisms
possible and efficient. A closed-loop parallel mecha-
nism is divided into several serial open-loop subchains.
Explicit dynamic equations of each subchain can be
derived by using the Lagrangian formalism straight-
forwardly with respect to their own local generalized
coordinates. The principle of virtual work is used to
combine the differential dynamic equations of the sub-
systems into an explicit dynamic model of the full par-
allel manipulator with respect to robot’s active gener-

G. Xin · H. Deng · G. Zhong (B)
School of Mechanical and Electrical Engineering,
Central South University, Changsha 410083, Hunan, China
e-mail: zhong001985@csu.edu.cn

G. Xin · H. Deng · G. Zhong
State Key Laboratory of High-Performance Complex
Manufacturing, Central South University,
Changsha 410083, Hunan, China

alized coordinates. The Jacobian and Hessian matri-
ces play a crucial role in the transformation of the
dynamic equations with respect to different general-
ized coordinates due to the application of the virtual
work principle. The introduction of the cubic Hessian
matrices makes the dynamic equations more compact.
The procedure of modeling for a 3-DOF spatial paral-
lel manipulator is taken as an application example of
the proposed approach. The efficiency of the proposed
approach and the correctness of the dynamic model are
demonstrated by simulations and experiments.

Keywords Dynamics · Lagrangian formulation ·
Parallel mechanism · Virtual work · Hessian matrix

1 Introduction

It is well known that parallel mechanisms have sig-
nificant advantages over serial mechanisms in terms
of accuracy, rigidity and payload ability [1–4]. Com-
pared with serial open-loop mechanisms, the kinemat-
ics of parallel mechanisms is more complex due to
their multi-closed-loop structures. The complexity of
kinematics leads to quite complicated dynamic model
because dynamics is a natural extension of kinemat-
ics [5,6]. Therefore, the derivation of explicit dynamic
equations in the actuation space for parallel mecha-
nisms is often difficult except several particular manip-
ulators. However, the precise dynamic equations in
the actuation space play an important role in design
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and operation of robotic devices. In design, dynamic
equations are employed as the dynamic constraints for
an optimal design process or as a tool to test perfor-
mance indexes of a robot. As regards robot opera-
tions, dynamic equations are the most important part to
develop control laws and determine controller’s para-
meters; inverse dynamics are always used to com-
pute the actuation forces as feedforward information
in order to achieve desired motions, which are called
the internal model control or model-based control. The
trajectory tracking performance of most commercial
parallel robots is limited because they are controlled
by simple single-joint feedback controller ignoring the
coupled dynamics. Unlike the serial mechanisms that
have well-established modeling and control methods,
most studies of the parallel mechanisms focus on kine-
matics and optimal design issues. To the best of our
knowledge, the dynamic modeling of parallel mecha-
nisms is still an open problem. Therefore, we aim for
an efficient method for the derivation of the control-
oriented dynamic model, i.e., the explicit closed-form
dynamic equations in the actuation space.

The literature on the dynamic modeling is rather
vast, and it will be impossible to mention all of them.
For parallel mechanisms, there are mainly four kinds
of methods to build the dynamic equations for them.
The first one is the Newton–Euler method. Dasgupta
and Mruthyunjaya [7] obtained the dynamic equations
of two types of the Stewart platform via Newton–Euler
method. Using this approach, the acceleration of every
isolated rigid body should be obtained. All constraint
forces and moments between the joints also should be
obtained because of the application of the Newton–
Euler equations for each rigid body, whereas the inter-
nal forces and moments of interaction between ele-
ments of a robot are useless for the control of amanipu-
lator. The second method that is widely used is Kane’s
method. Kane proposed Kane’s dynamical equations
for robotics applications to formulate explicit equa-
tions of motion [8,9]. This approach uses Lagrange’s
form of d’Alembert’s principle, as exposited by Hous-
ton and Passerello in [10–13]. Lagrange’s form of
d’Alembert’s principle states that the sum of the total
generalized active force and the total generalized iner-
tia force, for each generalized coordinate of the sys-
tem, is zero, which are Kane’s dynamical equations.
Kane’s dynamical equations have the advantage of
automatically eliminating “no-working” internal con-
straint forces. In order to efficiently obtain the gen-

eralized forces needed for Kane’s equations, the con-
cepts of partial angular velocity and partial velocity are
introduced by Kane [8,9]. Subsequently, Houston and
Amirouchemade great contribution to the development
of Kane’s method [14–23]. As for dynamic modeling
of parallel mechanisms, they employed the combina-
tion ofKane’s dynamic equations and constrained kine-
matic equations or undetermined multipliers embed-
ded in Kane’s equations. Then, in order to derive the
explicit dynamic equations with respect to the indepen-
dent coordinates, the zero eigenvalue decomposition
and pseudo-uptriangular decomposition methods are
proposed by Houston and Amitouche, respectively, to
eliminate the undetermined multipliers. Their method
is an efficient method especially when the dimension
of the constraint equations is large due to a large num-
ber of rigid bodies of the multi-body system. However,
the derivation of partial velocities and accelerations are
inevitable, which needs a bit of tedious calculations.
Lieh [24] studied Kane’s method employed by Wang
and Huston [15] and indicated that they didn’t generate
the closed-form dynamic equations. Then, he success-
fully used the principle of virtualwork to get the closed-
form dynamic model for closed-loop systems [24,25].
Currently, the principle of virtual work has been a very
popular method to derive dynamic models of paral-
lel mechanisms [26–29]. The principle of virtual work
states that the work done by a dynamically equilib-
rium system undergoing arbitrarily displacement van-
ishes. It is salient that the “no-working” forces can
be dropped out from the virtual work equation, which
is very similar with Kane’s method. The calculation
of every body’s acceleration is also demanded in this
approach. Different to the Newton–Euler approach, the
characteristic of the principle of virtual work for a sys-
tem equaling zero is applied to combine all dynamic
equations of isolated bodies into one dynamic equa-
tion of the total manipulator. However, Guo and Li [30]
think the method based on principle of virtual work
delivers only an implicit model of inverse dynamics.
The last one is Lagrangian formulation. Traditionally,
Lagrange’s method considers the system as a whole
instead of isolating each body as the other methods
mentioned above. Lagrange’s method is very success-
ful for serialmechanisms since theLagrangian function
is simply expressed by the actuator variables for ser-
ial mechanisms, whereas quite a few of literature have
used the Lagrangian formulation for parallel mecha-
nisms due to the constraints introduced by the closed
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loops. In [31–34], because of the complexity of the
kinematics, dynamic model simplification was sug-
gested, like neglecting Coriolis terms or inertia ten-
sors. In [35], the passive joint variables are involved
in generalized coordinates, which increases the dimen-
sion of dynamic equations. So, the result in [35] is not
the expected explicit form of dynamics. Additionally,
most of the previous works just consider the primary
rigid body dynamics of a manipulator while neglect the
friction even the actuator dynamics. However, for an
actual physical prototype, the actuator dynamics and
friction frequently play a large part in the governing
equations of motion. It was demonstrated in [36] that
for some systems, friction compensation yields signif-
icant improvement of control performance. Obviously,
a precise dynamic model without neglecting any parts
of the dynamic equations would benefit the perception
of the system and controller design. Below we con-
tribute to remove all these drawbacks. The novelty of
this paper is the combination of Lagrangian formula-
tion and the virtual work principle for being free of the
complicated computation of acceleration and internal
forces and moments. This is an important advantage of
the modeling approach over the Newton–Euler formu-
lation.

