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Abstract The thermal distortion of the cutting tool
is an important factor that can affect machining pre-
cision. A new single degree of freedom chatter model
of the regenerative orthogonal turning process takes
into account the thermal distortion of the cutting tool
is proposed in this work. The cutting tool of the turn-
ing system is modeled as one-dimensional oscillator
with nonlinear stiffness and the thermal distortion both
in axial and in radial direction. Numerical method is
employed to explore the effect of the largest thermal
distortion on the dynamics of the cutting system. The
results show that the motion of the cutting tool will
transition among periodic, quasi-periodic, and chaotic
motions with the time delay and the largest thermal dis-
tortion changed, at the same time, the different bifur-
cation patterns are found that indicate the dynamics of
the cutting system is influenced by the largest thermal
distortion. In addition, the stability of cutting system
will be broken earlier with the increase in the largest
thermal distortion.
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1 Introduction

Chatter is a self-excited vibration that can occur in
many cutting processes, such as turning [1–4], milling
[5–7], drilling [8–10], boring [1,11,12], and grinding
[13,14]. It often leads to the cutting process to unstable,
poor surface, low machining precision, tool wear, and
so on. For these reasons, it has been and still is a very
important and popular topic in academic research.

As we all know, there are three different types of
mechanical vibrations in cutting process as proposed
by Tobias, they are free, forced, and self-excited vibra-
tions [15,16]. Free vibrations are allowed to vibrate
freely when the mechanical system is displaced from
its equilibrium. Forced vibrations occur due to exter-
nal harmonic excitations. Self-excited vibrations are
generally classified into two categories, including pri-
mary chatter and secondary chatter [17]. Primary chat-
ter is caused by friction between cutting tool and work-
piece, or mode coupling. Secondary chatter is caused
by the regeneration of the wavy surface on the work-
piece. Regenerative vibration is the most destructive
among all other vibrations. Therefore, the majority
of researchers have investigated regenerative vibration
mechanism and found various techniques to avoid or
control it. Free and forced vibrations can be avoided,
reduced, even eliminated while the causes of the vibra-
tion are identified. It is difficult to research and under-
stand self-excited vibrations because of its complexity
of the principle and phenomenon.
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Chatter was first identified as a limitation ofmachin-
ing productivity by Taylor [18], who carried out exten-
sive study on metal cutting processes as early as in the
1800s. It is caused by unstability in the cutting process,
whichwasfirst introducedbyTobias andFishwick [19],
they observed that dynamic chip thickness due to vibra-
tion affect cutting force dynamically. The first mathe-
matical theory of nonlinear chatter was developed by
Hanna and Tobias in the 1974 [20]. The dynamicmodel
is a second-order differential equation with nonlinear
stiffness and nonlinear time delay terms. Nayfeh et al.
found periodic, quasi-periodic, and chaotic motions
with an increase in the width of cut in the cutting
process [21]. Nayfeh et al. [22] have investigated the
cutting system dynamics and stability of cutting tool on
a lathe due to the regenerative mechanism. In the past,
many researchers considered the regenerative vibration
effect and several other nonlinear elements. The main
nonlinearities considered in the cutting models are the
structural nonlinearity, higher-order nonlinearities in
the cutting force [23], the nonlinear friction coefficient
[24], the nonlinear effect of worn cutting tool [25], and
the other possible causes of nonlinear chatter.

Despite extensive research on cutting chatter and the
stability of cutting systems, there are not many works
have been done on the dynamics of the cutting systems
[4,7,23,25–30]. So far, almost no dynamics study has
been found on the vibration of the cutting tool with
the thermal distortion in the turning system. It is well
known that the thermal distortion has a great effect on
the machining precision [31]. Therefore, this work is
mainly focused on investigating dynamic behaviors of
the cutting tool affected by the thermal distortion.

2 The model

A model about a single degree of freedom orthogonal
turning process with a flexible cutting tool and rela-
tively rigid workpiece is shown in Fig. 1 [3,20,22,32],
where the cutting tool is considered one-dimensional
oscillator with nonlinear stiffness and the thermal dis-
tortion both in axial and in radial direction. The motive
equationwithout considering the thermal distortion can
be modeled in the radial direction as:

mẍ + cẋ + kx + αx3 = k f b(x(t − T ) − x(t)) (1)

where x is the displacement of cutting tool in radial
direction, m is the equivalent mass of the cutting tool,

c is the equivalent damping, k is the equivalent stiffness,
α is nonlinear constant coefficient of stiffness function,
k f is the cutting coefficient in radial direction, b is the
chip width, T is the time delay, which connected with
the spindle speed, and x(t − T ) − x(t) is the dynamic
chip thickness due to the cutting tool vibration.