In this paper, the Lagrangian formulation is restud-
ied in order to determine the explicit closed-form
dynamic equations in the actuation space of parallel
mechanisms by combining the Lagrangian formula-
tion with the principle of virtual work. The closed-loop
structure of the manipulator is opened into several ser-
ial subchains in order to form explicit energy functions
of subsystemswith respect to their local coordinates for
the convenience of the subsequent differentiating cal-
culation. The dynamics of subsystems corresponding
to different local generalized coordinates can be eas-
ily obtained through Lagrange’s equations of the sec-
ond type because of the conveniences of the Lagrange
formulation for serial robots. However, the dynamic
equations of subsystems should be grouped into the
closed-form dynamic equations of themanipulator cor-
responding to the active generalized coordinates. The
virtual work principle could transform the generalized
joint torques into another joint space according to the
relationship between different generalized coordinates.
The Jacobian and Hessian matrices, which represent
the key of robot’s kinematics, play the transforma-
tion bridge roles in combining different dynamic equa-
tions of isolated body subsystems. The cube Hessian

matrices are only utilized in the study of kinematics in
[37,38]. Here, we introduce them into dynamic equa-
tions, which make the equations more concise. Addi-
tionally, the inclusion of friction in the derived rigid
body dynamic equations is also discussed.

The goal of this paper is to propose an alternative
dynamic modeling method for parallel robots. This
method is embeddedwith four desiredmerits. (1)Accu-
racy the use of virtual work principle to deal with
kinematic constraints makes the Lagrangian formula-
tion available for parallel robots without neglecting any
parts of dynamic equations; hence, the derived dynamic
model is an accurate rigid body dynamic model with-
out any simplification. (2) Convenient implementation
there are only five steps to obtain the final dynamic
model for any non-redundant parallel robots and the
process is easy to be implemented by computer algebra
program. (3) Explicit expression the derived dynamic
equations are explicit with respect to active joints,
which is important for the solution of forward dynam-
ics. (4) High efficiency the derivation process for the
explicit closed-form dynamic equations is high effi-
ciency, and the computational cost for solution of
inverse dynamics is low enough for onlinemodel-based
control.

The paper is organized as follows. The problems of
using the Lagrangian formulation to derive dynamic
equations for parallel mechanisms are discussed in
detail in Sect. 2. The proposed approach is then devel-
oped in Sect. 3. In Sect. 4, as an application example,
the inverse kinematics of a 3-DOF parallel manipulator
is analyzed. Then, the dynamic equations of motion are
formulated through the proposed approach. In Sect. 5,
the dynamic equations are verified by the commercial
software ADAMS and experiments on a test bed. Some
conclusions and future research directions are given in
Sect. 6. Although the 3-DOF manipulator is used as
an example to illustrate the modeling approach, the
methodology can be used for other types of parallel
manipulators.

2 Problem formulation

When neglecting the friction and other disturbances,
for non-redundant N -DOF mechanisms, the explicit
closed-form dynamic equations is a N -dimensional set
of differential equations as
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Dq̈a + Cq̇a + G = τa, (1)

where qa ∈ RN is the vector of the active general-
ized coordinates that is the coordinates of the actua-
tors. τa denotes the vector of the corresponding active
forces. The inertia matrix, the Coriolis and centrifugal
terms, and the gravitational forces are denoted by D,
C and G, respectively. Eq. (1) is given in the actuation
space responding toqa , which is very useful for internal
model control, dynamic simulation and real-time appli-
cation. Eq. (1) can be directly derived by Lagrange’s
equations of the second type

d

dt

∂Ek(qa)
∂qa

− ∂Ek(qa)
∂qa

+ ∂Ep(qa)
∂qa

= τa, (2)

where Ek(qa) and Ep(qa) denote the kinetic energy
and potential energy of the whole system, respectively.
Ek(qa) and Ep(qa) are expressed by qa that are the
vector of active variables responding to time. For serial
mechanisms, all coordinates are active joint variables.
So the kinetic energy and potential energy are naturally
expressed in terms of qa . For parallel mechanisms, the
active joints are commonly prismatic joints, and the
kinetic energy and potential energy are conveniently
expressed by a set of general coordinates q composed
of both active and passive joint variables, rather than
only expressed by active joint variables. Therefore, the
kinetic energy and potential energy of parallel mecha-
nisms denoted by Ek(q) and Ep(q), respectively, are in
function of q and time t . Hence, the partial derivatives
with respect to qa , i.e., ∂Ek(q)/∂qa and ∂Ep(q)/∂qa ,
are very hard to be computed. This is the special prob-
lem of parallel mechanisms in contrast to serial mech-
anisms. The most common way to solve this problem
is to obtain the relationship between qa and q by the
geometrical constraints of the parallel mechanism, i.e.,

f (qa,q) = 0. (3)

In the best case, Eq. (3) could be transformed into
an explicit form where every general coordinate could
be determined by functions of the active general coor-
dinates. Unfortunately, Eq. (3) always cannot be trans-
formed into an explicit form, which makes it impos-
sible to determine of Ek(qa) and Ep(qa) explicitly.
As for traditional Lagrangian formalism, one must
perform unnecessary labor in introducing and subse-
quently eliminating Lagrange multipliers. That is the

drawback of the usual way to apply the traditional
Lagrangian formalism for dynamic modeling of paral-
lelmechanisms.WhenusingKane’s equations to obtain
the dynamic model, as mentioned before, the pseudo-
uptriangular decomposition [18], the zero eigenvalue
theorem [14], and the singular value decomposition
method [39] are employed to eliminate the undeter-
mined multipliers in Kane’s equations. However, we
are trying to make the Lagrangian formalism for par-
allel mechanisms to overcome this obstacle. In the fol-
lowing sections, we will show how the principle of vir-
tual work provides an efficient approach to solve the
abovementioned problems.

3 Lagrangian formalism for parallel mechanisms

Assume that the manipulator can be divided into sev-
eral isolated rigid bodies. The vector of the general-
ized coordinates corresponding to i th(i = 1, . . . ,m)

isolated rigid body denotes qi . The Jacobian matrix
between qi and q can be obtained by kinematic analy-
sis. So the velocity mapping relationship has the fol-
lowing equation,

q̇i = Ji q̇. (4)

whereqi ∈ Rni ,q ∈ RN , Ji ∈ Rni×N . The generalized
forces corresponding to qi are defined as fi . Accord-
ing to the virtual work principle, the following forces
transformation exists,

τi = JTi fi , (5)

where τi indicates the mapping from fi to another gen-
eralized coordinates, i.e., q. Eq. (5) for forces transfor-
mation gives us a new idea to formulate the dynamics
of multi-body systems.

Firstly, we use the Lagrangian formulation to derive
the dynamics of isolated bodies with respect to their
local generalized coordinates, as follows,

Mi (qi )q̈i + Ci (qi , q̇i )q̇i + Gi (qi ) = fi , (6)

where fi is the vector of generalized forces. Left multi-
plyingEq. (6) byJTi , the following equation is obtained,

JTi Mi (qi )q̈i + JTi Ci (qi , q̇i )q̇i + JTi Gi (qi ) = τi . (7)
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Eq. (7) reveals the contribution to the generalized
forces τi of the motion of the i th isolated rigid body.
Here, the Coriolis and centrifugal terms Ci (qi , q̇i )q̇i
can be rewrite as follows,

Ci (qi , q̇i )q̇i = q̇Ti ∗Hci (qi )q̇i , (8)

whereHci (qi ) ∈ Rni×ni×ni is the cubicHessianmatrix;
the sign “∗” denotes a generalized scalar product
[37,38]. And ni denotes the dimension of qi . The gen-
eralized scalar product of two matrices X ∈ Rm×n and
Y ∈ Rn×p×p are defined as follows,

[XY]k:: =
n∑

l=1

Xk:lYl:: ∈ Rp×p, k = 1, 2, . . . ,m

(9)

where XY ∈ Rm×p×p. Equation (9) means that only
when the columnnumber ofX is equal to the layer num-
ber of Y, the two matrices X and Y can be multiplied
using the generalized scalar product.

Afterward, substituting Eq. (8) to (7), yields,

JTi Mi (qi )q̈i + q̇Ti ∗ [JTi ∗Hci (qi )]q̇i
+ JTi Gi (qi ) = τi . (10)

where JTi ∈RN×ni . Therefore, JTi ∗Hci (qi )∈RN×ni×ni

according to Eq. (9). However, qTi ∈ R1×ni . This
implies that only when ni = N is satisfied, Eq. (10)
canbeused.Otherwise, please don’t useHessianmatrix
and keep using Ci (qi , q̇i ). Hereinafter, assume that ni
is equal to N . The application of Hessian matrix sepa-
rates q̇i from Ci (qi , q̇i ), which brings convenience to
transform Eq. (10) to standard form of Eq. (1).

Next, differentiating Eq. (4) with respect to time,
yields,

q̈i = Ji q̈ + J̇i q̇ = Ji q̈ + q̇T ∗Hi q̇. (11)

Similarly, if ni is not equal to N , please keep using J̇i
and don’t use Hi .

Substituting Eqs. (4) and (11) to Eq. (10), the fol-
lowing equation is obtained,

JTi Mi (qi )Ji q̈ + q̇T ∗[JTi Mi (qi )∗Hi

+ JTi J
T
i ∗Hci (qi )Ji ]q̇ + JTi Gi (qi ) = τi . (12)

The dynamic equations with respect to the gener-
alized coordinates q of the full manipulator can be
derived by summing Eq. (12) with respect to each iso-
lated rigid body, as follows,

[
m∑

i=1

JTi Mi (qi )Ji

]
q̈ + q̇T

∗
[

m∑

i=1

(JTi Mi (qi )∗Hi + JTi J
T
i ∗Hci (qi )Ji )

]
q̇

+
m∑

i=1

JTi Gi (qi ) =
m∑

i=1

τi = τ. (13)

Let q be the vector of the active generalized coor-
dinates. Thus, Eq. (13) takes the form of Eq. (1), as
follows,

[
m∑

i=1

JTi Mi (qi )Ji

]
q̈a + q̇Ta

∗
[

m∑

i=1

(JTi Mi (qi )∗Hi + JTi J
T
i ∗Hci (qi )Ji )

]
q̇a

+
m∑

i=1

JTi Gi (qi ) = τa . (14)

If q is not the vector of the active generalized coor-
dinates, it is possible to find the relationships. Intro-
ductions,

q̇ = Jq̇a, (15)

τa = JT τ, (16)

q̈ = Jq̈a + q̇Ta ∗Hq̇a . (17)

Introducing Eqs. (15)–(17) into Eq. (13) yields,

[
m∑

i=1

JT JTi Mi (qi )JiJ

]
q̈a + q̇Ta

∗
[

m∑

i=1

JT JTi Mi (qi )∗HJi +
m∑

i=1

(JT JT JTi Mi (qi )∗HiJ

+ JT JT JTi J
T
i ∗Hci (qi )JiJ)

]
q̇a +

m∑

i=1

JT JTi Gi (qi ) = τa .

(18)

Equation (18) is the explicit closed-form dynamic
equations in the actuation space of a general parallel
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mechanism. The abovementioned algorithm giving the
dynamic model of parallel mechanisms can be summa-
rized to the following five steps.

Step 1. A multi-closed-chain manipulator can be
divided into several open-chain isolated rigid
body by cutting selected joints.

Step 2. Derive the dynamic equations of the isolated
subchains with respect to the local general-
ized coordinates qi by the direct Lagrangian
formulation.

Step 3. Transform dynamic equations of each sub-
chain into equations with respect to the same
generalized coordinates q (maybe the active
generalized coordinates qa) through the vir-
tual work principle.

Step 4. Use Jacobian and Hessian matrices to trans-
form local generalized coordinates to the same
generalized coordinates.

Step 5. Sum all the equations of subsystems to obtain
the closed-form dynamic equations of the full
manipulator. If q �= qa , transform the full
dynamic equations with respect to q to equa-
tions with respect to qa by the approach men-
tioned in steps 3 and 4.

4 Dynamics of a 3-DOF spatial parallel
manipulator

There have been a great number of practical applica-
tions of parallel mechanisms, such as the aircraft sim-
ulator [40], the force/torque sensor [41], and the accel-
eration sensor [42]. In recent years, the limited-DOF
manipulators that both maintain the inherent advan-
tages of parallel mechanisms and possess several other
advantages in terms of the total cost reduction in manu-
facturing [43] and wider workspace are attracting more
attentions of researchers, for instance the Delta robot
[44], and Tricept robot and TriVariant robot [45]. In
this paper, the 3-DOF spatial parallel manipulator pre-
sented in reference [46], which contains 1-UP chain
and 2-UPS chains, is used as an example to verify the
effectiveness of the proposed modeling approach. U, P,
and S denote universal, prismatic, and spherical joint
respectively. P pair is the actuated joint driven by an
actuator. This 3-DOF parallel manipulator can be used
as cutting robot or grabbing robot after assembling cor-
responding terminal effectors. The CAD model of the
3-DOF manipulator is represented in Fig. 1.