The thermal distortion of the cutting tool at t time
can be approximately described as [33]

ξ = ξmax(1 − e−t/tc ) (2)

where ξmax is the largest thermal distortion of the cut-
ting tool, and tc is a constant coefficient associated with
cutting conditions.

The dynamic equation of the turning system consid-
ered the thermal distortion of the cutting tool both in
axial and radial direction can be expressed by

mẍ+cẋ+kx+αx3 = k f (b+ξ)(x(t−T )− x(t)+ξ)

(3)

Equation (3) with substitution (2) can be converted to
the form

mẍ + cẋ + kx + αx3 = k f (b + ξmax(1 − e−t/tc ))

(x(t − T ) − x(t) + ξmax(1 − e−t/tc )) (4)

Rearranging the motive Eq. (4) can obtain

ẍ + 2μω0 ẋ + ω2
0x + βω2

0x
3

= pω2
0(b + ξmax(1 − e−t/tc ))

(x(t − T ) − x(t) + ξmax(1 − e−t/tc )) (5)

where μ = c/2mω0 is the dimensionless damping
ratio, ω0 = √

k/m is the natural frequency, and β =
α/mω2

0 is the cubic nonlinear spring constant, the above
parameters are determined by the natural properties of
the cutting tool, p = k f /mω2

0, by defining the dimen-
sionless variables marking with tilde as follow

x = l x̃, t = t̃/ω0, T = T̃ /ω0, tc = t̃c/ω0, p =
l p̃, b = lb̃, ξmax = l ξ̃max, β = l2β̃, l = 2πR, R
is the radius of the workpiece. Substituting the above
dimensionless variables into Eq. (5) and rearranging,
the motive equation can be represented by

¨̃x + 2μ ˙̃x + x̃ + β̃ x̃3 = p̃(b̃ + ξ̃max(1 − e−t̃/t̃c ))

(x̃(t̃ − T̃ ) − x̃(t̃) + ξ̃max(1 − e−t̃/t̃c )) (6)

We remove the tilde for ease of notation and obtain the
dimensionless equation of motion can be written in the
form
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Fig. 1 Schematic diagram
of a single degree of
freedom orthogonal model
for turning process, where
m is the equivalent mass of
the cutting tool, c is the
equivalent damping, and k
is the nonlinear stiffness of
the turning system

x: radial direction 
y: tangential direction 
z: axial direction 
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cutting tool workpiece 

ẍ + 2μẋ + x + βx3 = p(b + ξmax(1 − e−t/tc ))

(x(t − T ) − x(t) + ξmax(1 − e−t/tc )) (7)

3 Nonlinear dynamic analysis and numerical
simulation

In order to investigate the chatter characteristics of
the nonlinear turning system, the numerical results are
used to generate time history, phase portrait, Poincaré
section, and power spectrum. These figures are used
as qualitative tools to explore the nonlinear dynamic
behaviors of the cutting tool, such as the periodic,
multi-periodic, quasi-periodic, and chaotic motions.
For the Poincaré section, we collected all of the points
of intersection of the trajectory with the surface of sec-
tion ẋ = 0 when ẍ < 0. In the following numerical
simulations, the time delay T is chosen as the bifurca-
tion parameter.

At the beginning, the bifurcation diagram of the cut-
ting tool displacement can be obtained when the bifur-
cation parameter T changed from 1.5 to 10. Then, the
bifurcation theory is utilized to globally analyze the
dynamic responses of the cutting tool. The dynam-
ics system (7) initial conditions and the other parame-
ters are chosen as follow: x(0) = 2, ẋ(0) = 0, μ =
0.05, β = 0.25, p = 1, b = 0.25, ξmax = 1, tc = 200,
and x(t − T ) = 2 when t ∈ (−T, 0).

The bifurcation diagram as shown in Fig. 2, the hor-
izontal axis represents the time delay T , and the verti-
cal axis represents the displacement of the cutting tool
in the radial direction. It is clear that there exist peri-
odic, quasi-periodic, and chaotic motions. We can be
observed from the bifurcation diagram in Fig. 2 that
with the increase in the time delay T , the motions of
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Fig. 2 Bifurcation diagram of the cutting tool displacement x
versus time delay T when the largest thermal distortion ξmax =
1, T form 1.5 to 10

the cutting tool to present the following bifurcation pat-
tern: periodic-1, quasi-periodic, and chaotic motions.

Based on the bifurcation diagram as shown in Fig.
2, we choose several typical values of the time delay T
to obtain the time histories, phase portraits, Poincaré
sections, and power spectra of the periodic, quasi-
periodic, and chaotic motions in the following simu-
lations, respectively. Fig. 3a1, b1, c1, d1, e1 shows the
cutting tool response when the time delay T = 3. The
time history, as shown in Fig. 3a1, indicates a stable
periodic motion. The three-dimensional phase portrait
is presented in Fig. 3b1. The phase portrait as shown
in Fig. 3c1 is a small closed curve. Poincaré section in
Fig. 3d1 consists of one point, confirming the periodic-
1 nature of the cutting tool motion and its power spec-
trum is presented in Fig. 3e1 consists of a fundamental
peak that means periodic motion.
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Fig. 3 The periodic-1, quasi-periodic, and chaotic motions are
obtained when the largest thermal distortion ξmax = 1, time
delay T = 3, 5, 7, respectively. a1, b1, c1, d1, e1 are time his-
tory on the plane {t, x}, phase portrait in three-dimensional space
{x, ẋ, x(t − T )}, phase portrait on the plane {x, ẋ}, Poincaré
section on the plane {x, x(t − T )}, and power spectrum, when
ξmax = 1, T = 3; a2, b2, c2, d2, e2 are time history on the plane

{t, x}, phase portrait in three-dimensional space {x, ẋ, x(t−T )},
phase portrait on the plane {x, ẋ}, Poincaré section on the plane
{x, x(t − T )}, and power spectrum, when ξmax = 1, T = 5; a3,
b3, c3, d3, e3 are time history on the plane {t, x}, phase portrait
in three-dimensional space {x, ẋ, x(t − T )}, phase portrait on
the plane {x, ẋ}, Poincaré section on the plane {x, x(t −T )}, and
power spectrum, when ξmax = 1, T = 7
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Fig. 4 Bifurcation
diagrams of the cutting tool
displacement x versus time
delay T . a when the largest
thermal distortion ξmax = 2,
time delay T form 1.5 to 10;
b when the largest thermal
distortion ξmax = 3, time
delay T form 1.5 to 10
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When the time delay T increased to 5, the response
of cutting tool is presented in Fig. 3a2, b2, c2, d2, e2.
The time history is shown in Fig.3a2 that indicates a
modulated motion. The messy trajectory is located in
a bounded region in Fig. 3b2, c2 that indicate a com-
plex aperiodic motion, but Poincaré section in Fig. 3d2
means that the motion is quasi-periodic because it con-
sists of a large number of points falling on a closed
curve. The fundamental frequency now consists of a
fundamental peak, and some smaller asymmetric side
bands in Fig. 3e2 indicate a periodic motion of the cut-
ting tool.

The response of cutting tool is chaotic motion when
the time delay T increased to 7 in Fig. 3a3, b3, c3,
d3, e3. The time history is shown in Fig. 3a3 that
indicates complex aperiodic motion. A wider range of
messy curve that indicates complex aperiodic motions
as shown in Fig. 3b3, c3. The dense bounded nature of
Poincaré section in Fig. 3d3 indicates chaotic motion.
The power spectrum is presented in Fig. 3e3 that has
some peaks and a continuous background around the
natural frequency of the cutting tool, confirming that
the motion is chaotic motion. As shown in Fig. 3, the
dynamic response of the cutting tool is similar to a
Duffing’s system with time delay excitation [31].

In the following numerical simulations, we consider
the influence of the other largest thermal distortion ξmax

on the nonlinear dynamic behaviors of the cutting tool.
The largest thermal distortion ξmax chosen as 2 and
3, comparing with the ξmax = 1, they are the relative
medium and large largest thermal distortion of the cut-
ting tool, respectively. The others parameters are the
same as shown in Fig.2. The bifurcation diagrams are
presented in Fig. 4a, b.