Base

Motor

Linear Actuator

Spherical Joint

Universal Joint

Fig. 1 Spatial 3-DOFparallelmanipulatorwith three linear actu-
ators

Fig. 2 Schematic diagram of the 1-UP&2-UPS manipulator

4.1 Kinematics

Figure 2 shows the schematic diagram of the 3-DOF
manipulator, which can be decomposed into six iso-
lated rigid bodies. The six isolated rigid bodies are
called Link 1 to 6, respectively, and their correspond-
ing center of mass is defined as c1, . . ., c6 as shown
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in Fig. 2. Ui (i = 1, 2, 3) represents the center of the
U joint. Si (i = 2, 3) represents the center of the S
joint. A denotes the end point of the UP limb. O1

is the intersection of the axis of the UP limb and
the normal plane in which Si (i = 2, 3) are located.
�U1U2U3 and�O1S2S3 are isosceles triangles. θi (i =
1, . . . 6) denotes the rotational angle of U joint. Frame
U1 − x0y0z0 is fixed on the base, while y0 axis is coin-
cident with the first rotational axis of U1, i.e., the rota-
tional axis of θ1; z0 axis is parallel to the second rota-
tional axis, i.e., the rotational axis of θ2; the x0 axis sat-
isfies the right-hand rule. The axial axis of the UP limb
is coincident with x1. y1 lies in the plane of �O1S2S3
and is normal to the S2S3. l1 ≡ −−−→

U1O1, l2 ≡ −−→
U2S2 and

l3 ≡ −−→
U3S3 are defined as components in the base frame

U1 − x0y0z0. Define the following vectors of general-
ized coordinates,

qa = [ l1 l2 l3 ]T , q = [ θ1 θ2 l1 ]T ,

q1 = [ θ3 θ4 l2 ]T , q2 = [ θ5 θ6 l3 ]T .

q, q1, q2 are the local generalized coordinates for
three open-chains respectively, i.e., the UP chain and
two UPS chains. According to the proposed approach
in Sect. 3, the dynamics of every isolated part can
be solved by the direct Lagrangian formulation with
respect to the local generalized coordinates.

Firstly, as usual, the relationship between the posi-
tion of point A at the tip and the position of actuators
should be derived to implement trajectory tracking.
We can obtain the coordinate transformation matrix
between frames U1 − x0y0z0 and O1 − x1y1z1, as fol-
lows,

0
1T = Rot (y0, θ1)Rot (z0, θ2)Trans(x0, l1)

=

⎡

⎢⎢⎣

c1c2 −c1s2 s1 l1c1c2
s2 c2 0 l1s2
−s1c2 s1s2 c1 −l1s1c2
0 0 0 1

⎤

⎥⎥⎦ ,
(19)

where l1 denotes |l1|; si and ci (i=1,2) denote sin θi and
cos θi , respectively. Then, the position vector of the tip
A in frame U1 − x0y0z0 can be derived,

0pA =
⎡

⎣
0xA
0yA
0zA

⎤

⎦ =
⎡

⎣
(l1 + d)c1c2
(l1 + d)s2
−(l1 + d)s1c2

⎤

⎦ , (20)

where d denotes the length between the tip A and point
O1. According to Eq. (20), the following equation is
obtained,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l1 =
√

0x2A + 0y2A + 0z2A − d,

θ2 = arc sin
(

0 yA
l1+d

)
,

θ1 = arc sin
( −0zA

(l1+d)c2

)
.

(21)

According to geometrical relationship, we can obtain,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
l2
0

]
= 0

1T
[ 1pS2
1

]
−

[ 0pU2

1

]
,

[
l3
0

]
= 0

1T
[ 1pS3
1

]
−

[ 0pU3

1

]
.

(22)

where 0PU2 = [ 0 ay az ]T , 0PU3 = [ 0 ay −az ]T ,
1PS2 = [ 0 by bz ]T , 1PS3 = [ 0 by −bz ]T . Substitut-
ing Eq. (19) into Eq. (22), leads to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l2 =
⎡

⎢⎣

−byc1s2 + bzs1 + l1c1c2

byc2 + l1s2 − ay

bys1s2 + bzc1 − l1s1c2 − az

⎤

⎥⎦ ,

l3 =
⎡

⎢⎣
−byc1s2 − bzs1 + l1c1c2

byc2 + l1s2 − ay

bys1s2 − bzc1 − l1s1c2 + az

⎤

⎥⎦ .

(23)

Thus, the displacements of l2 and l3 can be calculated
as

l2 =
√
lT2 l2

=
√
a2y + a2z + b2y + b2z + l21 − 2aybyc2 − 2ayl1s2 − 2azbzc1 − 2azbys1s2 + 2azl1s1c2, (24)

l3 =
√
lT3 l3

=
√
a2y + a2z + b2y + b2z + l21 − 2aybyc2 − 2ayl1s2 − 2azbzc1 + 2azbys1s2 − 2azl1s1c2.

(25)
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The inverse kinematics is given by Eqs. (21), (24)
and (25). The velocity and acceleration equations can
be derived by differentiating Eqs. (20), (24) and (25)
as follows,

0ṗA = JAq̇

=
⎡

⎣
−(l1 + d)s1c2 −(l1 + d)c1s2 c1c2
0 (l1 + d)c2 s2
−(l1 + d)c1c2 (l1 + d)s1s2 −s1c2

⎤

⎦

⎡

⎣
θ̇1
θ̇2
l̇1

⎤

⎦ , (26)

q̇a = Ja q̇

=
⎡

⎢⎣
0 0 1
azbzs1−azbyc1s2+azl1c1c2

l2
aybys2−ayl1c2−azbys1c2−azl1s1s2

l2
l1−ays2+azs1c2

l2
azbzs1+azbyc1s2−azl1c1c2

l3
aybys2−ayl1c2+azbys1c2+azl1s1s2

l3
l1−ays2−azs1c2

l3

⎤

⎥⎦

⎡

⎣
θ̇1
θ̇2
l̇1

⎤

⎦ . (27)

Then, we can obtain the following equation,

0ṖA = Jlegq̇a = JAJ−1
a q̇a, (28)

where Jleg is the overall velocity Jacobian matrix of
the manipulator. Then, the acceleration mapping rela-
tionship can be obtained by differentiating Eq. (28), as
follows,

0P̈A = Jlegq̈a + q̇Ta ∗Hlegq̇a . (29)

Next, we derive the relationship between q and
qi (i = 1, 2). q1 can be determined makingU1O1S2U2

a closed-chain, as follows,

0pS2

=
⎡

⎣
l2c3c4
l2s4
−l2s3c4

⎤

⎦ =
⎡

⎣
−byc1s2 + bzs1 + l1c1c2
byc2 + l1s2 − ay
bys1s2 + bzc1 − l1s1c2 − az

⎤

⎦ .