As shown in Fig. 4a, b, the complicated nonlinear
dynamics, including periodic, multi-periodic, quasi-

periodic, and chaoticmotions, can be observed from the
bifurcation diagrams. The bifurcation diagram in Fig.
4a indicates the motions of the cutting tool to present
the following bifurcation pattern with the increase in
the time delay T , periodic-1, quasi-periodic, periodic-
7, and chaotic motions. The bifurcation diagram in Fig.
4b means the following bifurcation pattern: periodic-
1, periodic-2, quasi-periodic, and chaotic motions. It
is noted that the nonlinear dynamic responses of the
cutting tool are very sensitive to the change in the
largest thermal distortion. In addition, the displacement
of the cutting tool became larger with the increase in
the largest thermal distortion that is shown in Figs. 2
and 4.

In the subsequent studies, the time history, phase
portraits, Poincaré section, and the power spectrum to
be adopted to continue to investigate the multi-periodic
motion of the cutting tool. From the bifurcation dia-
gramFig. 4a, it is clear that there exists amulti-periodic
motion. When the bifurcation parameter time delay
T = 4, the time history of the cutting tool is presented
in Fig. 5a1. The three-dimensional phase portrait and
the phase portrait are a closed curve that indicates a
stable periodic motion as shown in Fig. 5b1, c1. In
addition, Poincaré section consists of the seven points
in Fig. 5d1, meaning the periodic-7 motion of the cut-
ting tool. The power spectrum in Fig. 5e1 indicates that
the motion is periodic motion.

It is obvious that the periodic-2 motion occurs, as
shown in Fig. 4b. When time delay T = 2.3, the time
history is shown in Fig. 5a2 that indicates a stable peri-
odic motion and the three-dimensional phase portrait is
presented in Fig. 5b2. The phase portrait is displayed in
Fig. 5c2 that consists of a closed curve. Poincaré sec-
tion consists of the two points in Fig. 5d2, confirming
the periodic-2 motion of the cutting tool and its power
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Fig. 5 The periodic-7 and
periodic-2 motions are
obtained when the largest
thermal distortion ξmax = 2,
time delay T = 4, and
ξmax = 3, time delay
T = 2.3, respectively. a1,
b1, c1, d1, e1 are time
history on the plane {t, x},
phase portrait in
three-dimensional space
{x, ẋ, x(t − T )}, phase
portrait on the plane {x, ẋ},
Poincaré section on the
plane {x, x(t − T )}, and
power spectrum when
ξmax = 2, T = 4; a2, b2,
c2, d2, e2 are time history
on the plane {t, x}, phase
portrait in three-dimensional
space {x, ẋ, x(t − T )},
phase portrait on the plane
{x, ẋ}, Poincaré section on
the plane {x, x(t − T )}, and
power spectrum when
ξmax = 3, T = 2.3
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Fig. 6 Time histories of the cutting tool when T = 1.8, a ξmax = 1; b ξmax = 2; c ξmax = 3
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Fig. 7 Time histories of the cutting tool when T = 5, a ξmax = 1; b ξmax = 2; c ξmax = 3

spectrum in Fig. 5e2 consists of a fundamental peak
and some smaller asymmetric side bands that mean the
motion is periodic motion.

From the above numerical results, it is obvious that
nonlinear dynamic responses of the cutting tool are
influenced by the largest thermal distortion. As the
largest thermal distortion increases, the displacement
of the cutting tool became larger gradually. In addi-
tion, the motions of the cutting tool present different
bifurcation patterns with the difference of the largest
thermal distortion.

4 Stability analysis of different thermal distortion

In this section, time history of the cutting tool is uti-
lized to investigate the stability characteristics of the
nonlinear turning system. Based on the aforementioned
phenomenon, we choose different time delay T and the
largest thermal distortion ξmax to obtain the time histo-
ries of the cutting tool. When the time delay T is 1.8
and 5, the largest thermal distortion ξmax is 1, 2, and
3, respectively. The dynamics system (7) initial condi-
tions and the other parameters are chosen as same in

Fig. 2. The time histories of cutting tool are shown in
Figs. 6 and 7.

As shown in Figs. 6 and 7, it is clear that the sta-
bility of the cutting tool is influenced by the largest
thermal distortion. The cutting system loses stability
earlier with the increase in the largest thermal distor-
tion.