(30)

According to Eq. (30) we can obtain

θ3 = arctan
bys1s2 + bzc1 − l1s1c2 − az

byc1s2 − bzs1 − l1c1c2
, (31)

θ4 = arcsin
byc2 + l1s2 − ay

l2
. (32)

Similarly, q2 can be solved through the closed-chain
U1O1S3U3, as follows,

θ5 = arctan
bys1s2 − bzc1 − l1s1c2 + az

byc1s2 + bzs1 − l1c1c2
, (33)

θ6 = arcsin
byc2 + l1s2 − ay

l3
. (34)

Secondly, the Jacobian and Hessian matrices should
be obtained for dynamic modeling. The Jacobian

matrix Ja for qa and q has been given in Eq. (27). The
HessianmatrixHa can be obtained by differentiation of
Eq. (26). It should be noted that all of the calculations
can be implemented using a symbolic algebra package
as MAPLE, which can help us to simplify the calcula-
tions, and to calculate Ji andHi for q and qi (i = 1, 2)
by differentiating Eqs. (24), (25) and (31)–(34).

4.2 Dynamic modeling using Lagrangian formulation

As shown inFig. 2, according to the proposed approach,
we need to obtain the dynamic equations for each link
using the Lagrangian formulation. Here, we take the
computation of dynamic equations for Link 1 as an
example. The kinetic energy and potential energy of
Link 1 with respect to q are as follows,

Ek1(q) = 1

2
(m1

0ṗTc1(q)0ṗc1(q) + ωT
1 Ic1ω1), (35)

Ep1(q) = m1
0gTPc1(q), (36)

where

0Pc1 =
⎡

⎣
xc1c1c2 − yc1c1s2 + zc1s1
xc1s2 + yc1c2
−xc1s1c2 + yc1s1s2 + zc1c1

⎤

⎦ ,

0g =
⎡

⎣
gx
gy
gz

⎤

⎦ ,

Ic1 =
⎡

⎣
L1xx L1xy L1xz

L1xy L1yy L1yz

L1xz L1yz L1zz

⎤

⎦ ,
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xc1, yc1, and zc1 are constant variables, m1 denotes the
mass of Link 1, Ic1 means themoment of inertia of Link
1. Thus, introducing Eqs. (35) and (36) into Lagrange’s
equations of the second type, i.e., Eq. (2), yields,

M1(q)q̈ + q̇T ∗Hc1(q)q̇ + G1(q) = τ1. (37)

Similarly, the dynamic equations of Link k (k =
2, . . . 6) can be derived using the identical approach,
as follows,

Link 2:

M2(q)q̈ + q̇T ∗Hc2(q)q̇ + G2(q) = τ2. (38)

As an example, Appendix 1 gives the expressions of
Eq. (38) in detail.

Link 3–4:

Mk(q1)q̈1 + q̇T1 ∗Hck(q1)q̇1 + Gk(q1)

= fk .(k = 3, 4) (39)

Link 5–6:

Mk(q2)q̈2 + q̇T2 ∗Hck(q2)q̇2 + Gk(q2)

= fk .(k = 5, 6) (40)

Then, the kinematic mapping between the local gen-
eralized coordinates qi and q has been solved in Sect.
4.1, as follows,

q̇i = Ji (q,qi )q̇. (i = 1, 2) (41)

q̈i = Ji (q,qi )q̈ + q̇T ∗Hi (q)q̇. (i = 1, 2) (42)

According to the virtual work principle, that implies

τk = JT1 (q,q1)fk, (k = 3, 4) (43)

τk = JT2 (q,q2)fk . (k = 5, 6) (44)

Combining Eqs. (41)–(44) and (39), (40) leads to

JT1 (q,q1)Mk(q1)J1(q,q1)q̈

+ q̇T ∗ [JT1 (q,q1)Mk(q1)∗H1(q)

+JT1 (q,q1)JT1 (q,q1)∗Hck(q1)J1(q,q1)]q̇
+ JT1 (q,q1)Gk(q1)

= τk , (k = 3, 4) (45)

JT2 (q,q2)Mk(q2)J2(q,q2)q̈

+ q̇T ∗ [JT2 (q,q2)Mk(q2)∗H2(q)

+ JT2 (q,q2)JT2 (q,q2)∗Hck(q2)J2(q,q2)]q̇
+ JT2 (q,q2)Gk(q2) = τk .(k = 5, 6) (46)

The dynamic equations with respect to q can be
derived by summing equations of all the links, i.e., Eqs.
(37), (38), (45), (46), as follows,

M(q,q1,q2)q̈ + q̇T ∗H(q,q1,q2)q̇

+G(q,q1,q2) = τ, (47)

where M(q,q1,q2) =
2∑

k=1
Mk(q) +

4∑
k=3

JT1 (q,q1)

Mk(q1)J1(q,q1) +
6∑

k=5
JT2 (q,q2)Mk(q2)J2(q,q2),

H(q,q1,q2) =
2∑

k=1

Hck(q)

+
4∑

k=3

[
JT1 (q,q1)Mk(q1)∗H1(q)

+ JT1 (q,q1)JT1 (q,q1)∗Hck(q1)J1(q,q1)
]

+
6∑

k=5

[
JT2 (q,q2)Mk(q2)∗H2(q)

+ JT2 (q,q2)JT2 (q,q2)∗Hck(q2)J2(q,q2)
]
,

G(q,q1,q2) =
2∑

k=1

Gk(q) +
4∑

k=3

JT1 (q,q1)Gk(q1)

+
6∑

k=5

JT2 (q,q2)Gk(q2),

τ =
6∑

k=1

τk .

Equation (47) is the dynamic equations of the whole
system, however, which is not represented by the active
generalized coordinates qa . Similarly, use the force
transformation matrices to derive the final dynamic
model of the manipulator. The velocity and acceler-
ation mapping between q and qa have been obtained in
Sect. 4.1, as follows,

q̇a = Ja(q,qa)q, (48)

q̈a = Ja(q,qa)q̈ + q̇T ∗Ha(q)q. (49)
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Therefore, the dynamic equations of the whole
manipulator can be derived as

Ma(qa,q,q1,q2)q̈a + Ca(qa,q,q1,q2, q̇a)q̇a
+Ga(qa,q,q1,q2) = τa, (50)

whereMa(qa,q,q1,q2) = [J−1
a (q,qa)]TM(q,q1,q2)

J−1
a (q,qa),

Ca(qa,q,q1,q2, q̇a)

= q̇Ta ∗ [[J−1
a (q,qa)]T [J−1

a (q,qa)]T
∗H(q, q1, q2)J−1

a (q,qa)

−[J−1
a (q,qa)]T [J−1

a (q,qa)]T
M(q,q1,q2)J−1

a (q,qa)∗Ha(q)J−1
a (q,qa)],

Ga(qa,q,q1,q2) = [J−1
a (q,qa)]TG(q,q1,q2).