5 Conclusions

This paper studies the dynamics of the regenerative
orthogonal turning process by adopting a single degree
of freedom model with the nonlinear stiffness and
thermal distortion of the cutting tool. Based on the
regenerative model, the dynamics motion of the cut-
ting tool that considered the thermal distortion both in
the axial and in radial direction is modeled. The numer-
ical method is used to investigate the influence of the
largest thermal distortion on the dynamic behavior of
the cutting tool. In addition, time histories, phase por-
traits, Poincaré sections, and power spectra are used as
qualitative tools to explore the periodic, multi-periodic,
quasi-periodic, and chaotic motions of the cutting tool.
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We found that nonlinear dynamic responses of the cut-
ting tool are influenced by the largest thermal distor-
tion. The bifurcation phenomenon of the motion of the
cutting tool present different bifurcation patterns with
different of the largest thermal distortion. There are
many other parameters that can also influence dynamic
response of the cutting tool [22,30]. Therefore, ther-
mal distortion of the cutting tool is one of the significant
factors to which should pay attention. Furthermore, the
largest thermal distortion can affect chatter system sta-
bility. As the increase in the largest thermal distortion,
the chatter system loses stability earlier and the dis-
placement of the cutting tool became larger. Therefore,
the cutting tool should be chosen that the largest ther-
mal distortion as small as possible.

Acknowledgments We are grateful for the support of the
National Natural Science Foundation of China under Grant Nos.
11372122 and 51465029.

References

1. Budak, E., Ozlu, E.: Analytical modeling of chatter stabil-
ity in turning and boring operations: a multi-dimensional
approach. CIRP Ann. Manuf. Technol. 56(1), 401–404
(2007)

2. Insperger, T., Stépán, G., Turi, J.: State-dependent delay
in regenerative turning processes. Nonlinear Dyn. 47(1–3),
275–283 (2007)

3. Siddhpura, M., Paurobally, R.: A review of chatter vibration
research in turning. Int. J. Mach. Tools Manuf. 61, 27–47
(2012)

4. Kim, P., Seok, J.: Bifurcation analyses on the chatter vibra-
tions of a turning process with state-dependent delay. Non-
linear Dyn. 69(3), 891–912 (2012)

5. Altintas, Y., Budak, E.: Analytical prediction of stabil-
ity lobes in milling. CIRP Ann. Manuf. Technol. 44(1),
357–362 (1995)

6. Insperger, T., Stépán, G., Bayly, P.V., Mann, B.P.: Multi-
ple chatter frequencies in milling processes. J. Sound Vib.
262(2), 333–345 (2003)

7. Long, X.H., Balachandran, B., Mann, B.P.: Dynamics of
milling processes with variable time delays. Nonlinear Dyn.
47(1–3), 49–63 (2007)

8. Arvajeh, T., Ismail, F.: Machining stability in high-speed
drilling—part 1:modeling vibration stability in bending. Int.
J. Mach. Tools Manuf. 46(12), 1563–1572 (2006)

9. Arvajeh, T., Ismail, F.: Machining stability in high speed
drilling—part 2: time domain simulation of a bending-
torsional model and experimental validations. Int. J. Mach.
Tools Manuf. 46(12), 1573–1581 (2006)

10. Campbell, S.A., Stone, E.: Analysis of the chatter instability
in a nonlinear model for drilling. J. Comput. Nonlinear Dyn.
1(4), 294–306 (2006)

11. Edhi, E., Hoshi, T.: Stabilization of high frequency chat-
ter vibration in fine boring by friction damper. Precis. Eng.
25(3), 224–234 (2001)

12. Atabey, F., Lazoglu, I., Altintas, Y.: Mechanics of boring
processes—part II–multi-insert boring heads. Int. J. Mach.
Tools Manuf. 43(5), 477–484 (2003)

13. González-Brambila, O., Rubio, E., Jáuregui, J.C., Herrera-
Ruiz, G.: Chattering detection in cylindrical grinding
processes using the wavelet transform. Int. J. Mach. Tools
Manuf. 46(15), 1934–1938 (2006)

14. Yan, Y., Xu, J., Wang, W.: Nonlinear chatter with large
amplitude in a cylindrical plunge grinding process. Non-
linear Dyn. 69(4), 1781–1793 (2012)