Eq. (50) are the expected explicit closed-form
dynamic equations for the analyzed 3-DOF spatial par-
allel manipulator, which is very useful for real-time
control for a MIMO system. τa = [ f1 f2 f3 ]T is the
vector of the three linear actuators’ forces.

5 Simulation and experiment

5.1 Simulation validation

In this section, the inverse dynamics is used to validate
the dynamic model. For the inverse dynamic problem,
the time history of a predetermined trajectory is given.
And the problem is to determine the active forces or
torques required to produce thatmovement. Thatmeans
the left parts of Eq. (50) can be calculated in terms of
the movement.

In order to validate the correctness of the dynamic
model, the results derived by the proposed approach
and these obtained byADAMSare compared.ADAMS
is a mature and reliable commercial software which
is based on numerical method for equation formula-
tion [24]. ADAMS provides a good test bed for sim-
ulation. However, numerical expressions can’t clearly
provide physical insight into the system structure and
can be difficult for engineers to develop better con-
trol laws with less known physics. Additionally, the
model in ADAMS cannot be used for real-time control
on physical prototypes. Those are the reasons for why
the dynamic equations should be derived by algebraic
formulae rather than by ADAMS. The kinematic and

Trajectory g

z

x

Base

B

z0

x0 U1

Fig. 3 Schematic diagram for simulation

dynamic parameters can be directly obtained from the
virtual prototype in ADAMS. Table 1 shows the archi-
tecture and dynamic parameters of the 3-DOF manip-
ulator depicted in Fig 1.

As shown in Fig. 3, we set the trajectory of the end-
effector of the manipulator with respect to the inertial
reference frame B − xyz as follows

⎧
⎪⎪⎨

⎪⎪⎩

x(t) = St/T − (S/2π) sin(2π t/T ) t ∈ [0, T ],
y(t) = 0 t ∈ [0, T ],
z(t) = 2Ht/T − (H/2π) sin(2π t/T ) t ∈ [0, T/2],
z(t) = 2H − 2Ht/T+(H/2π) sin(4π t/T ) t ∈ [T/2, T ],

(51)

where T denotes the period of the movement, S and
H determine the length and height of the move-
ment. Set T = 1s, S = 200 mm , H = 100 mm.
As shown in Fig. 3, U1 − x0y0z0 has a 30◦ angle
with respect to the vertical plane. Thus, the vector
of gravitational acceleration in U1 − x0y0z0 is 0g =
[−g · sin 30◦ g · cos 30◦ 0 ]T . The simulation results
are shown in Fig. 4. From Fig. 4, we can see a good
agreement between the results derived by ADAMS and
those obtained from algebraic formulae, which vali-
dates the correctness of the dynamic equations and fur-
ther means our method is right.

In addition, the dynamic model in the joint space
is useful for optimization of motion planning, since
the motion planning is affected by the capabilities
of motors. Of course, some software, e.g.,ADAMS
and Solidworks, also can finish that work. As men-
tioned before, another role of the dynamic equations
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Fig. 4 Active forces computed by the proposed method and
ADAMS

that the commercial software can’t replace is that the
model can be used to analyze the actuator forces with
respect to the physical nature. The inertial forces,
the Coriolis and centrifugal forces, and the gravita-
tional forces can be determined from Eq. (50), respec-
tively, impossibly from ADAMS. Figure 5 shows the
three different terms for the chosen trajectory of Eq.
(51). We can see that the Coriolis and centrifugal
forces are very small compared with the other two
terms. Thus, in some cases, according to the simula-
tion results, the terms which give small contribution on
the active forces can be neglected in order to simplify
the computations [47]. However, when the dynamic
model is employed inmodel-based control, the neglect-
ing for any part of dynamic equations will affect the
control performance largely, which will be shown in
Sect. 5.3.
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Fig. 6 Active forces computed by the proposed method and
Newton–Euler method

5.2 Computational efficiency

In order to compare our method with existing methods,
we also used the Newton–Euler method to obtain the
dynamic equations of the 3-DOFmanipulator. Figure 6
shows the comparison of simulation results obtained
by Newton–Euler method and our method. Obviously,
if the results are not identical, one of the methods
must be wrong under the precondition of no miscal-
culation. The computer algebra program MAPLE is
employed to implement the algorithms of dynamic
modeling using these two methods. The programs are
executed in a computer with Windows 8.1 equipped
with IntelCore i7-4700HQCPU.The computation time
of our method to obtain the final dynamic equations is
22.461 s, whereas the time consumption of Newton–
Euler method is 24.213 s.
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Fig. 5 Simulation results decomposed into three terms: a inertial forces, b coriolis and centrifugal forces, and c gravitational forces
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Fig. 7 Computed-torque
control scheme
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In the earlier studies, some researchers [51–54] com-
pared computational cost for different algorithms using
the number of floating point operations, i.e., multiplica-
tions and additions. Gosselin [52] even parallelize the
computation on several processors in order to improve
the computational speed. Tsai [53], Khalil and Gue-
gan [54] only derived the implicit models rather than
the explicit models with very little computational cost.
However, as it is recognized in [54], implicit dynamic
model cannot be used for solving forward dynamics
in simulation of motion control. Since the process of
dynamic modeling is an offline work, we think it is
not necessary to pursue faster computational efficiency.
Moreover, some convenient software, such as MAPLE
and MATLAB, can liberate researchers from complex
computations. It’s more important to obtain precise
explicit closed-form dynamics in the actuation space
because of their crucial role for model-based control.
In Sect. 5.3, we will demonstrate that the inverse and
forward dynamics derived from our method could be
used in online model-based control.

5.3 Implementation in model-based control

Computed-force control is chosen as the model-based
control scheme to track the desired trajectory men-
tioned inSect. 5.1, i.e., the profileX=[ x(t) y(t) z(t) ]T
represented by Eq. (51). As shown in Fig. 7, the con-
trol scheme is implemented in joint space based on the
dynamic equations in the actuation space. The control
law is

u = Ma(q̈da + KPe + KD ė) + Ca q̇a + Ga, (52)

where Kp = diag(kp)3×3, KD = diag(kD)3×3. For
a given control input u, the resulting motion can be
determined by the numerical integration of the actuator
accelerations. As for the 3-DOF manipulator, we can
obtain the discrete state space model according to Eq.
(50), as follows,
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Fig. 8 Trajectory tracking error using precise inverse dynamics

⎧
⎨

⎩

q(k + 1) = diag(Ts)3×3q̇(k) + q(k),
q̇(k + 1) = diag(Ts)3×3M−1

a (k)[
u − Ca(k)q̇a(k) − Ga(k)

]
,

(53)

where Ts = 1ms denotes the sample period.
According to the simplified dynamic model sug-

gested in literature [31–34], the control law has to use
an inaccurate inverse dynamic model to compute the
control input. Obviously, for a set of parameters of
feedback gains, i.e., KP and KD , the more precise the
inverse dynamic model is, the better control perfor-
mance becomes. That is validated by the simulation
results as shown in Figs. 8 and 9. With the same feed-
back gains kP = 160, kD = 10, the trajectory track-
ing performance based on precise inverse dynamics is
much better than that depended on inverse dynamics
neglecting Coriolis and centrifugal terms, which indi-
cates the importance to obtain a precise dynamicmodel
for the use of model-based control. As for other manip-
ulators with larger inertia or tracking faster trajectories,
the effect of model accuracy on control performance
will be highlighted. The control simulation algorithm
is executed by MATLAB on the same computer men-
tioned in Sect. 5.2. Functions “tic” and “toc” of MAT-
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Fig. 9 Trajectory tracking error using inaccurate inverse
dynamic without Coriolis and centrifugal part

LAB give the run time of the control cycle, which is
0.66646 ms. Several tasks, such as motion planning
and the computation of inverse dynamics, should be
accomplished in the control cycle. Among a control
cycle, the computation time for inverse dynamics is
0.52695 ms. Generally, the servo control cycle for a
commercial control-hardware is between 1ms and tens
of milliseconds. Therefore, the dynamic model derived
by our modeling method is feasible for online control.

5.4 Experiment analysis

Similar to the CADmodel displayed in Fig. 1, a test bed
has been built as shown in Fig. 10. The linear actuator
is composed of a 400 W DC servo motor, a timing belt
transmission with 2:1 reduction ratio and a ball screw
with 5mm lead. The parameters of the test bed are iden-
tical to those shown in Table 1 with the exception of
the mass parameters. Here, the parameters of mass and
moment of inertia are a bit smaller than those shown in
Table 1. The motors are driven by Elmo’s motor drives
(G-MOLWHI15/100EE), which are connected to an
embedded controller (CX2030) made by the company
Beckhoff through an EtherCAT bus. Each motor drive
has three control modes: position loop mode, veloc-
ity loop mode and torque loop mode. Additionally, the
motor drives can provide real-time values of displace-
ment, velocity, acceleration and torque. We have done
two experiments using the position loop mode and the
torque loop mode respectively.

Fig. 10 Photograph of the test bed

The sever motor drive can give real-time torques of
motors, whereas Eq. (50) gives the push/pull forces of
prismatic joints. There is a transformation relationship
between motor torque and push/pull force in a linear
actuator composed of timing belt transmission and ball
screw, as follows,

τmi = L

2πR
τai , (i = 1, 2, 3) (54)

where L is the lead of the ball screw; R is the reduction
ratio of the timing belt transmission; τmi denotes the
motor torque of each linear actuator; τai denotes the
active forces of prismatic joints. Therefore, Eq. (50)
can be transformed into the following style in terms of
motor torques,

(Ma(qa,q,q1,q2)q̈a + Ca(qa,q,q1,q2,qa)q̇a
+Ga(qa,q,q1,q2))L/(2πR) = τm . (55)

The friction contributions must be incorporated into
the rigid body dynamic equations given in Eq. (55)
because friction effects are usually important for actual
industrial robots [48]. It has been observed that friction
can cause more than 50% error in some heavy indus-
trial manipulators [49]. The classical Stribeck friction
model [50] is adopted in this paper. Including friction
the dynamic equations of a manipulator can be written
as
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Table 1 Parameters of the
3-DOF parallel manipulator

Parameter Value (Kg) Parameter Value (Kgm210−4) Parameter Value (mm)

m1 3.888 Ic1 diag[101 865 908] ay 150

m2 1.623 Ic2 diag[2 189 206] az 72.5

m3 3.888 Ic3 diag[101865 908] by 65

m4 0.584 Ic4 diag[0.54 93 99] bz 30

m5 3.888 Ic5 diag[101865 908] d 136

m6 0.584 Ic6 diag[0.54 93 99] l1|t=0 578.5

l2|t=0 642.5

l3|t=0 642.5
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Fig. 11 Measured motion of P1 in the first experiment using position loop mode: a displacement, b velocity, c acceleration

(Ma(qa,q,q1,q2)q̈a + Ca(qa,q,q1,q2,qa)q̇a
+Ga(qa,q,q1,q2))L/(2πR) + τ f = τm, (56)

where τ f is the friction torque vector. However, iden-
tifying the friction parameters for each joint is very
difficult. The friction forces of passive joints are much
smaller than those of active joints because of the pre-
stress force on the ball screw. Thus, after neglecting the
friction of passive joints, Eq. (54) is rewritten as

(Ma(qa,q,q1,q2)q̈a + Ca(qa,q,q1,q2,qa)q̇a
+Ga(qa,q,q1,q2))L/(2πR) + τ f a = τm, (57)

where τ f a = [ τ f a1 τ f a2 τ f a3 ]T is the friction torque
vector of the three linear actuators. The Stribeck fric-
tion model for each prismatic joint is as follows,

τ f ai = [Fc + (Fs − Fc)e
−|l̇i /vs |δ ] sgn (l̇i )

+ Fv l̇i , (i = 1, 2, 3) (58)

where the unit of τ f ai is N · m; the unit of l̇i is mm/s.
The friction model is identified by some experimental
data using least square method, as follows,

τ f ai = [0.059 + (0.07 − 0.059)e−|l̇i /0.3|1.5] sgn (l̇i )

+ 0.002l̇i . (i = 1, 2, 3) (59)

Moreover, the inertia of motor’s shaft and of the ball
screw should be added, and these two contributions are
defined as Im . Then, the complete dynamic equations of
the manipulator explicitly showing the motor torques
for the convenience of experiments can be expressed
as follows,

(Ma(qa,q,q1,q2)q̈a + Ca(qa,q,q1,q2,qa)q̇a
+Ga(qa,q,q1,q2))L/(2πR)

+ τ f a + Im θ̈m = τm, (60)

where θ̈m = [ θ̈m1 θ̈m2 θ̈m3 ]T is the angular accelera-
tion vector of the threemotors, and θ̈mi =2πRl̈i/L(i =
1, 2, 3). τm = [ τm1 τm2 τm3 ]T is the torque vector of
the three motors.