15. Tobias, S.A.: Machine tool vibration research. Int. J. Mach.
Tool Des. Res. 1(1), 1–14 (1961)

16. Tobias, S.A.: Machine-tool vibration. Blackie and Son Lim-
ited, London (1965)

17. Wiercigroch, M., Budak, E.: Sources of nonlinearities, chat-
ter generation and suppression in metal cutting. Philos.
Trans. R. Soc. Lond. A Math. Phys. Eng. Sci. 359(1781),
663–693 (2001)

18. Taylor, F.W.: The art of cutting metals. Sci. Am. 63, 25942–
25944 (1907)

19. Tobias, S.A., Fishwick, W.: The chatter of lathe tools under
orthogonal cutting conditions. Trans. ASME 80(2), 1079–
1088 (1958)

20. Hanna, N.H., Tobias, S.A.: A theory of nonlinear regenera-
tive chatter. J. Manuf. Sci. Eng. 96(1), 247–255 (1974)

21. Nayfeh, A.H., Chin, C.M., Pratt, J.: Perturbation methods in
nonlinear dynamics—applications to machining dynamics.
J. Manuf. Sci. Eng. 119(4A), 485–493 (1997)

22. Nayfeh, A.H., Nayfeh, N.A.: Analysis of the cutting tool on
a lathe. Nonlinear Dyn. 63(3), 395–416 (2011)

23. Deshpande,N., Fofana,M.S.:Nonlinear regenerative chatter
in turning. Robot. Comput Integr. Manuf. 17(1), 107–112
(2001)

24. Nosyreva, E.P., Molinari, A.: Analysis of nonlinear vibra-
tions in metal cutting. Int. J. Mech. Sci. 40(8), 735–748
(1998)

25. Moradi, H., Bakhtiari-Nejad, F., Movahhedy, M.R., Ahma-
dian, M.T.: Nonlinear behaviour of the regenerative chatter
in turning process with a worn tool: forced oscillation and
stability analysis. Mech. Mach. Theory 45(8), 1050–1066
(2010)

26. Banihasan, M., Bakhtiari-Nejad, F.: Chaotic vibrations in
high-speed milling. Nonlinear Dyn. 66(4), 557–574 (2011)

27. Litak, G., Schubert, S., Radons, G.: Nonlinear dynamics of
a regenerative cutting process. Nonlinear Dyn. 69(3), 1255–
1262 (2012)

28. Moradi, H., Vossoughi, G., Movahhedy, M.R.: Bifurcation
analysis of nonlinear milling process with tool wear and
process damping: sub-harmonic resonance under regenera-
tive chatter. Int. J. Mech. Sci. 85, 1–19 (2014)

29. Zhou, R., Zhang, W., Zu, J.W.: Analysis on nonlinear
dynamics of a thin-plate workpiece in milling process with
cutting force nonlinearities. J. Mech. Sci. Technol. 28(7),
2511–2526 (2014)

30. Rusinek, R., Wiercigroch, M., Wahi, P.: Orthogonal cut-
ting process modelling considering tool-workpiece fric-
tional effect. Proced. CIRP 31, 429–434 (2015)

123



Analysis on dynamics of a cutting tool with the thermal distortion in turning process 1191

31. Cao, H.J., Zhu, L.B., Li, X.G., Chen, P., Chen Y.P.: Thermal
error compensation of dry hobbingmachine tool considering
workpiece thermal deformation. Int. J.Adv.Manuf. Technol.
(2016). doi:10.1007/s00170-015-8314-5

32. Rusinek,R.,Mitura,A.,Warminski, J.: Time delayDuffing’s
systems: chaos and chatter control. Meccanica 49(8), 1869–
1877 (2014)

33. Ma, F.B., Chen, X.J.: Effect of thermal deformation of cut-
ting tools on detail process precision. Coal Mine Mach. 9,
27–29 (2004). (in Chinese)

123

http://dx.doi.org/10.1007/s00170-015-8314-5

	Analysis on dynamics of a cutting tool with the thermal distortion in turning process
	Abstract
	1 Introduction
	2 The model
	3 Nonlinear dynamic analysis and numerical simulation
	4 Stability analysis of different thermal distortion
	5 Conclusions
	Acknowledgments
	References