In the first experiment, themotor of P1worked under
the position loop mode. Set the motion of P1 as a sine
function, while P2 and P3 are locked. As shown in Fig.
11, the motion of P1 measured by an encoder is very
smooth. The simulated motor torques can be obtained
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Fig. 12 Comparison between measured and estimated torques
in the first experiment

by introducing the motion data shown in Fig. 11 into
Eqs. (50) and (60). As depicted in Fig. 12, the torque
of the motor shows some fluctuation while the result
calculated by the dynamic model is very smooth. The
reason for the fluctuation of the measured value is that
the controller of the driver should change the torque to
follow the motion function since the friction is varying
during a rotational circle of the ball screw. In the second
experiment, the P1 motor works under the torque loop
mode, then the motor drive will try to guarantee the
predetermined profile of the motor torque. The mea-
sured torque and simulated torque are shown in Fig.
14. In contrast to the results of the first experiment, the
motion of P1 shows large fluctuation as shown in Fig.
13 while the actual torque is smooth. The explanation
of the fluctuation in this second experiment also indi-
cates the variation of friction over the rotational circle
of the ball screw. In the sameway, themodel-computed
torque of the second experiment can be obtained by
introducing the measured displacement, velocity and

acceleration data into the dynamic equations. Neglect-
ing the fluctuation caused by friction, the measured
results and dynamic model outputs have a good fit-
ting in both two experiments, which validates the cor-
rectness of the dynamic model as well. However, if
it is desired to increase the precision of the simulated
results, the variation of the friction with the rotation of
the motor shaft should be taken into account. Whereas
the main purpose of this paper is to derive the multi-
rigid-body dynamics, amore accuratemodel of friction
will be discussed in the future work.

5.5 Trajectory tracking experiments

In this section, the trajectory planned in Sect. 5.1,
i.e., the profile X = [ x(t) y(t) z(t) ]T represented by
Eq. (51), was tracked by using classic PD control and
computed-torque control, respectively. Classic PD con-
troller is implemented in each single motor with the
same parameters of kP = 500 and kD = 20. The
friction model represented by Eq. (59) is added to
the computed-torque controller motioned in Sect. 5.3.
Other parameters of thecomputed-torque controller are
identical with those in Sect. 5.3. Control programs are
explored using ST language that is similar to C lan-
guage. The servo control cycle in the control-hardware
CX2030 produced by Beckhoff is 1ms, which is
enough to accomplish all tasks including motion plan-
ning and the computation of inverse kinematics and
dynamics for computed-torque control. The control
performance is shown in Fig. 15. As shown in Fig.15,
the peak error occurs in the middle, because motor’s
rotary direction changes around that time. As expected,
model-based control outperforms the classic PD con-
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Fig. 13 Measured motion of P1 in the second experiment using torque loop mode: a displacement, b velocity, c acceleration
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in the second experiment
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Fig. 15 Comparison of trajectory tracking control errors in
experiments by using classical PID control andmodel-based con-
trol: a classic PID control, b computed-torque control

trol significantly due to the compensation of dynamic
model.

6 Conclusions

This paper presents a systematic methodology for
determining the inverse dynamics equations of com-
plex non-redundant parallel manipulators by the com-
bination of the Lagrangian formulation and the virtual
work principle. Based on the proposed algorithmwhich
is summarized as five steps, the dynamic equations of a
3-DOF spatial parallel manipulator have been obtained
and shown to be valid by comparison with 3rd parts
software and by experiments. The determination of
the dynamic equations of a complex multi-closed-loop
mechanism can be simplified by splitting the system
into independent substructures with respect to suitable
generalized coordinates. The constraints are introduced
by theway of Jacobian andHessianmatrices. The Jaco-
bian andHessianmatrices keep the explicit attributes of
the dynamic equations, when they are transformed into
different coordinate subsystems according to the vir-
tual work principle. The study presented here provides
a sound basis for future work on the context of model-
based control. Moreover, the modeling approach and
valid verification method can also be applied to other
parallel mechanisms. In the future, the model-based
control will be studied using the derived dynamic equa-
tions of the manipulator.
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Appendix 1: Detailed expression of the dynamic
equations of Link 2

The dynamic equations of Link 2 are given as follows:

M2(q) =
⎡

⎣
M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤

⎦ ,

M11 = m2(−l1yc2 − xc2yc2) sin(2θ2)

+m2(0.5l
2
1 + l1xc2 + 0.5x2c2 − 0.5y2c2) cos(2θ2)
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+m2(0.5l
2
1 + l1xc2 + 0.5x2c2 + 0.5y2c2),

M12 = L2xy sin θ1 + L2yz cos θ1,

M13 = 0,

M21 = L2xy sin θ1 + L2yz cos θ1,

M22 = m2(x
2
c2 + 2xc2l1

+ y2c2 + l21) + 0.5L2xx − 0.5L2xx cos(2θ1)

+ L2xz sin(2θ1) + 0.5L2zz cos(2θ1) + 0.5L2zz,

M23 = −m2yc2,

M31 = 0,

M32 = −m2yc2,

M33 = m2.

Hc2(q) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡

⎢⎢⎣

H111

H112

H113

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H121

H122

H123

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H131

H132

H133

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H211

H212

H213

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H221

H222

H223

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H231

H232

H233

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H311

H312

H313

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H321

H322

H323

⎤

⎥⎥⎦

⎡

⎢⎢⎣

H331

H332

H333

⎤

⎥⎥⎦

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

H111 = 0,

H112 = m2(l
2
1 + c22x + c22y + 2l1c2x ) sin(2θ2)

+m2 cos(2θ2)(2l1c2y + 2c2x c2y),

H113 = m2(l1 + xc2 + xc2 cos(2θ2)

+ yc2 sin(2θ2) + l1 cos(2θ2)),

H121 = 0,

H122 = −0.5L2xx sin(2θ1) − L2xz cos(2θ1)

+ 0.5L2zz sin(2θ1),

H123 = 0, H131 = 0, H132 = 0, H133 = 0,

H211 = L2yz sin θ1 + L2xy cos θ1

+m2l1xc2 sin(2θ2)

+m2xc2yc2 cos(2θ2) + 0.5m2l
2
1 sin(2θ2)

+ 0.5m2x
2
c2 sin(2θ2) − 0.5m2y

2
c2 sin(2θ2),

H212 = L2xx sin(2θ1) + 2L2xz cos(2θ1) − L2zz sin(2θ1),

H213 = 0, H221 = 0, H222 = 0, H223 = 2m2l1

+ 2m2xc2, H231 = 0, H232 = 0, H233 = 0,

H311 = 0.5m2(l1 cos(2θ2)

+ xc2 cos(2θ2) − yc2 sin(2θ2) + l1 + xc2),

H312 = 0, H313 = 0, H321 = 0, H322

= m2(l1 + xc2), H323 = 0,

H331 = 0, H332 = 0, H333 = 0

G2(q)

=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.5m2g((xc2 + l1) sin θ1 cos θ2

−yc2 sin θ1 sin θ2)

0.5m2g((xc2 + l1) cos θ1 sin θ2

+yc2 cos θ1 cos θ2) + 0.866g((xc2 + l1) cos θ2

−yc2 sin θ2)

m2g(−0.5 cos θ1 cos θ2 + 0.866 sin θ2)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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